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Model building attack on Physical Unclonable Functions (PUFs) by using 

machine learning (ML) techniques has been a focus in the PUF research area. 

PUF is a hardware security primitive which can extract unique hardware 

characteristics (i.e., device-specific) by exploiting the intrinsic manufacturing 

process variations during integrated circuit (IC) fabrication. The nature of the 

manufacturing process variations which is random and complex makes a PUF 

realistically and physically impossible to clone atom-by-atom. Nevertheless, 

its function is vulnerable to model-building attacks by using ML techniques. 

Arbiter-PUF is one of the earliest proposed delay-based PUFs which is 

vulnerable to ML-attack. In the past, several techniques have been proposed 

to increase its resiliency, but often has to sacrifice the reproducibility of the 

Arbiter-PUF response. In this paper, we propose a new derivative of Arbiter-

PUF which is called Mixed Arbiter-PUF (MA-PUF). Four Arbiter-PUFs are 

combined and their outputs are multiplexed to generate the final response. We 

show that MA-PUF has good properties of uniqueness, reliability, and 

uniformity. Moreover, the resilient of MA-PUF against ML-attack is 15% 

better than a conventional Arbiter-PUF. The predictability of MA-PUF close 

to 65% could be achieved when combining with challenge permutation 

technique. 
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1. INTRODUCTION

Nowadays, trusted and secured computing solutions are crucially demanding especially with the 

emergence of the Internet of Things (IoT). Generally, any computing systems can be represented as hardware, 

firmware, software (i.e., operating system, application, etc.) and data layers. For any computing systems which 

dealing with sensitive and user-specific data, the trustworthiness of the whole computing system is very 

important to avoid loss of privacy which can be realized by providing root-of-trust from the hardware layer. 

Physical Unclonable Function (PUF) is an innovative technology that able to extract hardware 

characteristics and manifest them as device-specific responses that can be used as root-of-trust in trusted 

computing. The intrinsic manufacturing process variations during integrated circuit (IC) fabrication are 

exploited by PUF such that it can map a set of challenges to a set of responses, uniquely for each PUF instance. 

The challenge to response mapping or known as challenge-response pairs (CRPs) represents the characteristic 

of particular hardware. As PUFs can generate unique CRPs based on hardware characteristics, hence PUFs can 

be used to provide a secure, reliable and trustworthy root-of-trust to any computing systems. 
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Guajardo et al., [1] and Rührmair et al., [2] classified PUFs into Strong-PUFs and Weak-PUFs. 

Strong-PUFs are PUFs that have an exponential number of CRPs, given as 2k where k is the number of 

challenge bits. Meanwhile, Weak-PUFs are the types of PUFs which have a limited number of CRPs, 

predetermined challenges, and in the extreme case with just only a single challenge. Example of Weak PUFs 

such as SRAM-PUF [1, 3], D Flip-Flop PUF [4], Buttery-PUF [5], Buskeeper-PUF [6], and SR-NOR latch 

PUF [7]. The terms of ‘Strong’ and ‘Weak’ are not meant to indicate the superiority of one PUF to another but 

merely to classify the PUFs based on their CRPs nature. 

In the early development of PUFs, a delay-based PUF known as Arbiter-PUF, fabricated on silicon 

using TSMC 180-nm technology node was proposed [8, 9]. Arbiter-PUF is a type of Strong-PUFs which has 

k-bit challenge and a total of 2k CRPs. The functionality of Arbiter-PUF is based on the linearly additive delay 

which can be easily modelled using machine learning (ML) techniques. The susceptibility of Arbiter-PUF to 

ML-attack, therefore, has raised concern within the research community of hardware security [2, 10]. Several 

studies in the past have focused on the techniques to increase the resiliency of Arbiter-PUF against MLattack 

[10, 11, 12, 13, 14]. Most of the techniques are using the XOR obfuscation technique which successfully 

increases the resilience of Arbiter-PUF against ML-attack. However, the XOR technique degrades the 

reliability of the PUF response. 

In this paper, a new derivative of Arbiter-PUF which is called Mixed Arbiter-PUF (MA-PUF) is 

proposed. Four Arbiter-PUFs are combined and their outputs are multiplexed to generate the final response. 

The multiplexing technique is applied in MA-PUF instead of the XOR technique to reduce the degradation 

impact on the PUF reliability. Based on our analysis, MA-PUF has shown good properties of uniqueness, 

reliability, and uniformity. Moreover, the MA-PUF exhibits resiliency against ML-attack. The main 

contributions of this work are highlighted below: 

1. We propose a new derivative of Arbiter-PUF known as MA-PUF which has good properties of 

uniqueness and uniformity, close to an ideal value of 50%. The MA-PUF achieves good reliability of 

about 96%. 

2. The proposed MA-PUF has 15% better resiliency against ML-attack as compared to a conventional 

Arbiter-PUF. A combination of MA-PUF with challenge permutation further increases its resilience 

against ML-attack. The predictability of the MA-PUF reduces to ≈65% with a challenge permutation 

technique. 

The rest of the paper is organized as follows. Section 2 describes the background which related to this 

work. The architecture of the proposed MA-PUF is discussed in Section 3. Section 4 describes the methods to 

construct the MA-PUF and to quantify its performance. The analysis of MA-PUF performance and its ML-

attack resistance is presented in Section 5. Finally, conclusions are drawn in Section 6. 

 

2. BACKGROUND  

 

2.1.  Arbiter-PUF 

Lee et al., [8] proposed an Arbiter-PUF which was designed and implemented on silicon using the 

process technology of TSMC 180-nm. The proposed architecture of k-bit Arbiter-PUF as illustrated in Figure 

1. Arbiter-PUF exploits the logic delay and interconnects variations due to limitations during IC fabrication 

processes. Arbiter-PUF consists of k switching components and an arbiter. Typically, SR-latch is used as an 

arbiter since it offers fair arbitration from its symmetric circuit topology [15].  

 

 

 
 

Figure 1. Structure of k-bit Arbiter-PUF [8] 
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The switching components can be constructed using two-to-one (2-to-1) multiplexer using logic gates 

or transmission gates. A rising pulse is applied at the input and propagated through two nominally identical 

delay paths. The switching component controls the propagation delay paths of the input pulse by setting the 

bits of the challenge, C = {c1, c2, . . . , ck}. For ck = 0, the path go straight through, while for ck = 1, they are 

crossed. Due to process variations, each switching component and the interconnect wire exhibits a unique 

delay. As the rising pulse passes through until k-th switching component, there is a delay difference between 

the two rising pulses which represented as ∆t. A random response, ‘0’ or ‘1’, is generated by the arbiter (i.e., 

SR-latch) depending on the difference in arrival times. 

 

2.2.  Related Work 

The Arbiter-PUF discussed in the previous section was constructed based on the linear characteristics 

of the additive delays caused by the switching components in each stage. Hence, there is a possibility that the 

adversaries could model the Arbiter-PUF by using ML techniques. A successful model-building attacked on 

Arbiter-PUF has been described in [9] by using an ML technique known as support vector machine (SVM). 

To increase the non-linearity in Arbiter-PUF, other derivatives or Arbiter-PUF are proposed such as Feed-

Forward Arbiter-PUF [16], XOR-Arbiter-PUF [17] and Lightweight-PUF [18]. These techniques mainly using 

the XOR technique to obfuscate the challenges and/or responses. Nevertheless, all the aforementioned PUFs 

are successfully attacked using ML techniques as described in [2]. An important finding as described by 

Rührmair et al., [2], as the challenge bit length k and the number of XOR increase, the difficulty of an ML to 

model the PUF increases. 

 

 

 
Figure 2. l-XOR Arbiter-PUF, k = 32 [19] 

 

In recent works, Ye et al., [20] proposed obfuscated PUF by combining the XOR technique and the 

random start-up values (SUVs) generated by the SRAM cells after the power-up process. However, the 

susceptibility of the proposed obfuscated PUF against ML-attack has not been presented in [20]. The following 

work by Ye et al., [12] was a randomized PUF (RPUF) based on the obfuscation of the Arbiter-PUF challenges 

by using random number generator (RNG). Nevertheless, the number of CRPs used for ML training is too 

small to have a conclusive finding on its ML-attack resiliency. Machida et al., [21] proposed Double Arbiter-

PUF (DA-PUF) which was constructed based on XOR Arbiter-PUF. XOR Arbiter-PUF consists of l number 

of Arbiter-PUF as in Figure 1 and the final response is generated by XORing l responses. Unlike the XOR 

Arbiter-PUF, the DA-PUF obfuscated the topk,i and botk,i for i = 1, 2, . . . , l, among lP2 arbiters and the final 

response is generated by XORing lP2  responses. The DA-PUF exhibits a promising resiliency against MLattack 

with the predictability of about 69% and 57% respectively for 2-1 DA-PUF and 3-1 DA-PUF [14, 22]. 

However, the XOR technique degrades the reliability of a given PUF. As can be seen in Figure 2, the reliability 

reduces as l increases. 
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In another study, an Obfuscated-PUF (OB-PUF) is proposed by Gao et al., [11] in which the verifier 

sent a partial challenge to the prover (i.e., OB-PUF) to increase the complexity of the CRPs mapping. The 

RNG within an OB-PUF is used to generate a random pattern. Afterwards, the random pattern is padded with 

a partial challenge which was sent earlier by the verifier to make up a full-length challenge. Further, OB-PUF 

generates a random response based on the full-length challenge. Elsewhere, Mispan et al., [13] proposed a 

challenge permutation technique to increase the complexity of the challenge-to-response mapping of an 

Arbiter-PUF. Both works, [11, 13] able to reduce the predictability of a conventional Arbiter-PUF to ≈ 65% 

for a total training CRPs of 30,000. In recent work, Vatajelu et al., [23] proposed symmetric encryption on 

Arbiter-PUF challenges using a secret key generated by a Weak-PUF. The proposed technique successfully 

reduces the predictability of Arbiter-PUF significantly. However, the symmetric encryption incurs area 

overhead and it is costly to be implemented for resource-constrained pervasive devices. In our work, we explore 

a new derivative of Arbiter-PUF which imitates the DA-PUF structure but without scarifying the reliability of 

the PUF response. In Section 5, we will discuss and compare the performance of the proposed MA-PUF with 

typical Arbiter-PUF and DA-PUF. 

 

3. PROPOSED MA-PUF 

The architecture of the MA-PUF is derived from the Arbiter-PUF, proposed in [8]. Figure 3 depicts 

the top-level architecture of the k-bit MA-PUF. The PUF consists of four Arbiter-PUFs, two 4-to-1 multiplexers 

and one arbiter (i.e., SR-latch). The same k-bit challenges are applied to four Arbiter- PUFs. The top delay of 

the MA-PUF, given as topk,i for i = 1, . . . , 4 is input to the top multiplexer. The bottom delay of the MA-PUF, 

given as botk,i for i = 1, . . . , 4 is input to the bottom multiplexer. For each of the multiplexers, the selector bits 

are connected from the 2-bit of the challenges. In this study, the selector bits of the top multiplexer is ck-1 and 

ck, while the selector bits of the bottom multiplexer is c1 and c2. Generally, for m k-bit challenges generated by 

the linear feedback shift register (LFSR), an average each bit position has a 50% probability of a value ‘1’. 

Therefore, each multiplexer can use any of the challenge bits position provided that the selected bits fulfil the 

condition of stop[1:0] ≠ sbot[1:0]. The outputs of both multiplexers are input to the arbiter to generate a final 

response, depending on the difference in arrival times of the selected delay. 

 

 

 
 

Figure 3. Top-level of k-bit MA-PUF 
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4. METHODOLOGY 

The 32-bit MA-PUF (k = 32) circuit has been constructed and simulated using a low-κ 65-nm CMOS 

technology node with a nominal supply voltage of 1.2V and a room temperature of 25ᴼC. The BSIM4 (V4.5) 

transistor model was used to simulate the MA-PUF circuit. The Monte Carlo simulation is used to model the 

manufacturing process variations such as threshold voltage (Vth), effective width, effective length, and oxide 

thickness. 100 PUF instances were modelled using Monte Carlo simulation by using the built-in statistical 

variation (3σ variations) in the technology design kit (i.e., fabrication standard). A 32-bit response is generated 

for each of the PUF instances. In this study, the performance of MA-PUF to resist ML-attack is evaluated 

following the methodology described in [24]. The Artificial Neural Network (ANN) is employed since it offers 

the capability of modelling highly non-linear systems and it is implemented in MATLAB environment. 

 

5. SIMULATION RESULTS AND ANALYSIS 

The standard method to quantify the quality of a PUF is described in [25]. The quality parameters are 

uniqueness, reliability, and uniformity. In this section, these quality metrics of the proposed PUF are discussed. 

Moreover, the robustness of MA-PUF against ML-attack is also discussed. 

 

5.1.  Uniqueness 

The uniqueness is the ability of a PUF to be uniquely distinguished from a group of PUFs of a similar 

type. The uniqueness is evaluated using Inter-hamming distance (Inter-HD) and it is given as [25]: 

 

 

𝐼𝑛𝑡𝑒𝑟 − 𝐻𝐷 =  
2

𝑚(𝑚 − 1)
∑ ∑

𝐻𝐷(𝑅𝑖(𝑛), 𝑅𝑗(𝑛))

𝑛

𝑚

𝑗=𝑖+1

× 100%

𝑚−1

𝑖=1

 

 

(1) 

 

where i and j represent two PUF instances under evaluation, each PUF generates n-bit response, Ri(n) and Rj(n), 

respectively when applied with the same challenge, C = {c1, c2, . . ., ck} and m is the total number of PUF 

instances. A 32-bit response is generated for each MA-PUF using the methodology described in Section 4. By 

using the Eq. (1), the uniqueness for 100 32-bit MA-PUF instances is 49.77%. The distribution of uniqueness 

or Inter-HD is illustrated in Figure 4. The uniqueness of MA-PUF is very close to the ideal value of 50%. 

Therefore, this indicates that for the same challenge applied to two similar MA-PUFs, it has a higher probability 

of one MA-PUF that will generate a response of about 50% different compared to the other MA-PUF. 

Nonetheless, a smaller group of the MA-PUF instances has a uniqueness of less than or more than 50% as 

indicated by the spread of the Gaussian imitated distribution in Figure 4. 

 

 

 
 

Figure 4. Uniqueness for 100 instances of 32-bit MA-PUF 
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5.2.  Reliability 

The reliability is the ability of a PUF to generate the same response over the environmental uctuations 

such as temperature and supply voltage when applied with the same challenges. The reliability is evaluated 

using Intra-HD and it is given as [25]: 

 

 
𝐼𝑛𝑡𝑟𝑎 − 𝐻𝐷 =  

1

𝑚
∑

𝐻𝐷(𝑅𝑖(𝑛), 𝑅𝑖,𝑗
′ (𝑛))

𝑛

𝑚

𝑗=1

× 100% 
 

(2) 

 

Further, the reliability of a PUF can be computed based on Intra-HD value and it is defined as: 

 

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100% − 𝐼𝑛𝑡𝑟𝑎 − 𝐻𝐷 (3) 

 

where i represents PUF under evaluation which generate n-bit response, Ri(n) at nominal temperature and 

supply voltage, R’i,j(n) is the response at different condition (i.e., temperature and/or supply voltage), and m is 

the number of samples.  

To evaluate the reliability, the MA-PUF is subjected to variations in supply voltage (1.2V±10%) 

and/or ambient temperature from -40ᴼC to 85ᴼC, in which a total of 12 conditions including nominal condition 

as shown in Figure 5. By using Eq. (2) and (3), the average reliability of MA-PUF under the aforementioned 

conditions is 96%. Based on our reliability analysis, we found that the reliability of MA-PUF is approximately 

similar to a conventional Arbiter-PUF. The reliability of MA-PUF under each condition is depicted in Figure 

5. A nominal condition, 1.2V and 25ᴼC is used as a reference condition which explains the reliability value of 

100%. For example, the response measured at 1.08V and -40ᴼC is compared against the response measured at 

the reference condition, 1.2V and 25ᴼC. Subsequently, the evaluated reliability (93.22%) is plotted in Figure 5 

and this process continues for 11 other conditions. According to [26], an increase in temperature decreases Vth, 

while also decreasing the electron and hole mobilities, and vice versa. Meanwhile, an increase in supply voltage 

increases the overdrive voltage and current, while also decreasing the charging/discharging time of loading 

capacitances, and vice versa. These effects due to temperature and supply voltage variations may counteract 

during the circuit operation and cause unreliable responses, hence describes the observed reliability pattern in 

Figure 5. 

 

 

 
Figure 5. Reliability of 32-bit MA-PUF subjected to supply voltage and/or temperature fluctuations 
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5.3.  Uniformity 

The uniformity is defined as the proportion of 0`s and 1`s in the response bits of a PUF which characterize the 

randomness of the PUF response. Ideally, the number of 0`s and 1`s in response must be balanced, hence 

uniformity is distributed at 50%. The uniformity is evaluated using hamming weight (HW) and it is given as 

[25]: 

 

 
𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =  

1

𝑚 ×  𝑛
∑ ∑ 𝑟𝑖,𝑗 × 100%

𝑛

𝑗=1

𝑚

𝑖=1

 
 

(4) 

 

where ri,j is the j-th binary bit of an n-bit response from a PUF i, for a total of m PUFs. By using the Eq. (4), 

the uniformity for 100 32-bit MA-PUF instances is 48.34%. The distribution of uniformity is illustrated in 

Figure 6. Although the mean value of the uniformity is close to the ideal value of 50%, the spread of the 

uniformity distribution indicates some of the MA-PUFs have unbalanced of 0`s and 1`s. 

 
 

 
Figure 6. Uniformity for 100 instances of 32-bit MA-PUF 

 

 

The above quality metrics for MA-PUF is summarized in Table I and compared against conventional 

Arbiter-PUF and DA-PUF. The MAPUF has a comparable uniqueness and uniformity as compared to the DA-

PUF. The MA-PUF has an advantage of better reliability which is ≈ 96% as compared to the DA-PUF, ≈ 88%. 

 

Table 1. Performance Comparison 
Quality MA-PUF 3-to-1 DA-PUF [21] Arbiter-PUF [8] 

Uniqueness (%) 49.77 50 ± 1 23 
Reliability (%) ≈ 96 ≈ 88 ≈ 95 

Uniformity (%) 48.34 ≈ 50 Na 

 

 

5.4.  ML-attack 

Another important criterion of a given PUF is resiliency against ML-attack. 32,000 CRPs have been collected 

for ML-attack evaluation using ANN. 30,000 CRPs have been used as a training dataset while 2,000 CRPs 

have been used as a testing dataset. Figure 7 shows the comparison of the susceptibility to ML-attack. Based 

on our evaluation, by introducing the mixing element using multiplexer in MAPUF, the predictability of a 

conventional Arbiter-PUF can be reduced from ≈ 99% down to ≈ 85%. The predictability of the MA-PUF can 

be further reduced by combining the challenge permutation technique as introduced in [13]. The MA-PUF with 

challenge permutation achieved ≈ 65% prediction accuracy. The challenge permutation incurs no cost as this 

technique can be implemented by routing obfuscation. Meanwhile, from our analysis, 3-to-1 DA-PUF shows 



                ISSN: 2089-3272 

IJEEI, Vol.9, No. 1, March 2021:  91 - 100 

98 

better resiliency against ML-attack. Nevertheless, as discussed in Section 2.2, the XOR technique used in the 

DA-PUF degrades its reliability (i.e., estimated reliability degradation, see Figure 2). A similar reliability 

degradation was also observed in [21]. 

 

 
Figure 7. Comparison of the susceptibility to ML-attack 

 

 

5.5.  Area Consumption 

 

For an area estimation, the behavioral model of MA-PUF, Arbiter-PUF, and 3-to-1 DA-PUF have been 

synthesized using Design Compiler. Table 2 lists the area in gate equivalent (GE) for the aforementioned PUFs. 

As expected, the area consumption for MA-PUF and 3-to-1 DA-PUF is higher than Arbiter-PUF as their 

architecture consists of the parallel Arbiter-PUFs. As can be seen from Table 2, MA-PUF has a slightly higher 

area consumption than 3-to-1 DA-PUF. Despite the highest area consumption, MA-PUF achieves better 

reliability as compared to 3-to-1 DA-PUF and it achieves better unpredictability against ML-attack as 

compared to Arbiter-PUF.  

 

Table 2. Area Comparison 
Type Area [GE] 

32-bit MA-PUF 500 

32-bit Arbiter-PUF 122 
3-to-1 32-bit DA-PUF 383 

 

 

6. CONCLUSION 

The root-of-trust is of paramount importance to build a trusted and secured computing systems. With the 

emergence of IoT, trusted computing systems are crucially demanding. The notion of PUF has been introduced 

as a promising hardware security primitive which can provide root-of-trust by extracting unique hardware 

characteristics. In this paper, we have proposed a new architecture for a PUF, known as MA-PUF which is 

derived from a conventional Arbiter-PUF and DA-PUF. MA-PUF has shown good quality metrics of 

uniqueness and uniformity, close to an ideal value of 50%. The reliability of MA-PUF is far better than 3-to-1 

DA-PUF which achieved about 96%. The application of the XOR technique amplifies the reliability 

degradation of DA-PUF as the number of XOR gate increases. Hence, MA-PUF uses the multiplexing 

technique to avoid significant reliability degradation and to increase its resilience against ML-attack. By using 

the multiplexing technique, the resilient of MA-PUF against ML-attack is improved by 15% as compared to a 

conventional Arbiter-PUF. Although DA-PUF performs better in resisting the ML-attack of about 51% 

predictability, the resiliency of MA-PUF to ML-attack can be improved by combining with a challenge 

permutation technique. MA-PUF achieves about 65% prediction accuracy when combined with challenge 
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permutation technique. This technique incurs no cost which can be implemented using routing obfuscation. 

For an area consumption, MA-PUF consumes 500 GE. It is slightly higher than 3-to-1 DA-PUF that consumes 

383 GE only. 
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