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Abstract 
In this paper, we will demonstrate, by employing basic linear algebra, that two seemingly 

disconnected algorithms, the Kaczmarz algorithm, familiar to mathematics community as an 
iterative solver of linear systems, and the Normalized LMS (NLMS) algorithm, known to the 
signal processing community as a self-learning adaptive filter, are identical. In this paper, we 
have provided a simple linear algebraic proof of the relationship between Kaczmarz and NLMS 
algorithms which demonstrates that both algorithms are identical 
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1. Introduction 
 

Recent proposition of randomized Kaczmarz algorithm has generated an upheaval in 

scientific community. It has been shown that Kaczmarz algorithm can achieve better 

convergence when it selects the rows of a linear system, the one it is trying to solve,  in a 

random fashion rather than a progressive one [1]. This upheaval has attracted a lot of 

researchers towards the Kaczmarz algorithm, and engineers towards its potential applications. 

As a result there has been a revival of Kaczmarz algorithm, as one would say it has 

experienced a renaissance. Many others have shared the lead and claims are being made for 

yet faster and faster convergence of the algorithm [2-4]. On theoretical side, the algorithm is 

paving its way in linear algebra [5, 6], approximation theory [7], statistics and data analysis [8], 

non-linear analysis [7], etc. Also on the applied side, the algorithm is gaining much popularity 

and is being used to solve the problems arising in atmospheric tomography [9], medical 

tomography [10], optics [11], image reconstruction [12], GPU computing [13], etc. All this is 

being attributed to its ability to solve a linear system in an iterative fashion, and to do it quickly, 

the convergence. 

But here we are compelled to say that yet there exists another algorithm that is exactly 

the same as Kaczmarz algorithm with similar convergence properties. Only it has a different 

name. It is known by the name of Normalized LMS and is familiar to signal processing 

community as an adaptive filter [14]. In adaptive signal processing, it has been widely used for 

system identification, array beam-forming, channel equalization, acoustic echo cancellation, etc. 

The NLMS filter iteratively solves a system of linear equations by minimizing the error between 

its output and the desired output and, to speed up convergence, selects an adaptive sep-size 

that minimizes the error with respect to aposteriori output. The system of linear equations and, 

hence, the rows of the system matrix in question are formed by a time-delayed input vector 

whose every entry is a Gaussian random variable with a zero mean and a finite variance. 

Therefore, it can be argued that, in the context of row selection, the NLMS algorithm is already 

random as the rows are statistically uncorrelated. And its convergence properties are already 

very well-defined.  

But surprisingly, the two algorithms seem disconnected at the moment. Former is 

familiar to mathematics community and the latter has the approval of signal processing 

community. Signal processing literature, including books and journals, barely include the 

Kaczmarz algorithm while the mathematics community is even less inclined to NLMS algorithm. 

Whenever there is the problem of solving a system of linear equations in an iterative manner 

with good convergence properties, both work with their own solutions. While some have 

discussed them in entirely disengaged manner [15], even fewer have hinted a relationship 
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between them but without the explicit proof [16]. Therefore, we will show in this paper, in 

unequivocal terms, that both algorithms are identical. Only difference is that of the 

nomenclature, presumably arising due to their different application contexts and, hence, the 

notations in vogue in their respective communities. Let it be the scientific historians who debate 

which preceded the other but the fact is both are same. It is this fact we will try to demonstrate 

in this paper by employing basic linear algebraic. As a side note, we will also establish a serial 

link between Steepest Descent, LMS, NLMS, and Kaczmarz algorithms. We will show, in 

systematic sequential steps, that how they are related and how one can be derived from the 

other by simple substitutions which will lead us to the ultimate case of identity for the Kaczmarz 

algorithm. The case may also be viewed, from a pedagogical viewpoint, as an alternate proof of 

the Kaczmarz algorithm. 

 

2. Proof 
 

We begin the proof by first writing Kaczmarz’s recursion equation for reference [3].  

 𝒙[𝒏 + 𝟏] = 𝒙[𝒏] + (𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])

𝒂𝒋

𝒂𝒋𝒂𝒋
𝑻
 (1) 

Now we lay out nomenclature and proceed with the proof. Let a system of linear equations be 

defined as, 

 𝑨𝒙 = 𝒃 (2) 

such that 𝑨 ∈ ℝ𝑚×𝑛, 𝒙 ∈ ℝ𝑛, and 𝒃 ∈ ℝ𝑚. Since we are seeking an iterative solution, Eq. (2) is 

modified as, 

 𝑨𝒙[𝒏] = 𝒃 (3) 

𝑛 denotes the iteration number. Re-writing Eq. (3) as, 

 

[
 
 
 
𝒂𝟏

𝑻

𝒂𝟐
𝑻

⋮
𝒂𝒎

𝑻]
 
 
 

𝒙[𝒏] = [

𝑏1

𝑏2

⋮
𝑏𝑛

] (4) 

Selecting the 𝑗-th row 𝒂𝒋
𝑻 of 𝑨 matrix from Eq. (4), 

 𝒂𝒋
𝑻𝒙[𝒏] = 𝑏𝑗 (5) 

𝑏𝑗 ∈ ℝ is the 𝑗-th component of b vector. Since our initial choice of 𝒙[𝒏] is purely arbitrary, there 

can be an error 𝑒𝑗[𝑛], 

 𝑒𝑗[𝑛] = 𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏] (6) 

Squaring Eq. (6), we obtain the cost function 𝜉 ∈ ℝ. 

 𝜉 = 𝑏𝑗
2 − 2𝒙[𝒏]𝑻𝒂𝒋𝑏𝑗 + 𝒙[𝒏]𝑻𝒂𝒋𝒂𝒋

𝑻𝒙[𝒏] (7) 

Computing the instantaneous gradient of Eq. (7)  by minimizing 𝜉 with respect to 𝒙[𝒏], 

 𝛁𝝃 = −2𝒂𝒋𝑏𝑗 + 2𝒂𝒋𝒂𝒋
𝑻𝒙[𝒏] (8) 



54    ◼       ISSN: 2303-3703 
  

 
JTI  Vol. 2, No. 9, 2021  
 

Re-arranging Eq. (8), 

 

 𝛁𝝃 = −2(𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])𝒂𝒋 (9) 

Employing SD algorithm [17] to compute 𝒙[𝒏] by using the gradient computed in Eq. (9),  

 𝒙[𝒏 + 𝟏] = 𝒙[𝒏] + 𝜇𝛁𝝃 (10) 

Substituting Eq. (9) in Eq. (10), 

 𝒙[𝒏 + 𝟏] = 𝒙[𝒏] − 2𝜇(𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])𝒂𝒋 (11) 

Eq. (11) is known as LMS algorithm. It is almost close to Kaczmarz equation except for 

the denominator term 𝒂𝒋𝒂𝒋
𝑻. We will obtain this term by solving for an optimal 𝜇. By optimal we 

mean a value of 𝜇 that minimizes the aposteriori error defined as [14], 

 𝑒𝑗[𝑛 + 1] = 𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏 + 𝟏] (12) 

Substituting Eq. (11) in Eq. (12), 

𝑒𝑗[𝑛 + 1] = 𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏] + 2𝜇𝒂𝒋

𝑻(𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])𝒂𝒋 (13) 

Substituting Eq. (6) in Eq. (13) and observing that 𝑒𝑗[𝑛] is a scalar, 

𝑒𝑗[𝑛 + 1] = 𝑒𝑗[𝑛] + 2𝜇𝒂𝒋
𝑻𝑒𝑗[𝑛]𝒂𝒋 = 𝑒𝑗[𝑛] + 2𝜇𝑒𝑗[𝑛]𝒂𝒋

𝑻𝒂𝒋 (14) 

Squaring and expanding Eq. (14) to obtain cost function 𝜌 ∈ ℝ for aposteriori error, 

𝜌 = 𝑒𝑗[𝑛]2 + 4𝜇𝑒𝑗[𝑛]2𝒂𝒋
𝑻𝒂𝒋 + 4𝜇2𝑒𝑗

2[𝑛]𝒂𝒋
𝑻𝒂𝒋𝒂𝒋

𝑻𝒂𝒋 (15) 

Minimizing Eq. (15) with respect to 𝜇, 

𝛁𝝆 = 4𝑒𝑗[𝑛]2𝒂𝒋
𝑻𝒂𝒋 + 𝟖𝜇𝑒𝑗

2[𝑛]𝒂𝒋
𝑻𝒂𝒋𝒂𝒋

𝑻𝒂𝒋 = 0 (16) 

Where 𝛁𝝆 ∈ ℝ. Solving Eq. (16) for 𝜇, 

 

𝜇 = −
1

2𝒂𝒋
𝑻𝒂𝒋

 (17) 

Substituting Eq. (17) in Eq. (11), 

 

𝒙[𝒏 + 𝟏] = 𝒙[𝒏] +
1

𝒂𝒋
𝑻𝒂𝒋

(𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])𝒂𝒋 (18) 

Since 𝒂𝒋
𝑻𝒂𝒋 is a scalar, we can re-arrange it, 

 

𝒙[𝒏 + 𝟏] = 𝒙[𝒏] + (𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])

𝒂𝒋

𝒂𝒋
𝑻𝒂𝒋

 (19) 

Hence, we arrive at Kackzmarz’s equation. Whereas, the equation for NLMS is [14] ,  
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𝑏𝑗 

𝒂𝒋 𝒙[𝒏] 𝑒[𝑛] 
𝒂𝒋

𝑻𝒙[𝒏] 

 

𝑑 

𝒙[𝒏] 𝒘[𝒏] 𝑒[𝑛] 
𝒙𝑻[𝒏]𝒘[𝒏] 

 

𝒘[𝒏 + 𝟏] = 𝒘[𝒏] + (𝑑 − 𝒙𝑻[𝒏]𝒘[𝒏])
𝒙[𝒏]

𝒙𝑻[𝒏]𝒙[𝒏]
 (20) 

Eq. (19) and Eq. (20) are identical except for the nomenclature. This difference of 

nomenclature is depicted in Figure 1 and illustrated in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Comparison of NLMS and Kaczmarz algorithms 

The box at the top in the Figure 1 generally implies a physical system, a smart antenna 

for example. Such a system is described by a system vector. The box computes the system 

output by forming the dot product of the input vector with the system vector. As the time 

progresses, input vector is delayed and again the dot product is computed with the system 

vector to form the output. This process, in signal processing community, is known by the name 

of convolution. The box is then called a filter. At each time step, the filter updates its system 

vector in an attempt to minimize the error between its output and desired output unless further 

system update brings no significant change in the error. In this way, a best possible solution 

with respect to the error is achieved in an adaptive fashion and so follows the term adaptive 

filter. Therefore, Kaczmarz algorithm can be thought of an adaptive filter. Other way round, 

NLMS adaptive filter can be viewed as an iterative linear system solver. Only caveat is that 

Kaczmarz algorithm operates on a restricted set of inputs that keep recurring whereas NLMS 

has no such limitations.  

Table 1. Comparison of nomenclature of NLMS and Kaczmarz algorithms 

Kaczmarz algorithm NLMS algorithm 

𝑎𝑗 
𝑗-th row of 𝐴 

matrix 
𝑥[𝑛] 

Input signal 
vector  

𝑥[𝑛] Solution 𝑤[𝑛] 
Weight 

vector of 
the filter 

𝑎𝑗
𝑇𝑥[𝑛] Output 𝑥𝑇[𝑛]𝑤[𝑛] 

Output 
vector 

𝑏𝑗 
𝑗-th component 

of 𝑏 vector 
𝑑 

Desired 
output 

 

 

3. Proof of an alternate formula 
 

Some authors prefer to write Kaczmarz equation as [15], 
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 𝒙[𝒏 + 𝟏] = 𝒙[𝒏] + 𝜇(𝑏𝑗 − 𝒂𝒋
𝑻𝒙[𝒏])

𝒂𝒋

𝒂𝒋𝒂𝒋
𝑻
 (21) 

An implication of this approach is that if we try to derive the optimal step-size for Eq. 

(21) such that it minimizes the aposteriori error criteria laid down in Eq. (12), the resulting value 

of step-size thus obtained for Eq. (21) is always equal to 1. We can understand this by 

observing the factor 𝒂𝒋
𝑻𝒂𝒋 in the denominator of Kaczmarz’s Equation. This factor already 

achieves the desired goal of optimization as in Eq. (19). Minimizing Eq. (21) with respect to 𝜇 

will result in no new information. Therefore, Eq. (1) and Eq. (21) are identical in terms of 

optimality criteria laid down in Eq. (12).  

 

4. Conclusion 
In this paper, we have provided a simple linear algebraic proof of the relationship 

between Kaczmarz and NLMS algorithms which demonstrates that both algorithms are 

identical. 
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