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 Power system operators should be provided with more information on the 

characteristics of variable generation power ramps because, although there 

has been an improvement in the forecasting of wind power, the percentage of 

error in forecasting is still high to some extent. As a result of the ongoing rise 

in the participation rate of variable generation, this error will have a 

significant impact on the balance of power generation and consumption. 

From the grid operators' viewpoint, in order to balance these ramp events, it 

is important to get the scale of ramp events in the system as well as the times 

during which collective events are most likely to arise in order to achieve 

flexibility and reliability in the power system. Digitization of power systems 

brings big data which opening opportunities for improving the efficiency of 

power system operation. This paper analyzes the historical data of power-

time curve in two directions: vertical and horizontal, in order to gain details 

on the behavior of wind power ramps. The method of analysis will be 

demonstrated by an analysis of actual historical output power of aggregated 

Belgian wind farms every 15 minutes in 2017 and 2018. Comparing the 

results of the two years outlined that there are fixed percentages related to 

wind power ramping behavior and even if the wind capacity is increased, it is 

possible to determine the extent of these ramps. 
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1. INTRODUCTION  

The flexibility of the power system is the power system's ability to accommodate both the rapid 

variation in renewable generation production and the forecast errors [1][2]. A flexible power system is 

capable of responding rapidly within limits to large changes in demand and supply, both predicted and 

unforeseen variations and events [3]. However, a precise quantification of power system flexibility is still 

under research [4]. The growing insertion of variable renewable generation (VRG) into power systems raises 

the concern that these systems may have not adequate flexibility for balancing the power ramps in VRG, 

because the power system may has sufficient generating resources to meet the aggregate system demand but 

these resources have not the power ramping capability to balance inter-hour changes. In Texas, as a result of 

wind generation, the net load (the remaining load not served by VRG [5][6]) standard deviation increased by 

5% above the load alone [7]. In [8], the characteristics of the variability of wind power in many countries 

have been studied on the basis of real data over a period of several years, in which the one-hour power ramps 
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may be close to 30% of the nominal capacity in some regions. In [9], the variability of different renewable 

energy resources (wind, solar, and wave power) was studied by calculating the reserve requirements.  

Efforts are done continuously to improve methods and time of wind prediction [10]. However, the 

percentage of forecasting error is still relatively high even for hour-ahead forecasting [11], which 

significantly affects the balance between the power generated and consumed especially with the existence of 

high shares of VRG. In Belgium, an offshore wind integration study concluded that the forecast of wind 

generation is not enough to predict power ramp events and that detailed analysis is actually required [12]. 

Figure 1 shows the occurrence of major prediction errors in both magnitude and direction even with short-

term predictions of wind-power forecasting in Belgium [13].  

Although wind and PV generations rely largely on wind speed and solar irradiance respectively, the 

variations in wind speed and solar irradiance can not fully reflect the power variability [14][15]. The 

explanation of ramp events occurrence by weather changes was studied in order to understand the weather 

patterns that causes ramp events. Nevertheless, the relationship of ramp events to weather phenomena is an 

extremely case-dependent issue [16][17]. The authors claimed in [18] that the ramp-up events occur mostly 

from May to July and ramp-down events from August to January, whereas it was found in [19] that both 

upward and downward ramp events occurred mostly in months from March to August. In [20], only 34% of 

ramp events was induced by frontal passages and thunderstorms phenomena, while a high percentage of ramp 

events could not be explained. As a result, the power system operators should have information about the 

wind power ramping characteristics in the system. This information includes the range of ramp events, the 

type (upward or downward) and the expected occurrence time, which can be obtained from historical 

databases by statistical analysis. According to this information, the power system operator takes the 

necessary precautions to avoid problems that could occur in the event of a major prediction error.  

 

 
 

Figure 1. Weekly Belgian wind power forecasting [13] 

 

2. DEFINITIONS OF WIND POWER RAMP EVENT 

The power ramp (Δp) is described as a ramp event if a significant power change occurred in a short 

period of time [21][10][11], which may cause grid management problems [12], so the magnitude, direction, 

and duration of the power change should be determined to define the ramp event [22]. The ramp direction can 

be upward or downward, while the ramp event magnitude is usually determined as a percentage from the 

installed capacity (𝑃𝑅) or as a value of megawatts (MW) that depends on the studied system [19][23]. The 

ramp event magnitude is chosen to reflect the amount of power change that is difficult to be handled in the 

given time interval. In practice, it is selected based on inputs from system operators; it can vary from one 

region to another, and it can also vary for the same region over the years to match the changes in load 

demand and generation mix. While the ramp duration (Δt) is a user-defined parameter which defines the time 

interval (minutes or hours) considered for ramp identification. 

In [24], the different definitions of ramp event in wind power, solar power, net load, and load were 

summarized; in which the threshold value of ramp event magnitude was determined by different percentages 

that ranged from 10%𝑃𝑅 to 75%𝑃𝑅, whereas the threshold value of ramp duration extended from five minutes 

to six hours. In [14], the authors studied the variability of wind power at different time intervals, starting from 

5 minutes to 1 hour with their corresponding thresholds from 1%𝑃𝑅 to 15%𝑃𝑅 respectively. In view of that, 

there is no consensus on a precise definition for the ramp event yet. This great difference in defining the ramp 

event is due to the difference between the power systems in characteristics and the flexibility available to 

meet these ramps [25]. In VRG, the downward ramp events are to some extent more difficult to be managed 

than upward. This is because the upward ramps can be managed by adjusting other generators' schedules, or 

curtailment of VRG if necessary, but when the downward ramps occurred, the system operators have to 

compensate the power deficit by increasing the output power from the remaining online generators or finding 

other generation to compensate this power deficit and keep the load balanced. Thus, a lower threshold value 
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or percentage was selected for down-ramps than that of up-ramps [26][27][28]. In the next section, the 

analysis procedures of VRG historical data will be explained. By this analysis, the power system planner or 

operator can get the necessary information about the characteristics of power ramps that occurred in the 

selected time interval. 

 

3. ANALYSIS PROCEDURES 

The analysis of the power-time curve of VRG historical data will take two directions based on the 

time-axis of the power signal time series, which are vertical and horizontal analysis as follows: 

 

3.1. Vertical analysis of time series 

In which the power ramping behavior at each observation time (t) in the power signal time series is 

studied separately in detail by using the historical readings of power ramps at that observation time, then 

moving to the next one until finishing all observation points at the power signal time series as follows: 

• The historical ramp readings (𝛥𝑝 𝑛) that occurred during the studied time interval (𝛥𝑡) at 

observation time (t) are calculated as in “(1)”:  

𝛥𝑝 𝑛=𝑃(𝑡 + 𝛥𝑡)– 𝑃(𝑡), n = (1,..., N) (1) 

Where n is a counter for the number of historical readings and N is the total number of historical 

readings that may be taken for certain days in the year (i.e. weekends), month, season or year. For example, 

the historical ramp readings for a studied year (i.e. N=365) which occurred at observation time t=4 PM within 

the studied time period Δt=30 minutes are given by: 𝛥𝑝 𝑛(1:365) = 𝑝(4: 30) − 𝑝(4). The studied time 

interval Δt is chosen by the system operator according to the studied operating stage. The positive value of 

𝛥𝑝 𝑛 refers to ramp-up, while the negative refers to ramp-down as follow: 

𝛥𝑝 𝑛 > 0→ Ramp-up↑, (2) 
𝛥𝑝 𝑛 < 0→ Ramp-down↓ 

• The average value of historical power ramps (𝛥𝑝𝑎𝑣𝑔𝑡) that occurred within the time period (𝛥𝑡) at 

observation time (t) is given by “(3)” : 

𝛥𝑝𝑎𝑣𝑔𝑡 =
1

𝑁
∑ 𝛥𝑝 𝑛

𝑁

𝑛=1

 
(3) 

The positive average value indicates that the upward power ramps are frequently occurred at 

observation time t. Conversely, the negative average indicates that the downward power ramps are mostly 

occurred at that observation time. This gives the power system planners or operators the information about 

the direction of most frequent ramp at each observation time. 

• The standard deviation of historical power ramps at observation time t (𝜎 𝑡 ) is as follow: 

𝜎 𝑡  = √
1

𝑁−1
∑ (Δp 𝑛 − Δpavgt)2𝑁

𝑛=1  
(4) 

The standard deviation value shows the spread of power ramps around the average value. If the 

standard deviation value at observation time t is small, it indicates that the values of historical ramp readings 

are close to the average value, and the average value can be used to represent the power ramps at that 

observation time. Whereas the average value does not represent perfectly the power ramps at observation 

time t, if the standard deviation value is high; this means that the power ramps at that observation time are 

spread out over a wider range.  

• The power system operator can get the information of maximum values of historical power ramps 

that occurred at each observation time t during the studied period Δt as follow: 

∆𝑝𝑚𝑎𝑥𝑡 ↑= 𝑚𝑎𝑥Δp 𝑛  (5) 
∆𝑝𝑚𝑎𝑥𝑡 ↓= 𝑚𝑖𝑛Δp 𝑛 , n = (1,..., N) 

Where ∆𝑝𝑚𝑎𝑥𝑡 ↑ is the maximum ramp-up value and ∆𝑝𝑚𝑎𝑥𝑡 ↓ is the maximum ramp-down value. 

• The ramping range is the difference between the maximum value of upward and downward power 

ramps, which is given by “(6)”: 

𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 𝑡 =  ∆𝑝𝑚𝑎𝑥𝑡 ↑ − ∆𝑝𝑚𝑎𝑥𝑡 ↓ (6) 

Where 𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒 𝑡 is the ramping range of historical power ramps that occurred at 

observation time t during the studied period Δt. 

After completing the calculations at observation time t, we move to the next observation time in the 

power signal time series. The next observation time (t + Δt) is taken as the new observation time t, and the 

calculations are repeated until reaching t=24 h. 
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3.2.  Horizontal analysis of time series  

In which the daily historical readings of power ramps that occurred throughout each day are studied 

to get the information about the power ramping behavior in certain weeks, months, seasons or years during 

the studied time interval Δt as follows: 

• The historical ramp readings that occurred during the studied time interval (𝛥𝑡) in a studied day 

are given by "7": 

𝛥𝑝 𝑡 =𝑃(𝑡 + 𝛥𝑡)– 𝑃(𝑡), t = (1,..., h) 
(7) 𝛥𝑝 𝑡 > 0→ Ramp-up ↑ 

𝛥𝑝 𝑡 < 0→ Ramp-down ↓ 
Where Δp t is the power ramp at time t and h is the length of the power curve time series. 

• The average value of historical power ramps in the studied day ( Δpavgd) that occurred at the 

studied time interval Δt and the standard deviation (σ d ) are obtained by “(8)”,“(9)”: 

𝛥𝑝𝑎𝑣𝑔𝑑 =
1

ℎ
∑ 𝛥𝑝 𝑡

ℎ

𝑡=1

 (8) 

𝜎 𝑑 = √
1

ℎ−1
∑ (𝛥𝑝 𝑡 − 𝛥𝑝𝑎𝑣𝑔𝑑)2ℎ

𝑡=1  (9) 

• The maximum values of power ramps at the studied day are given by “(10)”: 

∆𝑝𝑚𝑎𝑥𝑑 ↑= 𝑚𝑎𝑥𝛥𝑝 𝑡   
(10) 

∆𝑝𝑚𝑎𝑥𝑑 ↓= 𝑚𝑖𝑛 𝛥𝑝 𝑡 , t = (1, ..., h) 
Where ∆pmaxd ↑ is the maximum ramp-up value and ∆pmaxd ↓ is the maximum ramp-down value. 

• The ramping range throughout the day during the studied time period 𝛥𝑡 is given by “(11)”: 

𝑅𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑛𝑔𝑒𝑑 = ∆𝑝𝑚𝑎𝑥𝑑 ↑ − ∆𝑝𝑚𝑎𝑥𝑑 ↓ (11) 

• The ramping behaviour in a weak, month, season, or a year ago can be given by “(12)”: 

ℎ𝑖𝑠 𝛥𝑝𝑎𝑣𝑔𝑑 =
1

𝑑𝑛
∑ 𝛥𝑝𝑎𝑣𝑔𝑑

𝑑𝑛

𝑑1

 

(12) 
ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑 ↑= 𝑚𝑎𝑥 |

𝑑𝑛

𝑑1
∆𝑝𝑚𝑎𝑥𝑑 ↑ 

ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑 ↓= 𝑚𝑖𝑛 |
𝑑𝑛

𝑑1
∆𝑝𝑚𝑎𝑥𝑑 ↓ 

Where his Δpavgd is the average value of power ramps over a certain number of days, his ∆pmaxd ↑↓ 

represent the maximum ramp-up and ramp-down values of historical power ramps over a certain number of 

days and dn is the total number of days i.e. for a week, month and year, dn=7, 30 and 365 respectively. 

 

4. FREQUENCY OF POWER RAMPS 

The number of occurrence of an event is called the frequency of that event, while the relative 

frequency of an event can be determined by dividing its frequency by the total number of data points in the 

sample. For separate events, the sum of their relative frequencies should be equal to 1. The heights of the 

relative frequency histogram are interpreted as probabilities. The information about the occurrence 

probability of a certain type of power ramps can be obtained as follows: 

P(𝐸𝑖) = 
𝐸𝑖

𝐸
 (13) 

Where P (𝐸𝑖) is the occurrence probability of a certain type (i) of power ramps, Ei is the number of 

occurrence of that type and E is the total number of historical readings.  

 

5. CASE STUDY 

In Belgium, nearly 5o% of electricity is produced by the nuclear energy that is planned to be phased 

out before 2026 for achieving the decarbonisation target. As a result, the share of renewable generation is 

rapidly growing to be an important part of Belgium’s energy mix. The actual variations within a time interval 

of 15 minutes (𝛥𝑡 =15 min) in the production of Belgium's aggregated wind farms in 2017 and 2018 are 

analyzed by the above analysis procedures [13]. If the power ramp exceeds 5%𝑃𝑅, it is considered a ramp 

event, where the average installed wind capacity in 2017 was 2.44 GW with a maximum installed capacity of 

2.62 GW. While in 2018, the average installed wind capacity was 2.92 GW with a maximum installed 

capacity of 3.16 GW.  
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5.1.  Vertical analysis results and discussion  

A comparison of maximum ramp-down of power in 15min interval at each observation time in 2017 

and 2018 is showed in Figure 2. The two curves seem to be close to each other and have nearly the same 

values at many observation times, as in 1:45, 7:15, 7:30, 11:45, 16:30, 19:00, 20:45 and 22:00. The average 

values of maximum downward power ramps that occurred in a time interval of 15 min in 2017 and 2018 are 

194.32 MW and 211.62 MW respectively, representing 7.97% and 7.24% of the average installed wind 

capacity in 2017 and 2018 respectively. While the average value of maximum downward power ramps 

increases with increasing the installed wind capacity, its ratio to the average installed wind capacity 

approximately remains constant. The maximum downward power ramps overall observation times range 

from 93.43 to 654.84 MW in 2017, representing 3.83% to 26.8% of the average installed wind capacity in 

2017; while in 2018, they range from 106.59 to 455.86 MW, representing 3.65% to 15.6% of the average 

installed wind capacity in 2018. While the two ranges are different, the lowest values in both ranges are 

approximately equal when each value is compared to the average installed wind capacity in its year.  

A Comparison of maximum ramp-up of power in 15min interval at each observation time in 2017 

and 2018 is showed in Figure 3. The two curves seem to be close to each other and nearly have the same 

values at many observation times, as in 00:00, 1:30, 2:30, 2:45, 5:30, 7:00, 7:15, 8:00, 9:30, 9:45, 11:45, 

12:30, 14:00, 19:00 and 22:45. The average values of maximum upward power ramps in 2017 and 2018 are 

184.96 MW and 224.46 MW, representing 7.58% and 7.68% of the average installed wind capacity in 2017 

and 2018 respectively, which are nearly equal. Therefore, the average value of maximum upward power 

ramps increases with increasing the installed wind capacity, but its ratio to the average installed wind 

capacity approximately remains constant. The maximum values of upward power ramps overall observation 

times range from 75.34 to 444.04 MW in 2017, representing 3.09% to 18.2% of the average installed wind 

capacity; while in 2018, they range from 103.89 to 736.93 MW, representing 3.56% to 25.2% of the average 

installed wind power capacity. While the two ranges are different, the lowest values of the two ranges are 

approximately equal when each value is compared to the average installed wind capacity in its year. Thus, by 

vertical analysis, the power system operator can easily obtain the information about the range of maximum 

power ramps in the two directions that occurred within the studied time interval at each observation time. 

A comparison of the average values of power ramps in 15min interval at each observation time in 

2017 and 2018 is shown in Figure 4, in which the two curves are nearly identical. In both years, the average 

value of power ramps has a maximum value and transformed from a maximum ramp down value to a 

maximum ramp up value in the duration between 2:45 to 3:30 AM. The average value of power ramps tends 

to be a ramp-up in the period from 11:00 to 23:00, whereas in the period from 23:00 to 11:00, it tends to be a 

ramp-down. The average values of power ramps overall observation times range from -7.77 to 8.2 MW in 

2017; while in 2018, they range from -25.97 to 16 MW. For most observation times, the average values of 

power ramps are nearly equal to zero, which exhibits the fluctuations of wind power between up and down 

ramps all the day times. Consequently, the average value of power ramps should not be taken to represent the 

actual variation in wind power. 

A comparison of the standard deviation of power ramps at each observation time in 2017 and 2018 

is showed in Figure 5. In 2017, the standard deviation values ranged from 28.4 to 47.66 MW, while in 2018, 

they ranged from 35.68 to 56.3 MW. The average values of the standard deviation in 2017 and 2018 are 

36.55 MW and 41.9 MW respectively, representing 1.499% and 1.43% of the average installed wind 

capacity, which are approximately equal. Thus, while the average value of the standard deviations increased 

with increasing the installed wind capacity, its ratio to the average installed wind capacity remains constant. 

Additionally, the difference between the upper and lower values in the standard deviation range remains 

constant. A comparison between the standard deviation and the average power ramp at each observation time 

in 2017 and 2018 is showed in Figure 6, which illustrates that the standard deviation in both years is very 

high compared to the average power ramp. This comparison also confirms that the average value of the 

power ramps should not be used to represent the actual power ramps in wind power. 

In Figure 7, a comparison of ramping range of power ramps in 15min interval at each observation 

time t for years 2017 and 2018 is shown. The ramping range in 2017 ranged from 212.11 to 793.17 MW, 

representing 8.7% to 32.5% of the average installed wind capacity; while in 2018, it ranged from 235.66 to 

929.23 MW, representing 8.1% to 31.8% of the average installed wind capacity, respectively. In the two 

years, the upper and lower percentages of the ramping range are approximately equal. The average value of 

ramping range overall observation times in 2017 is 379.28 MW, representing 15.5% of the average installed 

wind capacity; while in 2018, it is 436.08 MW, representing 15%, which is approximately the same as in 

2017. Thus, while the average value and the scale of ramping range increase with increasing the installed 

wind capacity, the ratio of these values to the average installed wind capacity remains constant. 

A comparison of the relative frequency of upward power ramps in 15 min interval at each 

observation time t for years 2017 and 2018 is showed in Figure 8. The two curves seem to have the same 
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values in the most observation times. The relative ramp-up frequency is more than 50% in the period from 11 

AM to 11 PM and it is less than 50% in the period from 11 PM to 11 AM. While the opposite happens in 

Figure 9, where the relative ramp-down frequency is less than 50% in the period from 11 AM to 11 PM and it 

is approximately more than 50% in the period from 11 PM to 11 AM. Therefore the relative ramp-up 

frequency is more than ramp-down frequency in the period from 11 AM to 11 PM, whereas the relative 

ramp-down frequency is more than ramp-up frequency in the period from 11 PM to 11 AM, comparing these 

results with Figure 4 and Figure 14, where in Figure 4, the average value of power ramps tends to be a ramp-

up from 11 AM to 11 PM and a ramp-down from 11 PM to 11 AM. While in Figure 14, the average ramp 

that is obtained by horizontal analysis for all months is nearly zero. In the duration from 3:00 AM to 3:30 

AM, a quick change happened from a relatively high ramp-down frequency at 3:00 AM to a relatively high 

ramp-up frequency at 3:30 AM, see Figures 8, 9; this quick change appears also in Figure 4. In the two years, 

the average number of upward and downward power ramps overall observation times is approximately 180 

and 184 respectively. 

A comparison between the numbers of downward ramp events that happened in the period of 15 min 

interval at each observation time t in 2017 and 2018 is presented in Figure 10. The number of ramp-down 

events in both years is high at the following observation times: 1:00, about 3:00, 5:00, 10:45, 12:00, and 

16:30-23:45. The ramp-down events are scarcely happening in the period from 12:30 to 14:45. In the two 

years, the numbers of ramp-down events in the period from 16:00 to 6:00 are higher than that from 6:00 to 

16:00. In 2017, the average number of ramp-down events is 2.2, while in 2018, it is 1.88. Consequently, the 

average number of ramp-down events decreased while the installed wind capacity increased. 

In Figure 11, a comparison between the numbers of upward ramp events that happened in the period 

of 15 min interval at each observation time t in 2017 and 2018 is presented. The number of ramp-up events in 

both years is high at the following observation times: 3:30, 10:30-10:45, 12:45, 14:45, and 21:30. In the 

period from 8:00 to 9:45 AM, the ramp-up events are scarcely happening. The average number of ramp-up 

events in 2017 is 2.3, while it is 1.91 in 2018. Hence, the average number of ramp-up events decreased while 

the installed wind capacity increased. Table 1 summarizes the vertical analysis results. 

 

Table 1. Vertical analysis results 
 2017 2018 

Range Average Range Average 

From To From To 

Maximum ramp-down 3.83% 26.8% 7.97% 3.65% 15.6% 7.24% 

Maximum ramp-up 3.09% 18.2% 7.58% 3.56% 25.2% 7.68% 

Average ramp -0.32% 0.34% 0.0016% -0.89% 0.55% 0.0014% 

Standard deviation 1.16% 1.95% 1.499% 1.46% 1.93% 1.43% 

Ramping range 8.7% 32.5% 15.5% 8.1% 31.8% 15% 

Relative ramp-up frequency 38% 58.9% 49.3% 24.66% 61.6% 49.49% 

Relative ramp-down frequency 41.1% 61.9% 50.6% 38.36% 75.3% 50.56% 

Number of ramp-up events 0 7 2.3 0 6 1.9 

Number of ramp-down events 0 6 2.2 0 8 1.88 

 

 
 

Figure 2. Comparison between maximum ramp-down of power in 15min interval at each observation time 

for the years 2017 and 2018. 
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Figure 3. Comparison between maximum ramp-up of power in 15min interval at each observation time 

for the years 2017 and 2018. 

 

 
 

Figure 4. Comparison between average power ramp in 15min interval at each observation time for the 

years 2017 and 2018. 

 

 
 

Figure 5. Comparison of the standard deviation at each observation time for the years 2017 and 2018. 

 

 
 

Figure 6. Comparison between the value of standard deviation and the average value of power ramps at 

each observation time for the years 2017 and 2018. 
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Figure 7. Comparison of ramping range of power ramps in 15min interval at each observation time for the 

years 2017 and 2018. 

 

 
 

Figure 8. Comparison between the relative frequency of upward power ramps in 15 min interval at each 

observation time for the years 2017 and 2018. 

 

 
 

Figure 9. Comparison between the relative frequency of downward power ramps in 15 min interval at 

each observation time for the years 2017 and 2018. 

 

 
 

Figure 10. Comparison between the number of downward power ramp events in 15 min interval for each 

observation time for the years 2017 and 2018. 
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Figure 11. Comparison between the number of upward power ramp events in 15 min interval for each 

observation time for the years 2017 and 2018. 

 

5.2.  Horizontal analysis results and discussion  

A comparison of the maximum downward power ramps in 2017 and 2018 that occurred in 15min 

interval for each month is presented in Figure 12. In the two years, the maximum values of downward power 

ramps are very close to each other in most months except in January, February and June. The average values 

of maximum downward power ramps overall months in 2017 and 2018 were 317.84 MW and 316.62 MW 

respectively, representing 13% and 11% of the average installed wind capacity, which are close proportions. 

A comparison of the maximum upward power ramps in 2017 and 2018 that occurred in 15min 

interval for each month is presented in Figure 13, where the maximum values of upward power ramps are 

very close to each other in most months except in January, March, July and August. The highest values of 

maximum upward power ramps in 2017 occurred in March, December, August and July respectively, while 

in 2018, they occurred in July, August, January and December respectively. The average values of maximum 

upward power ramps overall months in 2017 and 2018 were 283.21 MW and 346.49 MW, representing 

11.6% and 11.9% of the average installed wind capacity in 2017 and 2018 respectively, which are 

approximately equal. Therefore, by horizontal analysis, the power system operator can easily obtain the 

information about the range of maximum power ramps in the two directions that occurred within the studied 

time interval for each month or week, if needed.  

A comparison of the average values of power ramps in 2017 and 2018 that occurred in a time 

interval of 15min for each month is presented in Figure 14. When comparing the two years, the average 

values of power ramps are very close to each other in all months and are the same from the point of view 

whether they represent upward or downward power ramp except in December and August. The average 

values of power ramps in the two years are very small (˂ 0.7 MW), which exhibit the high fluctuation in 

wind power.  

A comparison of the standard deviation of power ramps that occurred within a time interval of 

15min for each month in 2017 and 2018 is showed in Figure 15. When comparing the two years, the standard 

deviation values of power ramps are very close to each other in all months. The standard deviation values in 

2017 ranged from 28.196 to 47.93 MW, representing 1.2% to 1.97% of the average installed wind capacity, 

while in 2018, they ranged from 30.51 to 49.02 MW, representing 1.04% to 1.68% of the average installed 

wind capacity. In 2017, the average value of the standard deviations is 36.47 MW and in 2018, it is 41.93 

MW, representing 1.495% and 1.435% of the average installed wind capacity respectively, which are 

approximately equal. Hence, these results confirm the vertical analysis results, where the average value of the 

standard deviations increased with increasing the installed wind capacity but its ratio to the average installed 

wind capacity remains constant. In addition, the difference between the upper and lower values in the range 

of the standard deviation remains constant in the two years. 

A comparison of the standard deviation and the average value of power ramps for each month in 

2017 and 2018 is showed in Figure 16, which confirms the results obtained by the vertical analysis and 

presented in Figure 6, where the standard deviation is very high compared to the average power ramp, so the 

average value of power ramps does not represent the actual power ramps in wind power. 

In Figure 17, a comparison of the ramping range of power ramps that occurred within a time interval 

of 15min for each month in 2017 and 2018 is shown. The ramping range in 2017 ranged from 434.86 MW to 

969.78 MW, representing 17.83% to 39.76%, respectively, of the average installed wind capacity in that year, 

while in 2018, they ranged from 362.21 MW to 1074.92 MW, representing 12.4% to 36.79%, respectively, of 

the average installed wind capacity. The average values of power ramping range in 2017 and 2018 were 

601.04 MW and 663.11 MW, representing 24.6% and 22.7% of the average installed wind capacity; which 

are close proportions. 
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The relative frequencies of upward and downward power ramps are presented in Figures 18, 19. The 

relative frequencies of both ramp types (upward and downward) are nearly the same in all months in the two 

years which reflects on the average, where the average relative frequency of upward power ramps overall 

months in 2017 and 2018 is 0.493 and 0.495 respectively, while the average relative frequency of downward 

power ramps overall months in 2017 and 2018 is 0.506 and 0.505 respectively.  

The numbers of upward and downward ramp events in 2017 and 2018 are presented in Figures 20, 

21. The average number of upward and downward ramp events in 2017 is 18.4 and 17.4, respectively. 

Whereas the average number of upward and downward ramp events in 2018 is 15.25 and 15. The results 

demonstrate that the average number of upward and downward ramp events is nearly equal for the same year. 

This also appears in Figures 22, 23 when the numbers of ramp-up and down events in 15min interval are 

compared for each year separately. The results also demonstrate that, while the installed wind capacity 

increased, the average number of upward and downward ramp events decreased. This is in contrast to the 

results stated in [26], where the authors studied the ramp events with different penetration levels of renewable 

generation (5.45%, 9.77%, 15.85%, and 51.38%) but a scaling method was used rather than using actual data, 

this method was used to scale up the share of renewable based on the measured data of 5.45% penetration, 

the optimized swing door algorithm was used for detecting ramp events in different time resolutions. 

However, the accuracy of detecting the ramp events in wind generation decreased as time resolution 

decreased. 

The authors in [18] claimed that the ramp-up events occur mostly from May to July and ramp-down 

events from August to January, whereas it was found in [19] that both upward and downward ramp events 

occurred mostly in months from March to August. However, when the results of the two years are compared, 

we could not determine certain months for the occurrence of ramp events more than other months, whether 

the ramp events are up or down, but they occurred in all months in the two years at random. This confirms 

that the information about the ramp events is an extremely case-dependent issue. In addition, the study of the 

variability of wind power in a wind farm differs from studying the variability of aggregated wind farms, 

which may be found in different places. Table 2 summarizes the horizontal analysis results. 

 

Table 2. Horizontal analysis results 
 2017 2018 

Range Average Range Average 

From To From To 

Maximum ramp-down 9.2% 26.8% 13% 5.8% 15.6% 10.83% 

Maximum ramp-up 7% 18.2% 11.6 %  6.6% 25.2% 11.9 %  

Average ramp -0.016%↓ 0.023%↑ 0.0016%↑ -0.022%↓ 0.02%↑ -0.001%↓ 

Standard deviation 1.2% 1.97% 1.495% 1.04% 1.68% 1.435% 

Ramping range 17.83% 39.76% 24.6% 12.4% 36.79% 22.7% 

Relative ramp-up frequency 46.7% 51.3% 49.3% 47.1% 51.5% 49.5% 

Relative ramp-down frequency 48.9% 53.3% 50.6% 48.4% 52.9% 50.5% 

Number of ramp up events 7 40 18.4 2 32 15.25 

Number of ramp down events 6 37 17.4 4 34 15 

 

 
 

Figure 12. Comparison of the maximum ramp-down in 15min interval for each month in 2017 and 2018. 
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Figure 13. Comparison of the maximum ramp-up in 15min interval for each month in 2017 and 2018. 

 

 
 

Figure 14. Comparison of the average power ramp in 15min interval for each month in 2017 and 2018. 

 

 
 

Figure 15. Comparison of the standard deviation of power ramps in 15min interval for each month in 

2017 and 2018. 

 

 
 

Figure 16. Comparison between the value of the standard deviation and the average value of power 

ramps for each month in 2017 and 2018. 
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Figure 17. Comparison between ramping range of power ramps in 15min interval for each month in 

2017 and 2018. 

 

 
 

Figure 18. Comparison of the relative frequency of upward power ramps in 15min interval for each 

month in 2017 and 2018. 

 

 
 

Figure 19. Comparison of the relative frequency of downward power ramps in 15min interval for each 

month in 2017 and 2018. 

 

 
 

Figure 20. Comparison of the number of upward power ramp events in 15min interval for each month in 

2017 and 2018. 
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Figure 21. Comparison of the number of downward power ramp events in 15min interval for each 

month in 2017 and 2018. 

 

 
 

Figure 22. Comparison between the numbers of upward and downward power ramp events in 15min 

interval for each month in 2017. 

 

 
 

Figure 23. Comparison between the numbers of upward and downward power ramp events in 15min 

interval for each month in 2018. 

 

 

6. CONCLUSION 

Even with hour-ahead prediction, the prediction errors of VRG still exist and the measured power 

ramp may be double that predicted and in the reverse direction, see Figure 1. The variations in wind speed 

and solar irradiance can not fully reflect the power variability. As a result, with an increase in the share of 

VRG, these prediction errors will greatly affect the balance of generation and consumption. Digitization of 

power systems brings big data which opening opportunities for improving the efficiency of power system 

operation. Hence, studying the power ramps of VRG in the system is necessary for the system operators to 

gain details about the scale of power ramps, whether they are up or down, and also the time periods in which 

ramp events are likely to occur. According to these data, the system operator will take the necessary 

precautions for balancing these ramp events, in case of a large forecasting error. The necessary precautions 

include a reassessment of generation reserves, dispatching or committing flexible generators that have high 

ramping capability, fast response, low minimum stable operation level, quick start-up and turn off capability 

on behave of VRG to overcome variability.  
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The definition of ramp event differs from one system to the other, as it represents the amount of 

power change that is difficult to be managed in a certain time period. Hence, there is no agreement on a 

unified definition of power ramp event, where the threshold magnitude of power ramp event, expressed as a 

percentage of the rated power, ranged from 1% to 75%, while the threshold duration extended from 5 minutes 

to 6 hours. Accordingly, the definition of ramp event is an extremely case-dependent issue. 

In this the paper, an analysis method that depends on obtaining information from the available big 

data has been presented. The extracted information gives the power system operators details about the power 

ramping features that can be used beside the forecasted data in the system operation. The analysis method can 

be used to obtain the power ramping features in renewable generation, load or net load. In this method, the 

historical data analysis of the power-time curve is divided into two directions: vertical and horizontal. In the 

vertical direction, the ramping features within the studied time interval Δt at each observation time (t) on the 

power-time curve can be obtained. While in the horizontal direction, the ramping features within the studied 

time interval Δt in certain weeks, months, seasons or years can be obtained. The studied time interval Δt is 

selected by the system operator according to the stage of operation to be studied. The advantage of this 

methodology is that it produces directly valuable information to the power system operators that can be used 

beside that forecasted in reducing the cost and difficulty of absorbing the variability. 

The analysis method has been verified through comparing the results of analyzing the historical 

power data of aggregated Belgium’s wind farms in 2017 and 2018 within a studied time interval of 15 min. 

The results of the two analysis directions outlined at each observation time and for each month the range of 

maximum upward and downward power ramps, the average values and the standard deviation of power 

ramps, the ramping range and the number of upward and downward ramp events. The results revealed that 

the average value of power ramps is very small compared to the standard deviation, so it should not be used 

to describe the actual variability in wind power. Additionally, while the variability of wind power is difficult 

to be forecasted with high accuracy, it is possible to determine the extent of these changes even with the 

increase in the rate of wind energy participation in the power system, as it has been found that there are fixed 

proportions of these changes when compared to the average wind capacity installed in the power system, see 

Figure 24, 25; as the application of the proposed analysis method to the historical data of wind power showed 

that the following values are approximately equal in the two years when each value was divided by the 

average wind capacity installed in its year and these values are: 

• The average values of maximum upward and downward power ramps.  

• The magnitude and direction of the average value of power ramps.  

• The average value of the standard deviations. 

• The average value of power ramping range. 

• The average relative frequencies of upward and downward power ramps 

The results also showed that the average number of ramp events, whether up or down, decreased 

while the percentage of installed wind capacity increased, and the average number of upward and downward 

ramp events are approximately equal for each year but the events of the ramp-up are a little more than down, 

see Figure 26, 27. In addition, the relative frequency of upward power ramps is more than downward in the 

period from 11 AM to 11 PM; whereas the opposite occurs between 11 PM to 11 AM, see Figures 8, 9. 

 

 

 

Figure 24 Comparison between average ramp values of the maximum ramp down, maximum ramp up, 

average ramp, standard deviation, ramping range, relative ramp up and down frequency across all observation 

times as a percentage for years 2017 and 2018 
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Figure 25 Comparison between the average ramp values of the maximum ramp down, maximum ramp up, 

average ramp, standard deviation, ramping range, relative ramp up and down frequency across all months as 

a percentage for years 2017 and 2018 

 

 
 

Figure 26. Comparison between the average number of ramp-up and down events in 15 min interval for each 

observation time t for years 2017 and 2018 using vertical analysis 
 

 
 

Figure 27. Comparison between the average number of ramp-up and down events in 15 min interval for each 

month for years 2017 and 2018 using horizontal analysis 
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