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 Flip-Flops (FFs) play a fundamental role in digital designs. A clock system 
consumes above 25% of total system power. The use of pulse-triggered flip-
flops (P-FFs) in digital design provides better performance than conventional 
flip-flop designs. This paper presents the design of a new power-efficient 
implicit pulse-triggered flip-flop suitable for low power applications. This flip-
flop architecture is embedded with two key features. Firstly, the enhancement 
in width and height of triggering pulses during specific conditions gives a 
solution for the longest discharging path problem in existing P-FFs. Secondly, 
the clock gating concept reduces unwanted switching activities at sleep/idle 
mode of operation and thereby reducing dynamic power consumption. The 
post-layout simulation results in cadence software based on CMOS 90-nm 
technology shows that the proposed design features less power dissipation and 
better power delay performance (PDP) when compared with conventional P-
FFs. Its maximum power saving against conventional designs is up to 30.65%.
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1. INTRODUCTION  

In all kinds of digital structures flip-flops are widely used as the basic storage element. It is also 
estimated that above 25% of the total system power is consumed by the clock system [1]. Thus, FFs contributes 
a major part of the power consumption of the total system. P-FF exhibits better performance than conventional 
master-slave FF designs in low power and high-speed applications [2]. The single latch structure design of P-
FFs made them more popular than conventional master-slave and transmission gate-based FF designs in low 
power and high-speed applications [3]. 

The generator and latches are the basic parts in the structure of a P-FF design are pulse. The trigger 
pulses are generated by the pulse generator which may be generated either at any edges of clock signals or at 
both edges of clock signals. The latch structure performs the latching or sampling of the input data into the 
output based on the generation triggering pulses. Depending upon the pulse generation mechanism, P-FFs are 
classified as a single and double edge triggered types [4].  

Based on the connection of pulse generation logic and latch, P-FFs are classified as implicit and 
explicit types [5]. In implicit case, the pulse generator is inbuilt in the latch structure and in explicit it is external 
to the latch structure. It is estimated that due to the control of discharging path the implicit P-FFs are more 
power efficient than explicit types [6-8]. However, the sharing of pulse generator among neighboring latches 
is an advantage of explicit P-FF. Both implicit and explicit P-FFs face the longest discharging path problem in 
the latch structure. This increases the size of the transistors used at the pulse generator to enlarge the width and 
height of triggering pulses for the sufficient capturing of data. 
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An unnecessary switching activity in a P-FF causes a lot of wastage in power consumption. Using 
various techniques such as conditional discharging [9], conditional data mapping [10], conditional capturing 
[11], signal feed-through [12-13], power gating [14], error masking [15] and clock gating [16-18], unwanted 
switching activities can be avoided and thus the power consumption can be reduced. 

In this paper, a low power P-FF is presented which has an implicit style of operation. This structure 
solves the longest discharging path problem in the latch and unwanted switching activities at sleep/idle mode 
of operation. The remaining part of the paper is organized as follows: Section 2 describes two conventional P-
FF designs, which includes single-ended conditional capturing energy recovery FF (SCCERFF), and 
conditional pulse enhancement FF (CPEFF). Section 3 explains the proposed low power P-FF design. Section 
4 compares the P-FFs and presents the results after simulation. The paper concluded in section 5.  

 
 

2. CONVENTIONAL DESIGNS  
This section explains the operation of two implicit P-FFs namely (i) Single Ended Conditional 

Capturing Energy Recovery FF (SCCERFF), and (ii) Conditional Pulse Enhancement FF (CPEFF).  
 
2.1. Single ended conditional capturing energy recovery flip-flop 

The Single ended conditional capturing energy recovery (SCCER) FF is a refined P-FF design for low 
power applications [19]. The circuit diagram of SCCERFF is shown in Figure 1. The energy recovery technique 
is used to improve the power efficiency of digital circuits. Energy recovery technique improves the energy 
efficiency by preventing the flow of current through low voltage drop devices and energy stored on their 
capacitors is recycled. The consumption of power in the clock network can be reduced by an innovative 
technique known as conditional capturing. The pulse generation logic consists of inverter I1 and transistors N1 
and N2. The trigger pulses are generated at node Y. The load capacitance at node X can be reduced using an 
always ON pMOS transistor P1 in combination with an inverter I3. The undesired transition activities at node 
X can be avoided by using an additional nMOS transistor N3 gated by Q_fdbk.  

 
 

 
 

Figure 1. Circuit diagram of SCCERFF 
 
 
2.2. Conditional pulse enhancement flip-flop 

The circuit diagram of conditional pulse enhancement flip-flop (CPEFF) [20] is shown in Figure 2. In 
CPEFF a two-input AND gate of N-type pass-transistor logic (PTL) style is formed by the transistors N2 and 
N3. The N-type PTL transmits only weak ones (VDD-Vtn) to the output. At node Z the value of pulse signal 
is zero in most of the time other than transition edges of clock signals, because of the two complementary 
inputs of the AND gate. The node Z reaches a temporary floating state when the clock signal falls to the LOW 
value. Both transistors N2 and N3 are turned ON at the rising edges of the clock signal. This passes a weak 
logic high value (VDD-Vtn) to node Z, which causes turning ON of transistor N1 by a time period inserted by 
the delay of inverter I1. The enhancement in the width and height of the triggering pulse takes place by an 
additional pMOS transistor P3 when the input data changes from 0 to 1 value [21]. 
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Figure 2. Circuit diagram of CPEFF 
 
 

The CPEFF is having better performance in power, speed and area than conventional P-FF. This P-
FF solves the pulse width control issue but unwanted switching activities take place during sleep/idle mode of 
operation, which will increase the power consumption and degrade the total performance. 

 
 

3. PROPOSED DESIGN  
Clock gated conditional pulse enhancement flip-flop (CGCPEFF) is specially designed for low power 

applications. The application of clock gating technique [22-24], which aims in the further reduction of clock 
power in sleep/idle mode of operation is proposed here. The proposed P-FF solves the longest discharging path 
problem of latch structure and unwanted switching activities at sleep/idle mode of operation. This design has 
all the features of CPEFF with an additional NOR gate for enabling the clock gating concept into it. 

The power exerted by the logic gates in connection with the clock and the power of the remaining part 
of the flip-flop circuit are the two components of power dissipation inside flip-flops. A flip-flop mainly 
functions in the active and sleep/idle mode of operation. It is estimated that during the active mode clock must 
be working and all the switching activities must be at this mode and during sleep/idle mode the clock must be 
inactive and there will be no switching activities. But unfortunately, the active operations of the clock during 
sleep/idle mode causes unwanted switching activities and this will increase the power consumption.  

In this design, there is a separation in the power exerted by the clock circuit and a remaining circuit. 
The power consumption of both the clock and the remaining circuit in sleep/idle mode can be reduced by 
disabling the clock circuit. The proposed clock gating technique can be implemented by disabling the inverter 
gates present in the pulse generation logic of the conventional P-FF. This can be achieved by replacing the 
inverter I1 present in CPEFF with a NOR gate as shown in Figure 3 and the complete circuit diagram of the 
proposed P-FF is in Figure 4. 

 
 

. 
 

Figure 3. Clock gating concept 
 
 

In CGCPEFF, a two-input AND gate of N-type pass-transistor logic (PTL) style is formed by the 
transistors N2 and N3. An additional pMOS transistor P3 is used for enhancing the width and height of 
triggering pulses when the input data changes from 0 to 1 value. The CLK and ENABLE are the two input 
signals of the NOR gate. In the active mode, NOR gate behaves like an inverter due to its LOW ENABLE 
input and the flip-flop operate in the normal fashion. All switching activities take place at this mode of 
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operation. In the sleep/idle state, the internal clock is disabled by setting the output of the NOR gate to zero 
due to its HIGH ENABLE input signal. The nMOS transistor N1 present in the pull-down path gets turned off 
and prevents any data evaluation. This results in saving of clock power by disabling the internal clock. The use 
of smaller transistors in the NOR gate and also reduced short-circuit power dissipation on the logic gates 
associated with the clock are the two features of clock gating. Thus the clock gating circuit does not bring in 
any power overhead in the total system. The larger stack of transistors in the NOR gate reduces its short circuit 
power when compared with NOT gate. 

 
 

 
 

Figure 4. Circuit diagram of CGCPEFF 
 
 
The discharging of internal node X through the three nMOS transistors N4, N5, and N1 when both 

input data and inverted output Qbar are HIGH causes the turning ON of pMOS transistors P2 and P3. This will 
increase the value of trigger pulse at node Z from weak one (VDD-Vtn) to strong one (VDD). The turning OFF 
of the discharging path occurs after the rising edge of the clock signal, due to the delay of inverter I1 drives the 
value of triggering pulse at node Z reverse to zero through nMOS transistor N3.  

The total power consumption is the combination of dynamic, static and short circuit powers and is 
given in (1) [25-26]. 

 
𝑃 ൌ 𝑃ௗ௬௡௔௠௜௖ ൅ 𝑃௦௧௔௧௜௖ ൅ 𝑃௦௛௢௥௧ି௖௜௥௖௨௜௧  (1) 
 
In (1), Pdynamic is the dynamic power consumption, also known as switching power. Dynamic power 

depends on several factors, including the frequency of operation (f), square of the supply voltage (V2), data 
switching activity (α) and clock load capacitance (CL) as shown in (2). 

 
𝑖. 𝑒. , 𝑃ௗ௬௡௔௠௜௖ ൌ 𝛼𝐶௅𝑉ଶ𝑓  (2) 
 
In CGCPEFF, the clock is inactive during the sleep/idle mode of operation and this will reduce 

unwanted switching activities. The reduction of unwanted switching activities leads to dynamic power saving. 
Thus, the embedding of the clock gating concept and conditional pulse enhancement scheme makes the 
proposed CGCPEFF more power efficient than conventional P-FFs. The clock gating concept is introduced 
into the flip-flop by replacing inverter present in the clock path with NOR gate, hence is the proposed technique 
not applicable to flip-flops that do not have an inverter in the clock path.  
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4. RESULTS AND DISCUSSION  
The post layout simulations of all P-FF are done in cadence by using CMOS 90nm technology. The 

operating condition used in the simulation is 500 MHz/1.5V and temperature of 298K. Figure 5 shows the 
principle of the clock gating concept. The CLK and ENABLE are the two inputs signals of NOR gate. In the 
active mode, the ENABLE signal is low, therefore NOR gate behaves like an inverter and inverted version of 
clock input is obtained at the output. In the sleep/idle state, enable signal is high which inactivates the internal 
clock by setting the output of the NOR gate to zero. This results in saving of clock power by disabling the 
internal clock. 
 
 

 
 

Figure 5. Clock gating concept 
 
 

The simulation waveform of CGCPEFF is shown in Figure 6. The input data changes are reflected at 
the output during the rising edges of clock signal hence it is a single edge triggered FF design. Conditional 
pulse enhancement of the proposed P-FF is shown in Figure 7. When output Q makes a transition from 0 to 1 
value, then the width and height of trigger pulses increase from 2.4nS to 2.92nS and 970mV to 1.25V 
respectively. It is evident from the experimental results, that the pulse width and height is enhanced upon 
17.80% and 22.4% respectively when compared with usual operation because of the extra voltage  
from transistor P3.  

 
 

 
 

Figure 6. Simulation waveform of CGCPEFF 
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Figure 7. Conditional pulse enhancement in CGCPEFF 
 
 

From the simulation waveform of proposed P-FF, it is clear that the clock gating divides the flip-flop 
operation into active and sleep/idle mode. When the ENABLE signal is HIGH, no CLK_GATING signal is 
formed and as a result, there are no transitions at the output node Q. At this time flip-flop is in sleep/idle mode 
and simulation results gives the average power consumption at this mode is 930.4nW. During LOW ENABLE 
the CLK_GATING signal is formed as the inverted value of the clock signal and input data is sampled to the 
output Q at rising edges of the clock signal. Now the flip-flop is in active mode and average power consumption 
at this mode is 71.57µW. The embedding of the power reduction techniques in the proposed CGCPEFF reduces 
the average power consumption to 58.36µW and is shown in Figure 8. Thus the introduction of the clock gating 
concept in CPEFF makes 18.45% advantage in power saving. Figure 9 shows the layout of the proposed 
CGCPEFF. A total layout area of CGCPEFF is 335.87µm2.  

 
 

 
 

Figure 8. Power consumption of CGCPEFF 
 
 

 
 

Figure 9. Layout of CGCPEFF 
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Table 1 summarizes the important performance indexes of proposed CGCPEFF with other 
conventional P-FF designs. These include transistor count, average power consumption, minimum Data to Q 
delay, minimum CLK to Q delay, setup time, hold time, power-delay product performance and the layout area. 
From the simulation result it is clear that the power consumption and power-delay-product (PDP) performance 
of proposed CGCPEFF outperforms SCCERFF and CPEFF due to the embedding of conditional pulse 
enhancement technique and the clock gating concept, with slight overhead in delay and area.  

In CGCPEFF the clock is inactive during the sleep/idle mode of operation and this will reduce 
unwanted switching activities. The reduction in unwanted switching activities leads to dynamic power saving. 
The conditional pulse enhancement scheme increases the speed of latching of data without increasing the delay 
of inverters and the width of transistors used at the pulse generator. Figure 10 shows the power comparison of 
proposed CGCPEFF with SCCERFF, and CPEFF. The power consumption of proposed CGCPEFF 
outperforms the conventional implicit SCCERFF by a margin of 30.65%. Due to the introduction of the clock 
gating concept, the proposed P-FF is having a power advantage of 18.46% with Data to Q delay overhead of 
5.4% when compared with CPEFF. The proposed design is having a negative setup time. Due to negative setup 
time, CGCPEFF is having a slightly larger hold time requirement. The replacement of inverter in CPEFF with 
NOR gate for clock gating concept increases the layout area of proposed P-FF. Among the compared P-FFs, 
CGCPEFF is having the best power-delay product performance due to its reduced power consumption. Figure 
11 shows the power-delay-product comparison of proposed CGCPEFF with conventional P-FFs. Table 2 shows 
a comparison of leakage power consumption. 
 
 

Table 1. Observation of design parameters 
P-FFs SCCERFF CPEFF CGCPEFF 

Number of transistors 17 19 21
Average Power Consumption (µW) 84.16 71.57 58.36

Minimum Data to Q Delay (pS) 
Minimum CLK to Q Delay (pS) 

Setup Time (pS) 
Hold Time (pS) 

Power-Delay-Product (fJ) 
Layout Area (µm2)

370.57 
159.78 
-190.70 
194.60 
31.18 
333.60

331.24 
142.83 
-122.60 
262.80 
23.70 

326.59

350.32 
151.04 
-129.60 
277.90 
20.44 

335.87

 
 

  
 

Figure 10. Comparison of power 
consumption in various P-FFs

 
Figure 11. Comparison of power-delay-

product in various P-FFs 
 
 

Table 2. Comparison of leakage power consumption (µW) 
P-FFs SCCERFF CPEFF CGCPEFF

(CLK, Data) = (0,0) 1.48 1.01 0.82
(CLK, Data) = (0,1) 
(CLK, Data) = (1,0) 
(CLK, Data) = (1,1) 

Average

1.81 
1.90 
2.10 
1.82

1.10 
1.33 
1.43 
1.21

0.89 
1.09 
1.16 
0.99

 
 
5. CONCLUSION  

In this paper, we presented a novel P-FF design embedded with conditional pulse enhancement and 
clock gating concept suitable for low power applications. The enhancement in the width and height of the 
trigger pulse occurred when output changes from 0 to the 1 value with an extra pMOS transistor in the design. 
The clock gating concept, which reduces unwanted switching activities at sleep/idle mode by using a NOR 
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gate-based clock gating signal generation. The longest discharge path problem is solved by the conditional 
pulse enhancement scheme and the dynamic power consumption is reduced by the clock gating concept. The 
experimental results show that the proposed P-FF design is having better performance in power and power 
delay product (PDP) with slight overhead in input to output delay and area.  
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