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 Simultaneous AC-DC power transmission technique can improve both 

loadability and stability of a power system with long transmission line. But, 

there is a tradeoff between loadability and stability, i.e. increase in the 

improvement of loadability causes the decrease in the improvement of 

stability and vice versa. Actually, it is a multi-objective optimization problem 

where the objective function depends on two decision variables with opposite 

in nature. Firstly, this paper presents an analytical expression for the 

objective function which is the function of two decision variables; power 

flowing capacity and critical clearing time. Secondly, a mathematical model 

is developed for the optimal point of the objective function. Considering a 

typical system a numerical analysis is performed using the proposed 

expressions. Again, the impacts of the line length and the voltage level of a 

transmission line on the objective function are also investigated. Finally, the 

developed model of the optimal point is validated to judge its accuracy and 

applied to a real system to justify its ability to evaluate the combined benefit 

of loadability and stability of simultaneous AC-DC system. 
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1. INTRODUCTION 

Load carrying capability of a long EHV transmission line is mainly limited by the steady state 

stability [1-2]. Moreover, it is required to keep sufficient margin against the transient stability. To improve 

the loadability and stability of an existing AC line present practices are the use of series capacitive 

compensation [3-5] and FACTS devices [6-8]. A new approach of power transmission, where DC is allowed 

to flow through the AC line simultaneously, can be a solution to improve the performance of existing 

transmission system. The main benefit of simultaneous AC-DC system is that it can improve both loadability 

[9-11] and stability [12-14]. 

              An appropriate mathematical model is developed in [15] for the loadability analysis of simultaneous 

AC-DC system. In this model, AC and DC power of AC-DC system are expressed in terms of AC power 

flow of original AC system. The work of the paper clearly shows that the higher amount of power flow 

cannot be achieved in all operating conditions. Using the mathematical model, the limiting values of the 

variables of any system can be determined for which the improvement in loadability is just marginally 

possible. From the numerical analysis of [15] it is seen that the power flow increases with the increase of 

voltage mix and transmission angle. 

 An elaborate numerical analysis of power flow through simultaneous AC-DC system is presented in 

[9]. This analysis shows the power flow variation with the change of transmission angle for a fixed DC 
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voltage mix. It is observed that the power flow increases with the increase of transmission angle at a certain 

level and beyond which power flow decreases with the increase of transmission angle. 

A mathematical model for the stability analysis of simultaneous AC-DC system is shown in [16]. 

The model is based on the equal area criterion of stability analysis and it can handle only the severe most 

fault of transmission line. Stability analysis of simultaneous AC-DC system is a bit complex task. To reduce 

this complexity, K.P Basu [17] proposed a new approach where the AC-DC composite system is treated as a 

pure DC system by turning off the circuit breakers of AC power flow of this system as soon as the fault is 

cleared. 

H. Rahman and B.H. Khan [12] presented a clear-cut comparison of stability between the 

simultaneous AC-DC transmission line and series compensated original AC transmission line. They have 

shown that the simultaneous AC-DC system is better than series compensated AC system in stability point of 

view. 

 Although simultaneous AC-DC system can improve loadability and stability it is also found that all 

the works in the literature either on loadability or on stability improvement. But, no work has yet been found 

on the combined improvement. Therefore, it is necessary to find out an optimal operating point of a system 

where the loadability and stability both can be improved at a reasonable level. 

 The problem where the ultimate goal is a function of more than one variable of conflicting in nature 

is called multi-objective problem. A solution of radio frequency (RF) circuit sizing optimization has been 

presented in [18] where the problem is subdivided into two parts. One is the normalization of the objective 

function and other one is the assignment of weights to the objectives. Multi-objective optimization problems 

have many Pareto solutions and decision is made among them cosidering the total balance over all the 

objectives taking into account. The totally balancing over criteria is usually called trade-off. H. Nakayama et 

al. discussed the different approaches of trade-off in [19]. It also mentioned the difficulty in weighting 

method and provides a way to overcome this difficulty. 

In solving multiobjective problems, decision maker may be interested in a set of Pareto optimal 

points instead of single point. Genetic algorithm (GA) can be used to solve multi-objective problems as it 

works with a population of points. N. Srinivas and K. Deb [20] investigated Goldbergs’s notation of non 

dominated sorting in GAs along with niche and specification method to find multiple pareto-optimal points 

simultaneously. The performance of evolutionary algorithm (EA) and conventional gradient based method 

are demonstrated in [21] for finding Pareto fronts. It also shows the application of multi-objective algorithm 

in an analytical test problem as well as real-world problems. 

It is evident that the higher the improvement in loadability the lower the improvement in stability 

and vice versa. Therefore, the loadability and stability improvements at a time is a multi-objective problem. 

This paper presents an analytical model for the combined improvement of loadability and stability of 

simultaneous AC-DC system through weighted sum multiobjective optimization approach. 

 

2. PROPOSED MODEL 

The main purpose of simultaneous AC-DC system is to improve loadabiliy and stability both. The 

equations (1) and (3) present the expressions of loadability [15] and stability [16], respectively. 

 

                 𝑃𝑐𝑜𝑚𝑏 = [(1 − 𝑘)𝛽 + √2 𝑘𝛾]𝑃𝑙                                                                                             (1) 

      𝑜𝑟       𝑓1 = [(1 − 𝑘)𝛽 + √2 𝑘𝛾]𝑃𝑙                                                                          (2) 

 

𝑇𝐶𝑅 =   𝑇𝑐𝑟√(1 − 
𝑃𝑐𝑜𝑚𝑏

(𝑃𝐷𝐶𝑝𝑓  +  �̅�𝑎𝑐𝑚)
) (

𝛿𝑚 − 𝛿𝑎𝑐

𝛿𝑐𝑟 − 𝛿0

)
𝑃𝑙

𝑃𝑐𝑜𝑚𝑏

                                      (3) 

    𝑜𝑟        𝑓2 =   𝑇𝑐𝑟√(1 − 
𝑃𝑐𝑜𝑚𝑏

(𝑃𝐷𝐶𝑝𝑓  +  �̅�𝑎𝑐𝑚)
) (

𝛿𝑚 − 𝛿𝑎𝑐

𝛿𝑐𝑟 − 𝛿0

)
𝑃𝑙

𝑃𝑐𝑜𝑚𝑏

                                                  (4) 

 

Where, 𝑃𝑐𝑜𝑚𝑏  and 𝑇𝐶𝑅are represented by𝑓1 and 𝑓2 in equations (2) and (4) respectively. 

Generally loadability, f1, and stability,𝑓2, are reciprocal in nature. That is, if a system is operated at 

higher loadability the stability margin will be lower. It is desirable to maximize both the objectives but due to 

trade off it is not possible to get both of them at their highest levels. There are several methods available for 

solving this kind of multi-objective optimization problem and among them weighted sum approach is used in 

this work [18-19]. As the stability and loadabiliy both are to be increased the objective function Z may be 

expressed as 
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𝑍 = ∑𝑊𝑖

𝑁

𝑖=1

𝑓�̅�                                                                                                                                         (5) 

               𝑍∗ = 𝑀𝑎𝑥 ∑ 𝑊𝑖 

𝑁

𝑖=1

𝑓�̅�                                                                                                             (6) 

Subject to, 

∑𝑊𝑖

𝑁

𝑖=1

  = 1 

 

𝑊𝑖 > 0 

 

              𝑓̅
𝑖
(𝐿)

≤ 𝑓�̅� ≤ 𝑓̅
𝑖
(𝑈)

 

Where,  

N  =  Number of decision variables, i= 1, 2, …..N 

Wi  =  Relative weight of ith decision variable 

𝑓�̅�   =   Normalized value of ith decision variable fi 

𝑍∗=  Maximum value of the objective function 

𝑓𝑖
(𝐿)

and 𝑓𝑖
(𝑈)

 indicates the upper and lower bound of the ith decision variable. 

 

As there are only two objectives in this work i.e. loadability and stability the value of N is 2 and the objective 

function Z becomes 

𝑍 = 𝑊1𝑓1̅ + 𝑊2𝑓2̅                                                                                                                (7) 

Where, 

𝑊1  = Relative weight for loadability 

𝑊2 = Relative weight for critical clearing time (stability) 

The normalization of the decision variables can found as 

𝑓1̅(𝑘, 𝛽, 𝛾) =
𝑓1 − 𝑓1

𝑚𝑖𝑛

𝑓1
𝑚𝑎𝑥 − 𝑓1

𝑚𝑖𝑛
 

                    = �̅� 

                    =
𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

                                                                                                           (8) 

 

𝑓2̅(𝑘, 𝛽, 𝛾) =
𝑓2 − 𝑓2

𝑚𝑖𝑛

𝑓2
𝑚𝑎𝑥 − 𝑓2

𝑚𝑖𝑛
 

                     = �̅� 

                    =
𝑇𝐶𝑅−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
                                                                                                                  (9)  

Where, 

�̅� = Normalized value of Loadability 

�̅� = Normalized vale of critical clearing time 

 

   The equation (3) for TCR can be written in the following simplified form  

            𝑇𝐶𝑅 =  𝑀√(
1

𝑃𝑐𝑜𝑚𝑏
− 𝜁)                                                                                            (10)                

Where, 

𝑀  =   𝑇𝑐𝑟√(
𝛿𝑚 − 𝛿𝑎𝑐

𝛿𝑐𝑟 − 𝛿0

) 𝑃𝑙  

𝜁 =
 1

(𝑃𝐷𝐶𝑝𝑓  +  �̅�𝑎𝑐𝑚)
 

Now the equation (9) becomes 

𝑓2̅ =
𝑀√(

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁) − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

                                                                                                    (11) 
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To evaluate the weighted sum of this optimization system the relative weight approach is utilized. 

Relative weights reflect the relative importance of the objectives. For example, if 1 unit gain in objective-1 

can be compensated by two unit lose in objective-2, then the relative weight of objective-1 will be 2 while the 

relative weight of objective-2 will be 1. If the objectives are normalized and summation of all the weights is 

1(one) then the relative weights must be out of 1(one). The calculation of relative weights for stability and 

loadability are elaborately shown below. 

           𝑊2 =
1

1 −
𝑑�̅�
𝑑�̅�

                                                                                                                     (12) 

 Where, 
𝑑�̅�

𝑑�̅�
 =  

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑑𝑇𝐶𝑅

𝑑𝑃𝑐𝑜𝑚𝑏
 

                        =  
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑑

𝑑𝑃𝑐𝑜𝑚𝑏

(𝑀√(
1

𝑃𝑐𝑜𝑚𝑏

− 𝜁)) 

                       =
−𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁

                                                                                       (13) 

 

Where, ∆ =  
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
 

 

 Now the equation (12) can be written as follows 

𝑊2 =
1

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁

                                                                                               (14) 

 As the summation of all the weights is 1(one) and there are only two objectives in this optimization process, 

the other weight can be written in the following way.   

 

                    𝑊1 = 1 − 𝑊2 

                   = 1 −
1

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁

                                                                           (15) 

Combining the equations (8), (11), (14) and (15) the objective function, Z, presented in equation (7) can be 

expressed as 
 

   𝑍 =

(

 
 
 

1 −
1

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 
 
 

𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

  +

(

 
 
 

1

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 
 
 𝑀√(

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁) − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

 

 

                     =  
𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

  +  
1

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
(

 
𝑀√(

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁) − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

−
𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

)

  

           =  
1

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

[
 
 
 
 
 

𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛   +  
1

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
(

 
𝑀√(

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁) − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

− 𝑃𝑐𝑜𝑚𝑏 + 𝑃𝑚𝑖𝑛

)

 

]
 
 
 
 
 

 

            =  
1

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

[
 
 
 
 
 

𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛   +  
1

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
(

 
𝑀√(

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁)

∆
−

𝑇𝑚𝑖𝑛

∆
− 𝑃𝑐𝑜𝑚𝑏 + 𝑃𝑚𝑖𝑛

)

 

]
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            𝑍 =
1

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛

[
 
 
 
 
 

𝑃𝑐𝑜𝑚𝑏 − 𝑃𝑚𝑖𝑛 +

𝑀
∆

√(
1

𝑃𝑐𝑜𝑚𝑏
− 𝜁) − 𝑃𝑐𝑜𝑚𝑏 + 𝐶

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
]
 
 
 
 
 

                                       (16) 

Where, 𝐶 = 𝑃𝑚𝑖𝑛  −
𝑇𝑚𝑖𝑛

∆
 

           The equation (16) is the analytical expression for the objective function of simultaneous AC-DC 

power flow where the impacts of the loadability and stability both are incorporated.   

          To get the optimum point or maximum value of the objective function, Z, the equation (16) need to be 

differentiated with respect to Pcomb and equated it to zero. i.e. 
𝑑𝑍

𝑑𝑃𝑐𝑜𝑚𝑏
= 0. 

Now,  

𝑑𝑍

𝑑𝑃𝑐𝑜𝑚𝑏

 =  1 +
(

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 

(

 −𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁

− 1

)

 − (
𝑀
∆

√
1

𝑃𝑐𝑜𝑚𝑏
− 𝜁 − 𝑃𝑐𝑜𝑚𝑏 + 𝐶)

𝑑
𝑑𝑃

(

 𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 

[
 
 
 

1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
]
 
 
 
2  

                    =  0 

Or 

         −

(

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 

(

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 − (
𝑀

∆
√

1

𝑃𝑐𝑜𝑚𝑏

− 𝜁 − 𝑃𝑐𝑜𝑚𝑏 + 𝐶)
𝑑

𝑑𝑃𝑐𝑜𝑚𝑏

(

 
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

  

= −

(

 1 +
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

− 𝜁
)

 

2

 

Or 

(
𝑀

∆
√

1

𝑃𝑐𝑜𝑚𝑏

− 𝜁 − 𝑃𝑐𝑜𝑚𝑏 + 𝐶)
𝑑

𝑑𝑃𝑐𝑜𝑚𝑏

(

 
𝑀

2∆𝑃𝑐𝑜𝑚𝑏
2 √

1
𝑃𝑐𝑜𝑚𝑏

 −  𝜁
)

   =  0                                       (17) 

 

The solution of equation (17) can be obtained in the following way 

 

𝑀

∆
√

1

𝑃𝑐𝑜𝑚𝑏

− 𝜁 − 𝑃𝑐𝑜𝑚𝑏 + 𝐶 = 0                                                                                          (18) 

    𝑜𝑟     𝑃𝑐𝑜𝑚𝑏 − 𝐶 =   
𝑀

∆
√

1

𝑃𝑐𝑜𝑚𝑏

− 𝜁 

    𝑜𝑟     ( 𝑃𝑐𝑜𝑚𝑏 − 𝐶)2 = (
𝑀

∆
)

2

(
1

𝑃𝑐𝑜𝑚𝑏

− 𝜁) 

     𝑜𝑟    𝑃𝑐𝑜𝑚𝑏
2 − 2𝑃𝑐𝑜𝑚𝑏𝐶 + 𝐶2 = 𝐾 (

1 − 𝜁𝑃𝑐𝑜𝑚𝑏

𝑃𝑐𝑜𝑚𝑏

)                                                                              (19) 

Where, 

           𝐾 =  (
𝑀

∆
)

2

 

Equation (19) can be rearranged as 

𝑃𝑐𝑜𝑚𝑏
3 − 2𝑃𝑐𝑜𝑚𝑏

2 𝐶 + 𝐶2𝑃𝑐𝑜𝑚𝑏 = 𝐾 − 𝐾𝜁𝑃𝑐𝑜𝑚𝑏  

 

 𝑃𝑐𝑜𝑚𝑏
3 + (−2𝐶)𝑃𝑐𝑜𝑚𝑏

2 + (𝐾𝜁 + 𝐶2)𝑃𝑐𝑜𝑚𝑏 + (−𝐾) = 0                                                                     (20) 

 

Now the solution of equation (20) is as follows: 

    𝑃𝑐𝑜𝑚𝑏 = 
1

3
(2𝐶 − 𝑅 −

𝐷0

𝑅
)                                                                                                                    (21) 
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Where, 

𝑅 = √𝐷1 + √𝐷1
2 − 4𝐷0

3

2

3

 

𝐷0 = 𝐶2 − 3𝐾𝜁 

𝐷1 = 2𝐶3 + 18𝐶𝐾𝜁 − 27𝐾 

The equation (21) is the analytical expression for combined power flow for which the value of the 

objective function would be maximum i.e. both the objectives, loadability and stability, can be improved 

optimally. 

 

3. NUMERICAL ANALYSIS 

The numerical analysis of the objective function and its optimal point are presented in this section. It 

is true that there is no scope to achieve very high amount of combined improvement of loadability and 

stability. More precisely, it can be said that if someone want to achieve very high amount of loadability 

improvement he has to lose the stability improvement and vice versa. In this regard, to clarify the proposed 

model a typical single circuit transmission system is considered in this section which is presented in Figure 1. 

This power system has a long transmission line with a generation capacity of 1100MVA. The length 

of the line is 400km and the voltage of the line is 345kV. Basically this transmission system is evacuating 

power from 132kV generator bus to a distant infinite bus of 132kV. Now the the pure AC system is 

converted into simultaneous AC-DC system and it is shown in Figure 2. The the numerical values of all the 

parameters from generator to infinite bus for pure AC and for simultaneous AC-DC system are presented in 

Appendix-A. 

AC

CB CB

T1

CB

T2

Generator

bus

Load

CB

Transmission Line

T3

 
Figure 1.Single circuit AC power transmission system 
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Figure 2. Simultaneous AC-DC power transmission system 
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Figure 3. Stability versus loadability 

 

Using the numerical data presented in Appendix-A, initially the loadability and stability analysis is 

performed for pure AC system. The steady state loadability of pure AC system is found as 605MW 

considering 30% steady state stability margin. Incase of stability analysis a 3-phase to ground fault is 

considered at the load terminal and obtained critical clearing time (CCT) is of 231ms. Considering 605MW 

and 231ms as base values for the operation of simultaneous AC-DC system the stability analysis is performed 

for the same type of fault with different values of steady state power. In this case, obtained CCT is of 380ms 

for 605MW of steady state loading and 231ms for 898MW of steady state loading. The detail analysis is 

shown in Figure 3. 

 

Figure 4. Objective function variations with respect to combined power flow 

 
Figure 5. Objectives function with respect to power flow and CCT 
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It is seen from the Figure 3 that the minimum loadability point gives maximum stability (CCT) and 

maximum loadability point gives minimum stability. To obtain the improvements in both loadability and 

stability in the considered system at a time the analytical expression (16) is used and the objective function, 

Z, found from the numerical data is shown in Figure 4. The objective function Z is mainly the combined 

improvement of loadability and stability. In this figure the variation of objective function is shown with 

respect the variation in combined power flow. It is clearly observed that the value of Z is initially increasing 

in nature with the increase of combined power flow and for a particular value of combined power it has a 

steady state value and further increase of combined power flow gives the decreasing value of Z. As the 

objective is to find the maximum value of the objective function Z the steady state value of Z in Figure 4 is 

the maximum value. To get an overall picture of the objective function with respect to both the decision 

variables; loadability and stability, a 3-D plot is presented in Figure 5. 

The main objective of this optimization process in this paper is to find the value of combined power 

flow for which the objective function would be maximum. Applying the equation (21) in this considred 

system it is found that the maximum value of the objective function of this particular system occurs at 

742MW of loading and at this loading the CCT of the system is is of 313ms. This point is actually the desired 

optimal operating point of this system where the objective function is maximum. Therefore, it can be said 

that at the optimal operating point of this particular system the loadability and stability improvements are 

22.65% and 35.5% respectively. 

 To investigate the impacts of the line voltage and line length of a transmission system on this 

optimal point two different analysis are performed. One, changing the voltage of this considred system 

keeping the other parameters unchanged and other one, changing the line length keeping the other parameters 

same as their original value. The impact of voltage change on the optimal point is presented in Figure 6. 

 
Figure 6. Impact of voltage change on the optimal point 

 

 
Figure 7. Impact of the line length on the optimal point 
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            Figure 6 clearly reveals that the optimal point shifted from lower loadability to higher loadability with 

the increase of voltage level of the system. That is, a system with higher voltage level has higher power 

carrying capacity at its optimal operating point and a system with lower voltage level has the lower power 

carrying capacity at its optimal operating point point. 

            The impact of the change of line length on the optimal point is presented in Figure 7. It is clearly 

observed that the optimal points moving towards the lower loadability from the higher loadability with the 

increase of line length of the system. That is, the longer the transmission line the lower the load carrying 

capability at its optimal point.  

            Now, using equation (21) the power flow at the optimal operating point for the considered system, 

changing the voltage level and line length, are evaluated and presented in Table 1. The 3rd and 6 th columns of 

the table present the power flow at the optimal operating point of simultaneous AC-DC systemand the 2nd 

and 5th columns of the table also show the power flow through pure AC system for different voltage level and 

line length respectively. Note that the power flow in pure AC system is calculated considering the 

recommended loadability margin for the long transmission line [1]. 

 

Table 1. Optimal Power Flow in Comparison With Original AC Power Flow 

Change of voltage level Change of line length 

Voltage 

(kV) 

Power flow 

in pure AC 

system 
(MW) 

Power flow in AC-
DC system at the 

optimal point (MW) 

Line 
length 

(km) 

Power flow 

in pure AC 

system 
(MW) 

Power flow in 

AC-DC system at 

the optimal 
point(MW) 

345 605 742 350 657 787 

375 670 818 400 605 742 

400 723 882 450 562 708 

425 771 942 500 524 676 

450 818 100 550 490 648 

 

              From Table 1 it is clearly observed that the power flow at the optimal operating point of 

simultaneous AC-DC system at any voltage level and line length is much higher than that of its pure AC 

system. Although the stability margins (CCTs) at the optimal operating point of the simultaneous AC-DC 

system have not been mentioned in the table but there will be significant increase in stability margin.  

 

             The improvements of loadability and stability of simultaneous AC-DC system at the optimal points, 

in comparison with that of pure AC system, for different line length and voltage level are presented in 

Figures 8 and 9 respectively. It is seen that the stability improvement (SI) is higher than the loadability 

improvement (LI) at the optimal points for the change of voltage and line length both. In case of change in 

line length the LI and SI both are increasing in nature with the increase in the length of transmission line. On 

the contrary, the LI and SI both have approximately constant magnitude at the optimal points for all voltage 

levels. It is also seen from Figure 8 that the difference between the magnitude of LI and SI decreases with the 

increase of line length. 

 
Figure 8. Comparison of LI and SI for the change of line length at the optimal point 
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Figure 9. Comparison of LI and SI for the change of line voltageat the optimal point 

 

 

4. VALIDATION OF THE DEVELOPED MODEL 

          The mdel which developed for the optimal operation of simultaneous AC-DC system in section 2 is 

validated in this section. A power system with its numerical data is considered for this validation. The 

validation is performed comparing the results obtained through developed model with those obtained through 

MATLAB simulation. The considered power system is presented in Figure 10. 

 
Figure 10. IEEE second benchmark system 

 

            The system presented in Figure 10 is a 500kV double circuit transmission system. The system 

parameters are presented in Table 2. In this analysis all the resistances and capacitive compensation of the 

system are neglected.  

 

Table 2. Network impedance in per unit based on 100 MVA 

Parameter Positive sequence Zero sequence 

RT 0.0002 0.0002 

XT 0.02 0.02 

R1 0.0074 0.022 

XL1 0.08 0.24 

R2 0.0067 0.0186 

XL2 0.0739 0.21 

Rsys 0.0014 0.0014 

Xsys 0.03 0.03 

 

The AC system is converted into simultaneous AC-DC system and initially MATLAB simulation is 

performed for the optimal operation of the system and then the developed model is applied to the system. The 

results of MATLAB simulation and developed model are compared and presented in Table 3 and Table 4. 

The comparison is shown in Table 3 and Table 4 considering different DC voltage level and different 

transmission angle respectively. 
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Table 3. Results comparison between MATLAB Simulation and developed model with changing the DC 

voltage level 

% of DC 

voltage 
mix 

Loadability Stability 

Through 

developed  

model 

Through 

MATLAB 

simulation 

Difference 
(%) 

Through 

developed  

model 

Through 

MATLAB 

simulation 

Difference 
(%) 

20 842MW 846MW 0.47 175.86 ms 175.02 ms -0.48 

30 928MW 931MW 0.32 179.22 ms 178.71 ms -0.28 

49.5 1050MW 1051MW 0.095 182.3ms 182.14ms -0.087 

 

It is clearly observed from Table 3 and Table 4 that the loadability and stability obtained through 

developed model are very much close to those obtained from MATLAB simulation at the optimal operating 

point. The tables also reveal that the magnitude of differences between these two approaches in case of 

loadability and stability are less than 0.5% which indicates the acuuracy level of the model is extremely high. 

 

Table 4. Results comparison between MATLAB Simulation and developed model with changing the 

transmission angle 

Transmission  

angle 

Loadability Stability 

Through 
developed  

model 

Through 
MATLAB 

simulation 

Difference 

(%) 

Through 
developed  

model 

Through 
MATLAB 

simulation 

Difference 

(%) 

20 1100 MW 1101 MW 0.09 191.23 ms 191.1 ms -0.068 

30 1081 MW 1081 MW 0 187.49 ms 187.49 ms 0 

50 1036 MW 1037 MW 0.096 179.9 ms 179.7 ms -0.11 

 

5. APPLICATION OF THE ANALYTICAL MODEL OF OPTIMAL POINT 

To judge the applicability of the proposed model a 500kV, 804km long transmission system is 

considered. In this transmission system power is evacuated from Colstrip (eastern Montana) to Taft. The 

Montana generation system has four generating units with a total capacity of 2272MW. The circuit model of 

the system is presented in Figure 11[22] anda detail description of the system is presented in Appendix-B. 

 
Figure 11. Montana 500kV transmission system 

              

Firstly, the analysis of pure AC system is performed for the considered system. In case of pure AC 

system the loadability is evaluated considering the steady state stability margin of 30% which is the 

recommended stability margin for long transmission line [1]. In this case the evaluated loadability is 

1028MW. The stability (CCT) of pure AC system is evaluated considering a severe most fault (3-phase to 
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ground) at the Colstrip generator bus with 1028MW of pre-fault steady state loading and the obtained CCT is 

175ms. 

              Secondly, the AC system is converted into simultaneous AC-DC system and then the developed 

expression, equation (21), is applied for the optimal operation of the system. In this case the loadability and 

stability of the system at the optimal points are evaluated considering the variation of AC and DC voltage 

mix and transmission angle. As the simultaneous AC-DC transmission system contains AC and DC both 

form of voltage in the same line it is an opportunity to operate the system by changing the magnitude of AC 

and DCvoltages. Moreover, this AC-DC system gives another opportunity to operate the transmission system 

with wide range of variation of transmission angle. 

The loadability and stability improvements for the optimal operation of the simiulaneous AC-DC 

system are evaluated in comparison with the loadability and stability of pure AC system. The evaluated 

improvements in loadability and stability at the optimal operating points are presented in Table 5 considering 

the variation of voltage mix of AC-DC system. During the variation of AC and DC voltage mix a constant 

transmission angle of 44.470 of AC power flow is considered. 

 

Table 5. Improvement of Loadability and Stability at the Optimal Point for Different Voltage Mix 

% of voltage mix 
Power flow at the optimal 

point (MW) 

Loadability 

improvement 

with optimal operation 

(%) 

Stability improvement 

with optimal operation 

(%) 
Vac Vdc 

90 10 1158 12.65 18.29 

80 20 1319 28.31 38.86 

70 30 1450 41.04 44.57 

60 40 1567 52.43 48.00 

50.5 49.5 1664 61.87 49.71 

 

It is observed that the loadability and stability improvements at the optimal points increase with the 

increase of DC voltage mix. The table also reveals that the rate of increase in loadability improvement is 

higher than that of stability improvement with the increase of DC voltage mix. At the highest point of DC 

voltage mix (49.5%) the optimal operation gives 61.87% and 49.71% of loadability and stability 

improvements respectively. Note that, in simultaneous AC-DC system the DC voltage mix must be less than 

50% of original AC voltage [15]. 

Table 6 presents the variation of loadability and stability improvements with the variation of 

transmission angle at the optimal operating points of simultaneous AC-DC system. In case of the variation of 

transmission angle a constant DC voltage mix of 49.5% is considered for the operation of the system. It is 

also found that the improvements are decreasing in nature with the increase of transmission angle. At the 

lowest level of transmission angle (20 degree) in the table the optimal point gives 68.48% and 57.71% of 

loadability and stability improvements respectively. 

 

Table 6. Improvement of Loadability and Stability at the Optimal Point for Different Transmission Angle 

Power transmission 

angle (degree) 

Power flow at the optimal 

point 

Loadability 

improvement 

with optimal operation 

(%) 

Stability improvement 

with optimal operation 

(%) 

20 1732 68.48 57.71 

30 1706 65.95 54.29 

40 1678 63.23 51.43 

50 1647 60.21 48.00 

60 1613 56.91 44.57 
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6. CONCLUSION 

Loadability and stability are reciprocal in nature. That is, increase in one parameter causes decrease 

in other parameter. Simultaneous AC-DC power flow can increase loadability and stability both at the same 

time but maintaining a trade-off between these two. This paper presents an analytical expression for the 

combined improvement of loadability and stability in case of simultaneous AC-DC system. Applying this 

expression in any system an optimal point can be found where loadability and stability both improvement can 

be achieved at a reasonable level. 

Through numerical analysis it is seen that the objective function curve has a maximum point. 

Initially the value of the objective function increases with the increase of power flow and after reaching a 

certain point it starts decreasing with the increase of power flow. 

The numerical analysis for different voltage and line length also clearly reveal that the optimal 

points shifted from lower loadability to higher loadability with the increase of voltage level while 

maintaining approximately constant magnitude of the improvements in loadability and stability at the optimal 

points. On the contrary, the optimal points shifted from higher loadability to lower loadability with the 

increase of line length while maintaining a significant increase in the magnitude of the loadability and 

stability improvements at the optimal points.  

The accuracy of the developed model is extremely high which has been established in the validation 

section by comparing the results with the MATLAB simulation. From the application of the model it is seen 

that the improvements in loadability and stability at the optimal points are found in increasing and decreasing 

in nature with the increase of DC voltage mix and transmission angle, respectively.  Note that, the impact of 

the change of voltage mix is much higher than the change in transmission angle on the loadability and 

stability improvements at the optimal points. 

 

 

APPENDIX 

Appendix-A 

The parameters of different components of the power system considered for the numerical analysis 

of the proposed model is presented in Table A. 

 

Table A. Parameters of the Different Components of Single Circuit Transmission System 

Sl. No. Component Parameter 

01 Line 

z = 0.01755 +j0.3292 Ω/km/phase 

Single ckt, Three phase, 60Hz, 400km, 345kV, Thermal limit current = 
1.8kA, ACSR twin bundle conductor 

02 Generator 

1100MVA, 24kV, 60Hz, the parameters on its own base – Xd =1.305 ,  Xd´ 

=0.3 , Xd˝ =0.3 , Xq =0.474 , Xq˝=0.243 , X =0.18 , Stator resistance 

Rs=0.00285 , Td´ =1.01s, Td˝ =0.053s , Tqo˝ =0.1s , 

03 Generator Transformer 
 

1100MVA, 24/132 kV, 60Hz, 10% reactance. 

04 

 

Transformer (At the 

sending end of the line): 

Δ-Y, 1100MVA, 132/345kV, 60Hz, 16% reactance. (pure AC) 

Δ-Z, 500MVA, 132/172.5kV, 60Hz, 16% reactance. (AC-DC) 

05 

Transformer (At the 

receiving end of the 
line): 

Y -Δ 1100MVA, 345/132kV, 60Hz, 16% reactance.(Pure AC) 

Z -Δ 500MVA, 172.5/132kV, 60Hz, 16% reactance (AC-DC) 

06 DC system 

The Rectifier and Inverter are 12-pulse converters using two 6-pulse thyristor 

bridges connected in series, DC current (rated)=5.4kA, Smoothing 

reactor=0.5H, Rectifier firing angle(minimum)=50, Inverter Extinction 

angle(minimum)=140. 

 

 

Appendix-B 

For the application of the proposed model only 500kV double circuit transmission line from Colstrip 

to Taft is considered, excluding other portion of the power system [22]. Colstrip with the generation capacity 

of 2272MW is considered as an equivalent machine (generator) and Taft is considered as an infinite bus. The 

application also does not consider Broadview and Garrison buses in between Colstrip and Taft. The detail 

parameters are presented in Table B. 
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Table B.The Parameters of Montana 500kV Transmission System 

Sl. No. Component Parameter 

01 Line 
 x = j253.21 Ω/phase/ckt, Double ckt, Three phas, 60Hz, 

804km’500kV,Thermal limit current = 3kA 

02 Generator 
358*2, 778*2(MW) 

24kV,Reactance = 0.3pu, H=3.5 s. 

03 Generator Transformer 24/230kV, Leakage reactance = 0.15pu. 

04 

Transformer (At the 

sending end of the 

line): 

Δ-Y, 230/500kV, leakage reactance = 0.1pu. (pure AC) 

Δ-Z, 230/253kV, Leakage reactance = 0.1pu. (AC-DC) 

05 

Transformer (At the 

receiving end of the 

line): 

Z-Δ 253/500kV, Leakage reactance= 0.1pu, (AC-DC) 

06 DC system 
DC system rated voltage  and current are 202kVand 9kA, 
respectively.  
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