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 The transitions in an air-filled substrate-integrated waveguide (SIW) are 

studied here for millimetre-wave applications. A good design of an air-filled 

SIW (AFSIW) must allow for minimum losses in its interconnects between 

the air-filled and dielectric-filled regions of the SIW. This paper assesses the 

influence of the geometry of transition taper in an AFSIW on the return and 

insertion losses using full-wave analysis of a complete AFSIW structure. The 

data from the return and transmission losses provide a basis for the 

optimisation of the design of the transition tapers. The optimisation approach 

uses the multi-objective genetic algorithm (GA) with full-wave analysis to 

find an optimum profile of the transition. Defining the profile of the 

transition taper with a clamped cubic spline as a phenotype, the developed 

procedure shows that further losses are possible within the prescribed 

frequency bands. Furthermore, the length of the transition taper can be 

significantly reduced while maintaining an optimal quality of signal 

transmission in the transition. The simulation results show the efficacy of the 

proposed strategy where the optimal taper geometry is shown to provide a 

wider band of operating frequencies with lower return loss compared to a 

more established taper geometry. 
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1. INTRODUCTION  

Since its inception about 15 years ago, substrate-integrated waveguide (SIW) technology is gaining 

more attention as a solution to an ever-increasing need of millimetre-wave devices to meet the demand for 

ubiquitous wireless networking. Retaining the good properties of rectangular waveguides while enabling mature 

manufacturing processes such as the printed circuit board (PCB) technique, SIWs are commonly accepted to be a 

competitive technology. Hence, SIW devices enable fabrication of a complete circuit including planar circuitry, 

transitions, rectangular waveguides, active components, and antennas in planar form using common planar 

processing techniques [1–5]. 

Consequently, various components based on the SIW technology have been proposed and applied in the 

recent years for operation in the microwave and millimetre-wave range, including filters, couplers, oscillators, 

slot-array antennas, six-port circuits, and circulators. However, one of the major issues in the design of SIW 

components is related to the minimization of losses, especially when operating in the millimetre-wave frequency 

range [6]. The mechanisms of loss in the SIW structures include conductor losses due to the finite conductivity 

of metallic walls, radiation losses due to the presence of gaps in the SIW structures along the side walls, and 

dielectric losses due to the loss tangent of the dielectric substrate [7]. The dielectric loss is typically the most 

significant contribution to losses in the millimetre-wave frequency range [6]. 
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The earlier efforts at designing low-loss SIW involve material removal between sidewalls, thus 

effectively creating a rectangular waveguide structure in place of the dielectric region. One of the earlier 

proposals addresses the issue of fabrication of the hollow structure and characterization of the improvement in 

the dielectric loss in terms of the attenuation constant. Although the actual fabrication of this modified SIW has 

not been reported, their numerical and theoretical analyses affirm the idea of a hollow SIW to significantly 

reduce dielectric losses [8-9]. It was only until later that other groups proposed new designs having an air region 

in SIW were some with actual fabrications and experimental results. These include the so-called hollow SIW, 

empty SIW, and air-filled SIW (AFSIW), which are seemingly being developed independently [10–12]. 

Although the groups share a common approach similar to that proposed in [9], the AFSIW design 

addresses an important aspect of having a wideband operation in SIW through transition and interconnects [12]. 

Improving the wideband aspect in transition and interconnects of devices having different dielectric constants is 

essential in complete front-end integration and low-cost system manufacturing [13]. For this purpose, the new 

design of AFSIW and detailed characterization of the air-dielectric transition is quite successful [12]. Their idea 

is essentially a further development of the approach in [13], which focuses on transitions between multiple 

conventional SIWs with mixed low and high dielectric constants. Nevertheless, the new design in [12] is quite 

sensitive in its performance in terms of the return and insertion losses with respect to the length of transition. It is 

noteworthy to further study of this aspect, which is the focus of this paper. 

As a wave propagates between two media, part of the wave, in general, is reflected, while another part 

is transmitted into the second medium. The mechanism of losses along the transition in waveguides has long 

been studied in [16–19]. However, in the context of SIW, wave scattering is more complex. Note that the 

previous attempts at improving the performance of SIW and analysis of losses in inhomogeneous media strongly 

indicate that there exists at least a unique shape of transition at a specific length that minimizes either the return 

or transmission loss. However, a closed-form description of such optimal shape is rather impossible to 

determine. In this paper, an optimisation procedure for an AFSIW transition taper using a multi-objective genetic 

algorithm (MO-GA) is developed to estimate the optimal shape of the transition. Since phenotypes are the 

decision variables in the GA procedure, a convenient approach is to construct the taper geometry in terms of 

cubic splines, where variables at the knots provide variations in the shape of the splines. Consequently, the 

number of internal knots provides the number of phenotypes. 

In section 2, an AFSIW structure and its properties are discussed. Then, the transition of dielectric SIW 

to AFSIW operating at the Ka-band frequencies, i.e., 26–40 GHz, and U-band frequencies, i.e., 40–60 GHz, is 

presented in section 3. To create a new design of the transition taper with better losses while maintaining the 

quality of the transition, an optimisation procedure is detailed in section 4. Finally, the results of the optimal 

designs of the transition taper are analysed in section 5. 

 

2. RESEARCH METHOD  

  An early proposal of realising a hollow region between the SIW sidewalls is based on a conventional 

printed circuit board (PCB) process using three layers of the dielectric substrate, where the core is removed by a 

specific width and shape between the metallic vias and is sandwiched between a pair of copper laminates [6]. 

Similar fabrication is used in AFSIW fabrication in [12], where the cross-sectional area of the three-layer 

substrate is depicted in Figure 1a.  A part of the hollow region that constitutes the middle substrate can be seen in 

Figure 1b. This design is used in the subsequent modeling and analysis in this study. 

 

 

 

2.1. Wave propagation in SIW 

The analysis of wave propagation in dielectric-filled SIW is well known. Referring to Figure 2 for the 

case of constant 𝑊, the wave propagation is described as in a conventional rectangular waveguide, and thus, 

determining the cutoff frequency and subsequent dimensioning for the desired frequency bands is trivial. The 

cutoff frequency can be obtained using the classical waveguide equation [20] 

 
Figure 1.  AFSIW (reproduced from [4]) 
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where 𝑚 and 𝑛 are the indices of 𝑇𝐸𝑚𝑛 mode, 𝑐 is the speed of light in free space, 𝜀𝑟 is the substrate’s relative 

permittivity, and 𝑊 is the width of the dielectric-filled SIW, given by 

 

 

where �̅� is the width of a conventional rectangular waveguide. 

A more complex case is in the transition, as depicted in Figure 2. Since not only is there a dielectric slab 

in the E-plane, the air-dielectric composition also varies along with the transition. The characteristics of wave 

propagation in a dielectric-loaded waveguide may be found in the study of Vartanian et al., where the 

characteristic equation is given as  

 

where 𝑊1and 𝑊2 are the total width and the width of the air-filled region, respectively, such that 𝑊1 − 𝑊2 = 2𝑤 

[15]. 

 

 

2.2. Dimensions and parameters for SIW and AFSIW 

The SIW model consists of a dielectric-filled region and an air-filled region, with a transition in 

between. The dimensions and properties of the whole structure are designed in the Ka- and U-band frequencies. 

Referring to Figure 2, the total width in the air-filled region, i.e., the distance between the via-holes 𝑊1is 

calculated using (1), whereas the width of the dielectric-filled SIW 𝑊 is obtained using (2). From (2), 𝑊 = 4.12 

mm for the Ka-band and 𝑊 = 2.9 mm for the U-band. From (1), 𝑊1 = 7.02 mm for the Ka-band considering 

𝑤 = 0.508 mm and 𝑊2 = 6.0 mm. For the U-band, considering the same value of 𝑤 and using 𝑊2 = 3.9 mm, 

𝑊1 = 4.9 mm. These dimensions are calculated to obtain a constant 𝑓𝑐 = 21.2 GHz for the Ka-band and 𝑓𝑐 = 30 

GHz for the U-band to avoid the high dispersive region occurring near the cut-off frequency [12]. All 

dimensions and properties of both dielectric-filled and air-filled regions are listed in Table 1. 
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Table 1. Structural properties of SIW 
Band 
Freq. 

Ka-band 
 

U-band 
 

Parameters (mm) AFSIW SIW AFSIW SIW 

𝑊1 7.02  4.9  

𝑊2 6  3.9  

𝑊  4.12  2.9 

εr 2.94 2.94 2.94 2.94 

ℎ 0.508 0.508 0.254 0.254 

𝑤 0.508 0.508 0.508 0.508 

 
Figure 2.  Tapered transition with a cross-section 
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2.3 Dielectric-filled to air-filled SIW transition 

To allow for an effective interconnect between the dielectric-filled region and the air-filled region of the 

SIW circuits, a transition must be carefully constructed [12–13]. As depicted in Figure 2, the width of the taper, 

𝑊2, increases along the transition length 𝐿; the widths at boundaries 𝑎 and 𝑏 of the transition are fixed to ensure 

the continuity of transition. Specifying  𝑊2(𝑥) for 0 ≤ 𝑥 ≤ 𝐿 to ensure wave propagation along the transition 

length can be simplified by selecting 𝑓𝑐 at the start of transition and solving (3).  

The influence of the taper profile is strongly implied in (3). While the solution of (3) for 𝑊1(𝑥) and 

𝑊2(𝑥) ensures a wave propagation along the transition in the specified bandwidth and TE mode, optimality 

losses are not guaranteed. Comparing the approach with other closed-form functions of the taper profile, the 

profile of 𝑊2(𝑥) with an assumed profile of 𝑊1(𝑥) in (1) is not significantly better than the raised cosine profile 

for reduction of return and transmission losses along the AFSIW transition [21]. This observation agrees with the 

results obtained in [18–19], where the raised cosine taper profile is also desirable as a transition since the zero 

slopes at both ends ensure minimal reflections. 

Another desirable consequence of (3) alludes to a specific width of the dielectric slab where the 

bandwidth, defined as the ratio of the cutoff frequency for the TE20 mode to that for the TE10 mode, can be 

extended [15]. Vartanian et al. suggested optimality of the dimension of the dielectric slab with respect to certain 

losses in the waveguide. In the context of varying width in a SIW transition, however, obtaining the optimal 

function 𝑊2(x) where losses are minimized is nontrivial since the search space for the specific geometry and 

length of the taper is infinite [11,15]. Consequently, a trade-off between total transition length and losses is 

usually made in practice [12]. The relation of transition length and taper design equation of transition losses has 

also been reported in [16–17]. 

In this study, we further develop the taper designs in [12] by defining the shape of the transition taper 

with the clamped cubic spline function in order to optimize the transition losses. By defining a spline, a fixed 

number of nodal points, or knots, defining the spline can serve as a finite number of unknowns to be optimized, 

as presented in Figure 3. Previous studies on the combination of the optimisation method with the spline method 

have been effective. For example, the optimisation of the spline-profile horn by using the quasi-Newton 

optimisation method is reported in [22]. Another study is smooth-walled spline-profile horn characteristic 

optimisation developed in [23]. More recently, an optimisation technique for microstrip antennas using cubic 

splines with particle swarm optimisation is presented in [24]. In this paper, an optimisation procedure for an 

AFSIW transition taper using clamped cubic splines with the multi-objective GA method is described. 

 

 

2.4. Optimisation procedures 

Design optimisations using GAs in engineering electromagnetics are quite widespread in practice, for 

example, in antenna designs [25–26]. GA steps are described as follows [39]: 

1. Initialize a random population of chromosomes. 

2. Compute the fitness of each population member. 

3. Rank individuals based on fitness.  

4. Generate offspring by mating good individuals. 

5. Mutate selected members of the offspring. 

6. Stop if conditions have been met or continue back to step 2. 

 

 

Figure 3.  Taper profile with clamped cubic splines. 
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The electromagnetic optimisation problems generally involve several parameters, thus making the 

design process inefficient and difficult [27]. In the context of geometric optimisation of the transition between 

the air-filled and dielectric-filled regions, parameterising the shape of the transition with cubic splines is deemed 

to efficiently search the infinite possible shapes by using a relatively low number of parameters. Our approach is 

similar to those in [28–29]; the differences are in the use of clamped cubic splines and real-time data transfer 

between the GA module in Matlab and full-wave analysis in ANSYS HFSS. We further detail the optimisation 

procedures as follows: 

The first step is specifying the design variables or phenotypes for the search space. By constructing the 

equation of the taper with the clamped cubic splines, as shown in Figure 3, the internal nodes provide four 

degrees of freedom {𝑥1, 𝑥2, 𝑥3, 𝑥4} as the phenotypes. These phenotypes comprise the “heights” of the knots. The 

initial height of each knot is set to closely match the raised cosine profile given by 

 

 

where the nominal values are matched to the operating bandwidth in either the Ka-band frequencies, i.e., 26 to 

40 GHz, or U-band frequencies, i.e., 40 to 60 GHz. The upper and lower bounds of each point, i.e., 𝑥 ±
 0.16 mm, are prescribed to avoid excessive distortions of the constructed taper shape. 

The second step is setting up the GA procedure for multi-objective optimisation. The GA is used in this 

optimisation because of its efficiency and simplicity of implementation, especially in multimodal search spaces 

[30]. The fitness functions for the GA procedures introduced in this study aim to further minimize the return and 

transmission losses along with the transition, as achieved with the raised cosine geometry. In many applications, 

a return loss of 20 dB is commonly accepted for the target frequency band ranges of 26 to 40 GHz for the Ka-

band and 40 to 60 GHz for the U band. For fulfilling the first goal, a simple approach to define the fitness 

function involves taking the average of the reflection coefficient   𝑆11 over the frequency band of interest. Hence, 

the first fitness function 𝐹11(𝑥𝑖) reads 

 

 

 

where 𝑓𝑖   is the sampling frequency and 𝑁 is the number of samples. The fitness function 𝐹21(𝑥𝑖) relates the 

criterion for the transmission loss where the average values of the transmission coefficient   𝑆21 values over the 

frequency band of interest are set to be within 

 

 

 

From observation, 𝐹11 and 𝐹21 are most of the time mutually conflicted. For multiple conflicting 

objectives, multi-objective optimisation resorts to several trade-offs optimal solutions [31]. Different multi-

objective GAs are available, such as niched Pareto GA, non-dominated sorting GA (NSGA), and strength Pareto 

evolutionary algorithm, with variations in selection methods and diversity control techniques [32–34]. Our 

optimisation employs a variant of NSGA, NSGA-II, owing to its fast non-dominated sorting procedure and its 

simple yet efficient constraint-handling method [35]. The strategy for the combination of GA and full-wave 

simulation is illustrated in Figure 4. 

The single-objective GA and multi-objective GA generate different individuals that describe the 

transition profile with splines, which directly influence the return and transmission losses from the full-wave 

analysis. In practice, the resulting multi-objective GA optimisation produces a set of Pareto-optimal solutions 

and the final solution is largely a matter of arbitrary selection [36]. In this optimisation procedure, the solution 

with minimal losses is selected. To better understand the effect of transition length and the effectiveness of 

optimisation for shorter lengths, numerical studies are performed for selected lengths: 5, 10, 15, and 20 mm.  A 

transition length of 20 mm is commonly accepted to provide acceptable losses in practice [12].  

Hence, it is of major interest to further minimize losses at a shorter transition length to allow the 

possibility of a more compact SIW design. The procedure for multi-objective optimisation with GA described 

above is implemented in Matlab, while the full-wave analysis is computed with ANSYS HFSS. The interface 

code for real-time data transfer between both packages is written in Visual Basic.  
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3. RESULTS AND DISCUSSION  

The results of the optimisation for the operating frequencies in the Ka (26 to 40 GHz) and U (40 to 60 

GHz) bands and at the previously mentioned transition lengths are presented. Single objective (SO) GA is also 

performed for comparison with multi-objective (MO) GA. Tables 2 and 3 show the final phenotypes with MO-

GA optimisation for the two frequency bands, while Figs. 5 and 6 show the resulting S-parameters from the 

optimized phenotypes for a 5 mm transition length at the Ka-band frequency. Moreover, the results of 

optimization have been compared with the results of arbitrarily to assure that the designed waveguide has been 

optimized as depicted in Figs. 5 and 6. Clearly, the new transition profile constructed from the optimized 

phenotypes shows an improvement in the losses.  

The MO transition taper yields the best performance with overall lower return loss 𝑆11 between 17.38 

and 48.68 dB within a frequency range of 26 to 40 GHz. Based on a comparison of the maximum 𝑆11 results, the 

performance of the MO taper design is better compared to taper design in [12]. The significant improvement in 

the region around 36 GHz compared to the raised cosine profile indicates the effectiveness of MO optimisation. 

Some improvements can also be observed in the transmission loss 𝑆21.   

 

 

 

 

 

 

 

 

 
Figure 4.  Flowchart of GA optimisation with full-wave analysis. 

Table 2. Optimized phenotypes obtained using MO optimisation in Ka-band 
  Length, mm Phenotypes, mm 

   𝑥1 𝑥2 𝑥3 𝑥4 
Initial  0.2865 1.0365 1.9635 2.7135 

Optimized 
5 0.2958 1.0 1.9892 2.7651 

10 0.2942 1.0027 1.8070 2.7506 

 

Table 3. Optimized phenotypes obtained using MO optimisation in U band 
  Length, mm Phenotypes, mm 

   𝑥1 𝑥2 𝑥3 𝑥4 

Initial  0.1862 0.6737 1.2763 1.7638 

Optimized 
5 0.1786 0.6199 1.1743 1.622 

10 0.1741 0.62 1.1876 1.6239 

 

 

 

 

 

 
Figure 5. Comparison of |S11| at L = 5 mm in the Ka-band frequency at 33 GHz: RC = Raised Cosine, GA = 

Single-objective GA, MO-GA = Multi-objective GA, AY= Arbitrary method. 



IJEEI  ISSN: 2089-3272  

 

Genetic Algorithm-Based Approach for Minimising Losses in Substrate-Integrated Waveguide (H Mansor et al) 

69 

 
 

 

 

For the 10 mm transition length, the resulting S-parameters are depicted in Figs. 7 and 8. It is apparent 

that although both optimisation procedures improve the losses from the raised cosine taper profile, there is no 

significant advantage of multi-objective GA over the single-objective one.  

 

 

 

 
Figure 6.  Comparison of |S21| at L = 5 mm in the Ka-band frequency at 33 GHz: RC = Raised Cosine, GA = 

Single-objective GA, MO-GA = Multi-objective GA, AY= Arbitrary method. 

 
Figure 7.  Comparison of |S11| at L = 10 mm in the Ka-band frequency at 33 GHz: RC = Raised Cosine, GA = 

Single-objective GA, MO-GA = Multi-objective GA 

 
Figure 8. Comparison of |S21| at L = 10 mm in the Ka-band frequency at 33 GHz: RC = Raised Cosine, GA = 

Single-objective GA, MO-GA = Multi-objective GA 
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A similar significant improvement of MO-GA optimisation on the transition taper is observed for the U-

band frequencies where the 5 mm transition length is observed to gain the highest improvement of the reflection 

loss, as depicted in Figs. 9 and 10. The reflection coefficient 𝑆11 values of 12.51 to 34.89 dB from 40 to 60 GHz 

and the transmission coefficient 𝑆21 values of 0.165 to 0.160 dB from 50 to 60 GHz are obtained.  

 

 

 

The resulting S-parameters from the optimisation of the taper with a 10 mm transition length in the U-

band frequencies are depicted in Figs. 11 and 12. In general, MO optimisation can further reduce the return loss 

for the bandwidth between 52 and 60 GHz. More significant improvement occurs in the transmission loss, where 

both optimisation procedures can improve the raised cosine profile. 

 
Figure 9. Comparison of |S11| at L = 5 mm in the U-band frequency at 50 GHz: RC = Raised Cosine, SO = 

Single-objective GA, MO = Multi-objective GA 

 
Figure 10. Comparison of |S21| at L = 5 mm in the U-band frequency at 50 GHz: RC = Raised Cosine, SO = 

Single-objective GA, MO = Multi-objective GA 

 
Figure 11. Comparison of |S11| at L = 10 mm in the U-band frequency at 50 GHz: RC = Raised Cosine, SO = 

Single-objective GA, MO-GA = Multi-objective GA 
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As listed in Table 4, the overall return and insertion loss improvements, computed using the maximum 

values of losses within the bandwidth, for the Ka-band frequencies are apparent. A significant maximum return 

loss can be obtained. At different transition lengths, particularly for shorter transitions such as 5 and 10 mm, 

such an improvement may benefit in allowing a more compact SIW design. Nevertheless, for the 10 mm 

transition length, insertion loss and bandwidth improvement are not as significant. Similarly, Table 5 summarises 

the return and insertion loss improvements for the U-band frequencies. Of note is the significant reduction in 

insertion loss obtained with the MO-GA procedure for all selected transition lengths. 

 

 

 

 

 

3.1. Wideband characteristics in SIW transition 

In many applications, it is of major interest to acquire a SIW design where the losses are as low as 

possible for broad bandwidth. Although no fitness function is constructed to account for the bandwidth 

optimisation, the changes with respect to the bandwidth operation resulting from the current optimisation scheme 

are herewith presented for comparison. From the definition of bandwidth: 

 

 

where 𝑓1,  𝑓2 are the lower and upper-frequency limits, respectively, the wideband characteristic is deemed 

achieved if the bandwidth below 20 dB is at least 11.2 GHz. Defining in terms of percentage fractional 

bandwidth as in [14] 

 
Figure 12. Comparison of |S21| at L = 10 mm in the U-band frequency at 50 GHz: RC = Raised Cosine, SO = 

Single-objective GA, MO = Multi-objective GA 

Table 4. Percentage of the return and insertion loss improvements  of the optimised taper to the RC taper 

(Ka-band) 
 Length, mm 

5 10 15 20 

 Return loss 

SO 21.2 % 21.7 % 35.8 % 5.9 % 

MO 45 % 24.1 % 46.8 % 10.5 % 

 Insertion loss 

SO 1.2 % 0.3 % 0.4 % 0.4 % 

MO 3.1 % 1.1 % 0.5 % 0.5 % 

Table 5. Percentage of the return and insertion  loss improvements  of the optimised taper to the RC taper 

(U-band) 
 Length, mm 

5 10 15 20 

 Return loss 

SO 3.4 % 0.5 % 0. % 0.1 % 

MO 4.0 % 0.6 % 0.4 % 0.1 % 

 Insertion loss 

SO 17.8 % 2.8 % 17.9 % 22.6 % 

MO 27.8 % 5.0 % 48.3 % 47.4 % 

𝐵𝑊 = 𝑓2 − 𝑓1, (7) 
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with 𝑓𝑜 as a design center frequency, the wideband performance of the optimized designs can thus be 

characterised. 

For the 5 mm transition in the Ka-band, the optimised transition with MO-GA shows an almost 34% 

improvement in wideband characteristics relative to the raised-cosine transition.  For the 10 mm transition, the 

improvement is even larger, i.e., about 42%. Observing the resulting S-parameters in the U band, similar 

improvements have been acquired. For the 5 mm transition, an improvement of almost 28% is observed, whereas 

the 10 mm transition shows about 40% improvement. Although unintended, such improvement encourages the 

addition of another fitness function to the current multi-objective optimisation scheme, which can be easily 

implemented. 

 

 

4. CONCLUSION  

From the computational analysis above, we can conclude that the above procedures are effective in 

finding an optimal transition taper, where the new taper transition geometry constructed from the clamped cubic 

spline is shown to further minimize the return and transmission losses. The optimisation strategy also shows the 

efficacy of real-time coupling between MATLAB for its optimisation procedures and ANSYS HFSS for its full-

wave electromagnetic simulations. The successful coupling provides more options for further optimisations with 

respect to the variable data pertaining to the electromagnetic wave propagation in an SIW taper and other 

microwave devices. Furthermore, the findings of the present study may contribute to the development of more 

compact design of coplanar circuits for any frequency band with excellent performance.   
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