
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
Vol. 5, No. 1, March 2017, pp. 44~58
ISSN: 2089-3272, DOI: 10.11591/ijeei.v5i1.261 44

Received October 25, 2016; Revised January 14, 2017; Accepted February 20, 2017

A Real-Time Implementation of Moving Object Action
Recognition System Based on Motion Analysis

Kamal Sehairi
1*

, Cherrad Benbouchama
2
, Kobzili El Houari

2
, Chouireb Fatima

1

1
 Laboratoire LTSS, Departement of Electrical Engineering, Université Amar Telidji Laghouat,

Route de Ghardaia, Laghouat 03000, Algeria
2
 Laboratoire LMR, École Militaire Polytechnique, Bordj El Bahri, Algeria

e-mail: k.sehairi@lagh-univ.dz, sehairikamel@yahoo.fr

Abstract
This paper proposes a PixelStreams-based FPGA implementation of a real-time system that can

detect and recognize human activity using Handel-C. In the first part of our work, we propose a GUI
programmed using Visual C++ to facilitate the implementation for novice users. Using this GUI, the user
can program/erase the FPGA or change the parameters of different algorithms and filters. The second part
of this work details the hardware implementation of a real-time video surveillance system on an FPGA,
including all the stages, i.e., capture, processing, and display, using DK IDE. The targeted circuit is an
XC2V1000 FPGA embedded on Agility’s RC200E board. The PixelStreams-based implementation was
successfully realized and validated for real-time motion detection and recognition.

Keywords: from papermoving object, recognition system, FPGA, real-time system, motion detection

1. Introduction

In modern society, there is a growing need for technologies such as video surveillance
and access control to detect and identify human and vehicle motion in various situations.
Intelligent video surveillance attempts to assist human operators when the number of cameras
exceeds the operators’ capability to monitor them and alerts the operators when abnormal
activity is detected. Most intelligent video surveillance systems are designed to detect and
recognize human activity. It is difficult to define abnormal activity because there are many
behaviors that can represent such activity. Examples include a person entering a subway
channel, abandonment of a package, a car running in the opposite direction, and people fighting
or rioting. However, it is possible not only to set criteria to detect abnormal activity but also to
zoom in on the relevant area to facilitate the work of the operator.

In general, an intelligent video surveillance system has three major stages: detection,
classification, and activity recognition [1]. Over the years, various methods have been
developed to deal with issues in each stage.

2. Related Work
Many methods for motion detection have already been proposed. They have been

classified [1]–[3] into three major categories: background subtraction, [4],[5] temporal
differencing [6] , [7] and optical flow[8],[9]. Further, motion detection methods have been
recently classified into matching methods, energy-based methods, and gradient methods. The
aim of the motion detection stage is to detect regions corresponding to moving objects such as
vehicles and human beings. It is usually linked to the classification stage in order to identify
moving objects. There are two main types of approaches for moving object
classification:[1],[2],[10] shape-based identification and motion-based classification. Different
descriptions of shape information of motion regions such as representations of points, boxes,
silhouettes, and blobs are available for classifying moving objects. For example, Lipton et al.[11]
used the dispersedness and area of image blobs as classification metrics to classify all moving
object blobs into human beings, vehicles, and clutter. Further, Ekinci et al.[12] used silhouette-
based shape representation to distinguish humans from other moving objects, and the
skeletonization method to recognize actions. In motion-based identification, we are more
interested in detecting periodic, non-rigid, articulated human motion . For example, Ran et

mailto:k.sehairi@lagh-univ.dz

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

45

al.[13] examined the periodic gait of pedestrians in order to track and classify it. The final stage
of surveillance involves behavior understanding and activity recognition. Various techniques for
this purpose have been categorized into seven types: dynamic time warping algorithms, finite
state machines, hidden Markov models, time-delay neural networks, syntactic techniques, non-
deterministic finite automata, and self-organizing neural networks. Such a wide variety of
techniques is attributable to the complexity of the problems and the extensive research
conducted in this field. The computational complexity of these methods and the massive amount
of information obtained from video streams makes it difficult to achieve real-time performance
on a general-purpose CPU or DSP. There are four main architectural approaches for
overcoming this challenge: application-specific integrated circuits (ASICs) and field-
programmable gate arrays (FPGAs), parallel computing, GPUs, and multiprocessor
architectures. Evolving high-density FPGA architectures, such as those with embedded
multipliers, memory blocks, and high I/O (input/output) pin counts, are ideal solutions for video
processing applications [14]. In the field of image and video processing, there are many FPGA
implementations for motion segmentation and tracking. For example, Menezes et al. [5] used
background subtraction to detect vehicles in motion, targeting Altera’s Cyclone II FPGA with
Quartus II software. Another similar study on road traffic detection [15] adopted the sum of
absolute differences (SAD) algorithm, implemented on Agility’s RC300E board using an
XC2V6000 FPGA with Handel-C and the PixelStreams library of Agility’s DK Design Suite.
Other methods for motion detection such as optical flow have been successfully implemented
[8],[9] on an FPGA. For example, Ishii et al.[8] optimized an optical flow algorithm to process
1000 frames per second. The algorithm was implemented on a Virtex-II Pro FPGA.

Many video surveillance systems have been developed for behavior change detection.
For example, in the framework of ADVISOR, a video surveillance system for metro stations, a
finite state machine (with scenarios) [16] is used to define suspicious behavior (jumping over a
barrier, overcrowding, fighting, etc.). The W4 system [17] is a system for human activity
recognition that has been implemented on parallel processors with a resolution of 320×240.
This system can detect objects carried by people and track body parts using background
detection and silhouettes. Bremond and Morioni [18] extracted the features of moving vehicles
to detect their behaviors by setting various scenario states (toward an endpoint, stop point,
change in direction, etc.); the application employs aerial grayscale images.

The objective of this study is to implement different applications of behavior change
detection and moving object recognition based on motion analysis and the parameters of
moving objects. Such applications include velocity change detection, direction change
detection, and posture change detection. The results can be displayed in the RGB format using
chains of parallelized sub-blocks. We used Handel-C and the PixelStreams library of Agility’s
DK Design Suite to simplify the acquisition and display stages. An RC200E board with an
embedded Virtex-II XC2V1000 FPGA was employed for the implementation.

3. Mixed Software-Hardware Design
To make our implementation more flexible, we use the software-hardware platform

approach. This approach simplifies not only the use of the hardware but also the change
between soft data and hard data, especially for image processing applications that need many
parameters to be changed, for example, the parameters of convolution filters and threshold
levels. In our implementation, we use Handel-C for the hardware part. Handel-C is a behavior-
oriented programming language for FPGA hardware synthesis, and it is adapted to the co-
design concept [19].

The software part is developed using Visual C++. After generating the bit file using
Agility’s DK Design Suite, [20] we use our software interface to load this bit file via the parallel
port (with a frequency of 50 MHz) on the RC200E board in order to configure the FPGA. The
algorithm parameters are transferred through this port as 8-bit data at the same frequency. For
the user, these operations are hidden. The graphical user interface allows the user to
configure/erase the FPGA and change the algorithm parameters. For example, in our case, we
can change the threshold level according to the brightness of the scene or the velocity level
according to the object in motion (human, vehicle).

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

46

4. Outline of the Algorithm
4.1. Pixel Streams Library

Before we detail and explain our algorithm and the method used to achieve our goals,
we should discuss the tools used for our implementation. We used an RC200E board with an
embedded XC2V1000 FPGA [21]. This board has multiple video inputs (S-video, camera video,
and composite video), multiple video outputs (VGA, S-video, and composite video), and two
ZBT SRAMs, each with a capacity of 2 MB. The language used is Handel-C [22] and the
integrated development environment (IDE) is Agility’s DK5. This environment is equipped with
different platform development kits (PDKs) that include the PixelStreams library [23].

The PixelStreams library is used to develop systems for image and video processing. It
includes many blocks (referred to as filters) that perform primary video processing tasks such as
acquisition, stream conversion, and filtering. The user has to associate these blocks carefully by
indicating the type of the stream (pixel type, coordinate type, and synchronization type). Then,
the user can generate the algorithm in Handel-C. Thereafter, the user has to add or modify
blocks to program his/her method, and finally, he/she must merge the results. It is worth
mentioning that these blocks are parameterizable, i.e., we can modify the image processing
parameters, such as the size of the acquired image or the threshold. These blocks are fully
optimized and parallelized. Figure 1 shows the GUI of PixelStreams.

Figure 1. PixelStreams GUI

4.2. Detection Algorithm
We choose to implement the delta frame method for three reasons: its adaptability to

changes in luminance, its simplicity, and its low consumption of hardware resources. This
method determines the absolute difference between two successive images, and it is executed
in two stages: temporal difference and segmentation.

4.2.1. Temporal difference

In this stage, we determine the absolute difference between the previous frame and the
current frame as follows.

, 1 1

(,)
(,) (,) (,) (,) (1)t t t t

dI x y
x y x y I x y I x y

dt

where (,)x y is the difference between It(x,y) (i.e., the intensity of pixel (x,y) at moment
t) and It-1(x,y) (i.e., the intensity of pixel (x,y) at moment t-1).

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

47

4.2.2. Segmentation
In this stage, significant temporal changes are detected by means of thresholding:

0 if (x,y) Th
(,) (2)

1 otherwise
x y

This operation yields a binary card that indicates zones of significant variations in

brightness from one image to the other.

4.3. Feature Extraction and Behavior Change Detection
In this study, simple behavior change detection refers to motion that can be caused by

abrupt movements that might represent suspicious actions. To define these actions, we use the
parameters of the objects in motion, such as the center of gravity, width, and length. In general,
the actions detected by this method are simple yet useful in video surveillance. For example,
velocity change detection is useful for detecting a criminal who is being chased by the police or
a car that exceeds the speed limit; direction change detection is useful for detecting a car that is
moving in the wrong direction; and posture change detection is useful for detecting a person
who bends to place or pick up an object.

Our implementation involves the following stages: acquisition of the video signal,
elimination of noise from the input video signal, detection of moving regions, segmentation for
separating the moving objects, extraction of the object parameters, classification of the moving
objects, and determining whether movements are suspicious.

4.3.1. Velocity change detection

We can detect suspicious behavior of a person from his/her gait as well as his/her
change in velocity near sensitive locations such as banks, airports, and shopping centers. In
such cases, we can calculate the speed (in pixels/s) or acceleration (in pixels/s2) of the suspect
in the image space in real time. There are several ways of representing this anomaly: the most
widely adopted method in the literature is the use of a bounding box (a rectangle around the
suspect).

It is easy to calculate the speed of a moving object. As soon as the speed or
acceleration of the object exceeds a certain threshold of normality (predetermined
experimentally or on the basis of statistical studies), a bounding box appears around the
suspect. However, the issue that needs to be addressed is the calculation of the speed in real-
time circuits owing to the absence of mathematical functions (such as square root), types of
data (integer or real values), and the object parameters on which we base our calculation.

In general, the speed and acceleration are calculated as follows:

 2 2(() ()) / (3)g g g gvelocity t x t x t dt y t y t dt dt

 / (4)acceleration t velocity t velocity t dt dt

where
 x ,yg gt t

 and
 x ,yg gt dt t dt

are the co-ordinates of the center of

gravity of the object at moments t and t dt , respectively, dt=40ms in our case, and

 velocity t
 and

 velocity t dt
 are the velocities of the object at moments t and t dt ,

respectively.

4.3.2. Direction change detection
Changes in direction or motion in the wrong direction can represent abnormal behavior

depending on the situation. For example, roaming around a building or car can be considered
as an abrupt cyclic change in direction, possibly indicating the intention of burglary or car theft.
Other examples include detection of a car that is moving in the wrong direction or a person who
is moving in the opposite direction of a queue at an exit gate or exit corridor in an airport.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

48

To determine the direction, we select parameters that distinguish the object of interest,
such as its center of gravity, width, and length. In general, the co-ordinates of the center of
gravity can be used to determine whether the object has changed its direction, i.e., whether it
has moved rightward or leftward depending on the position of the camera.

The change in direction along the x-axis is given by

 g g

0 The object did not change direction
x t x t dt (5)

0 The object changed direction

The change in direction along the y-axis is given by

 g g

0 The object did not change direction
y t y t dt (6)

0 The object changed direction

These techniques, which are based on the object parameters, can be improved by
integrating them with advanced models such as finite state machines (FSMs).

5. Hardware Implementation

Figure 2 shows the general outline of our FPGA implementation.\

Figure 2. General outline of behavior change detection.

This general outline consists of four blocks: an acquisition block, an analysis block, a

display block, and an intermediate block between the display block and the analysis block.

5.1. Acquisition Block
Acquisition is achieved using the standard camera associated with the RC200E board.

The video input processor, Philips SAA7113H, acquires the frames in the PAL format at a rate
of 25 fps. The pixels are in the YCbCr format. Using the PixelStreams library of Agility’s DK
Design Suite, we split the input video signal into two identical streams (see Figure 3). The first
stream is fed to the display block and it is converted into the RGB format to display the results
on a VGA display. The second stream is fed to the analysis block and it is converted into the
grayscale format to reduce (by one-third) the amount of data to be processed.

We can choose to perform the conversion into the RGB format before splitting the input
signal and then convert the second stream for the analysis block into the grayscale format.
However, this method is not preferable because the conversion from the YCbCr format to the
RGB format is approximate. Moreover, in the conversion from the YCbCr format to the
grayscale format, the brightness is simply represented by the Y component of the YCbCr
format. Further, it is not preferable to approximate the input stream that is fed to the analysis
block.

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

49

Figure 3. Acquisition block.

5.2. Analysis Block
The analysis block consists of several stages. In the first stage, we use inter-image

subtraction (delta frames) and apply thresholding to detect moving regions.
To obtain the delta frames, we start by splitting the video signal in three channels (see

Figure 4). The first and second channels are used to save the acquired image, creating a delay
cell. The image I(t-1) is recorded in the memory. The third channel is used to acquire the actual
frame at moment t. Then, the two image streams are synchronized and fed to the subtraction
block. The subtraction block is a modified block that takes the absolute result of subtraction and
compares it with a threshold. This function is realized using a macro. The threshold value Th is
fixed according to the luminosity of the scene.

Figure 4. Motion detection block.

The second stage of the analysis block involves statistical analysis. In this stage, we
search for the min and max values along the x- and y-axes of the mobile regions (Figure 5). In
general, this stage must be preceded by a filter for noise reduction. We employed a
morphological filter (e.g., alternating sequential filter, opening/closing filter) using the
PixelStreams library.

Figure 5. Inter-image difference and calculation of min and max values.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

50

After calculating the min and max values along the two axes, we determine the center
of gravity of the detected object. We calculate the sum of the pixel co-ordinates that have non-
zero values along the x- and y-axes, and we divide these coordinate values by their sum.
However, for our implementation, it is better to avoid this division. Therefore, we use the direct
method. We subtract the max from the min and divide the result by 2. Division by 2 is achieved
by a simple bit shift (right shift). Once the values minX, MaxX, minY, MaxY, and XG, YG are
obtained, we copy these values into the behavior change detection block. Then, we reset these
values to zero.

5.3. Behavior Change Detection Block
As stated in the previous section, the analysis block provides the behavior change

detection block with the parameters of the moving objects. In this stage, we save the values
extracted from the first delta frame (xg(t-1), yg(t-1), minx(t-1), MaxX(t-1), miny(t-1), MaxY(t-1)),
and from the second delta frame, we obtain the current values xg(t), yg(t), minx(t), MaxX(t),
miny(t), and MaxY(t). From these latter results, we can calculate the width and length of the
moving object to classify the object as human, vehicle, or others, as in our previous work [24].
Using the values extracted in two different instants (t-1, t), we define the changes in behavior.

For velocity change detection, the speed and acceleration are calculated using the two
equations presented in Sec. 4.4.1. However, we simplify these equations by calculating the
absolute differences between two moments (the previous and current values). If the absolute
difference exceeds a certain threshold Vth, we assume that the velocity has changed, and we
copy the values of the center of gravity in the display block in order to draw a rectangle around
the object. Then, the current values are saved as previous values.

Consider a practical problem that involves the values of the center of gravity. In our
algorithm, we need to reset all the variables to zero. Consequently, the coordinates of the center
of gravity will be zero. If an object enters the scene, the coordinates of the center of gravity
change from 0 to xg, yg, and this will cause false detection.

To overcome this problem, we have to ensure that the object has entered the scene
entirely. For this purpose, we set a condition on the coordinates of the bounding box for two
consecutive instants; if this condition is met (|minXt1 - minXt2 | > S AND |MaxXt1 - MaxXt2 | >
S), we can guarantee that the object has entered the scene entirely, either from the right or from
the left.

Figure 6. False velocity change detection (the object enters the scene).

Table 1. Solution proposed for false velocity change detection.

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

51

Figure 7 shows this implementation and represents all the stages realized.

Figure 7. Hardware architecture for velocity change detection.

Direction change detection: To implement this application, we follow the same stages
as those used in velocity change detection, except that the condition changes. We use the
same parameters, minX, MaxX, minY, and MaxY, in order to avoid the center of gravity
problem. We calculate the difference between minX1 and minX2, and MaxX1 and MaxX2. If
there is a change in sign, we assume that the object has changed its direction. Otherwise, we
assume that the object has not changed its direction.

We can easily determine the direction of motion of an object by applying the same
concept as that described above. However, in this case, it is impractical to compare the
differences between the previous values and the current values with zero because the presence
of a small or non-significant movement (such as that of the arms) can cause false detection.
Therefore, to overcome this problem, we compare the difference with a threshold Thd, which
should not be very large. Then, the values minX, MaxX, minY, and MaxY are copied to the block
that draws the bounding box.

We use two blocks for detection in two directions (a different color for each direction of
motion). In order to minimize resource consumption, we used only one block for drawing the
bounding box by changing the parameters of entry in our macro. In this macro, we added a
parameter that changes the color according to the direction of detected motion (Figure 8).

Posture change detection: We are interested in such an application to detect a person
who leans (bends) to place or pick up something, especially in sensitive locations (e.g.,the
subways). In this case, we are interested in movements along the y-axis of the image (up/down
motion), and we use the same architecture as that used in velocity change detection. We
calculate the difference between the previous and current values of miny(t-1), MaxY(t-1),
miny(t), MaxY(t).

If the difference between the previous and current values is positive, we assume that
the person leans, and we copy the values minX, MaxX, minY, and MaxY to the block that draws
the bounding box and fix the color parameter of the rectangle. We can add a warning message
using the PxsConsole filter of PixelStreams. In the opposite case, we assume that the person
rises, and we copy the values to the block that draws the rectangle, which uses a different color
in this case. As in the case of direction change detection, it is better to use a threshold Thp to
reduce the occurrence of false detection due to small movements along the y-axis. For such
detections, we require a camera whose front sight faces the scene.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

52

Figure 8. Hardware architecture for direction change detection.

Motion analysis: Here, we tried to collect all the above-mentioned behaviors using a

single program in order to practically validate the system. To minimize resource consumption,
we considered our problem as a finite state machine with several scenarios. The thresholds of
detection for each case were used to define and manage these various scenarios. The
differences between the values of minX, MaxX, minY, and MaxY at moments t and t-1 are
denoted by ∆minx, ∆MaxX, ∆miny, and ∆MaxY, respectively.

In the first state, all the values are initialized (State 0); they represent the initial state of
each new inter-image difference. In the second state (State 1), if the absolute values of ∆minx
and ∆MaxX are higher than VTh, we assume that the velocity changes and we return to the
initial state after copying the values of the block to the bounding box filter. In the opposite case,
we go to the third state (State 2) and compare ∆minx and ∆MaxX with the threshold Thd.
According to the result of this comparison, we assume that a leftward or rightward movement
has occurred. Then, we return to the initial state. Starting from this state, if the moving object
accelerates, we return to the second state of velocity change. For posture change detection, the
condition is related to the values of ∆miny and ∆MaxY (State 3). We can detect this behavior
from any state (e.g., a person runs and leans to collect something). The following figure
summarizes these states and the possible scenarios.

Figure 9. FSM of motion analysis.

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

53

5.4. Display Block
In this block, we call the macro PxsAnalyseAwaitUpdate, which allows us to pause the

display until an update occurs in the analysis block. We obtain the values minX, MaxX, minY,
and MaxY; if there is a motion, we copy these values to the bounding box filter to draw the
rectangle. The values of the center of gravity, Xg,Yg, are also copied to the PxsCursor filter in
order to draw a cross at the center of the moving object. We can add a warning message, e.g.,
"Warning: velocity change detection", by using the PxsConsole filter of the PixelStreams library.
Finally, the results are displayed in the RGB format on a VGA display.

6. Experimental Results

An RC200E board with an embedded Virtex-II XC2V1000 FPGA was used for our
implementation. The language used was Handel-C. The results for each behavior are
summarized in Tables 2–5:

Table 2. Resource consumption and maximum frequency of implementation
for velocity change detection.

Table 3. Resource consumption and maximum frequency of implementation
for direction change detection.

Table 4. Resource consumption and maximum frequency of implementation
for up/down motion detection.

Table 5. Resource consumption and maximum frequency of implementation
for motion analysis.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

54

These tables specify the resource consumption and maximal frequency of each
implemented detection case for PAL video with a resolution of 720×576.

In all these implementations, the results show that the two main constraints, i.e., the
resource limit of our FPGA and the real-time aspect (40 ms/image), are well respected. We note
that the consumption of the CLB blocks increases in the case of detection of multiple objects;
this is caused by the algorithm used to identify the number of objects in the scene. We also note
that the algorithm for motion analysis that collects all the previous behaviors can be
implemented on our FPGA in real time, but it consumes nearly all of the CLB resources (88%).

The following figures show the results of all these implementations. Each behavior is
represented by a different color, and a warning message is added below the scenes.

Figure 10. Results of velocity change detection in the case of one object.

Figure 10 shows the results of velocity change detection in the case of one object. In

Figure 10(a), as soon as the object decreases its speed, the rectangle disappears. In Figure
10(b), as soon as the object starts to run, a rectangle appears around it.

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

55

Figure 11. Results of velocity change detection in the case of two objects.

Figure 11 shows the results of velocity change detection in the case of two objects. As

soon as the objects start running, a rectangle appears. We note that in the case of occlusion,
the algorithm considers both objects as a single object. After the objects separate, two
rectangles with different colors appear on them.

Figure 12 shows the results of direction change detection. Figure 12(a) shows direction
detection for two directions: right to left movement, represented by the blue rectangle, and left to
right movement, represented by the red rectangle. The figures also show warning messages
below the images. Figure 12(b) shows the results of direction change detection in one direction
for two objects.

Figure 12. Direction change detection.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

56

Figure 13 shows the results of posture change detection. When the object leans to pick
up something, it will be detected. Up/down and down/up motion are represented in different
colors. A warning message is added in each case.

Figure 13. Posture change detection: a) for one object, b) for two objects.

Figure 14 shows the results of collecting all the behaviors using a single program.

Motion to the right and left are represented by red and blue rectangles, respectively. Further,
up/down and down/up motion are represented by turquoise and yellow rectangles, respectively.
Finally, velocity change is represented by a black rectangle. In every case, a warning message
is displayed.

Figure 14. Motion analysis.

IJEEI ISSN: 2089-3272

 A Real-Time Implementation of Moving Object Action Recognition… (Kamal Sehairi)

57

Figure 15 shows our graphical user interface (GUI), which is divided into four sections.
Three of these sections are used to detect just one simple behavior each, whereas the fourth
section detects all the behaviors. Using this GUI, we can send the bit-file for configuring or
erasing our FPGA, or directly changing the filter parameters without the need to use the IDE.

Figure 15. Graphical user interface.

7. Conclusions
We presented a mixed software-hardware approach that simplifies the use of the

hardware part by enabling us to communicate with it using the graphical interface. In addition, it
simplifies the choice of the algorithm to be implemented and modifies the parameters of this
algorithm. We adopted the proposed approach for object detection and behavior recognition
based on motion analysis and sudden movements. We exploited the hardware part, which
offers the possibility of handling large amounts of data and performing calculations for image
processing via parallel processing, guaranteed by the use of the PixelStreams library of Agility’s
DK Design Suite. Further, we tried to improve our architecture by collecting all the different
behaviors using a single program. In addition, we added warning messages using the
PxsConsole filter. Thus, we successfully implemented different algorithms that can recognize
objects in motion and detect changes in velocity, direction, and posture in real time. The results
showed that our approach achieves good recognition and detection of these behaviors,
especially in indoor areas. However, in outdoor areas, the results are less promising owing to
the simple motion detection algorithm used; this problem is aggravated by occlusion due to
overlapping movements of different persons. Therefore, in the future, we will try to use multiple
cameras (stereoscopic, Kinect) with improved motion detection and learning methods to detect
behavior changes in crowded environments.

Acknowledgements
We would like to thank Pr. Larbes Cherif and Dr. Benkouider Fatiha for their insightful

comments.

References
[1] L Wang, W Hu, and T Tan. Recent developments in human motion analysis. Pattern Recogn. 2003;

36(3): 585-601.
[2] W Hu, T Tan, L Wang, and S Maybank. A survey on visual surveillance of object motion and

behaviors. IEEE T Syst Man Cyb. 2004; 34(3).
[3] T Ko. A survey on behavior analysis in video surveillance for homeland security applications.

Washington DC: AIPR. 2008.

 ISSN: 2089-3272

 IJEEI Vol. 5, No. 1, March 2017 : 44 – 58

58

[4] M Piccardi. Background subtraction techniques: a review. IEEE SMC. 2004; 4: 3099-3104.

[5] GGS Menezes and AG Silva-Filho. Motion detection of vehicles based on FPGA. SPL VI Southern.

2010: 151-154.
[6] W Shuigen, C Zhen, L Ming, and Z Liang. An improved method of motion detection based on

temporal difference. ISA 2009. 2009: 1-4.

[7] Widyawan, MI Zul, and LE Nugroho. Adaptive motion detection algorithm using frame differences
and dynamic template matching method. URAI 2012. 2012: 236-239.

[8] I Ishii, T Taniguchi, K Yamamoto, and T Takaki. 1000 fps real-time optical flow detection system.
Proc. SPIE 7538. 2010. 75380M.

[9] J Diaz, E Ros, F Pelayo, EM Ortigosa, and S Mota. FPGA-based real-time optical-flow system. IEEE
T Circ Syst Vid. 2006; 16(2): 274-279.

[10] M Paul, S Haque, and S Chakraborty. Human detection in surveillance videos and its applications - a
review. EURASIP JASP. Springer International Publishing. 2013.

[11] AJ Lipton, H Fujiyoshi, and RS Patil. Moving target classification and tracking from real-time video.
WACV 98. 1998: 8-14.

[12] M Ekinci and E Gedikli. Silhouette based human motion detection and analysis for real-time
automated video surveillance. Turk. J. Elec. Eng. & Comp. Sci. 2005; 13: 199-229.

[13] Y Ran, I Weiss, Q Zheng, and LS Davis. Pedestrian detection via periodic motion analysis. Int J
Comput Vision. 2007; 71(2): 143-160.

[14] K Ratnayake and A Amer. An FPGA-based implementation of spatio-temporal object segmentation.
Proc. ICIP. 2006: 3265-3268.

[15] M Gorgon, P Pawlik, M Jablonski, and J Przybylo. FPGA-based road traffic videodetector. DSD
2007.

[16] F Cupillard , A Avanzi , F Bremond, and M Thonnat. Video understanding for metro surveillance.
ICNSC 2004.

[17] I Haritaoglu, D Harwood, and LS Davis. W4: Real-time surveillance of people and their activities.
IEEE T Pattern Anal. 2000; 22 (8): 809-830.

[18] F Bremond and G Medioni. Scenario recognition in airborne video imagery. IUW 1998. 1998: 211-
216.

[19] M Edwards and B Fozard. Rapid prototyping of mixed hardware and software systems. DSD 2002.
2002: 118-125.

[20] “Agility DK User Manual”, Mentor Graphics Agility (2012),

http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
[21] Virtex II 1.5v Field-Programmable Gate Arrays. Data sheet, Xilinx Corporation, 2001.
[22] DK5 Handel-C language reference manual. Agility 2007.
[23] “PixelStreams Manual”, Mentor Graphics Agility (2012),

http://www.mentor.com/products/fpga/handel-c/pixelstreams/
[24] K Sehairi, C Benbouchama, and F Chouireb. Real Time Implementation on FPGA of Moving Objects

Detection and Classification. International Journal of Circuits, Systems and Signal Processing. 2015:
9; 160-167.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473892
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://www.mentor.com/products/fpga/handel-c/pixelstreams/

