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Traditional modular multilevel converter (MMC) applications in medium 

voltage induction motor drive are difficult, particularly at low speeds because 

of the higher amplitude of the voltage ripple of the sub-module capacitor. This 

paper uses a hybrid MMC to achieve a lower peak-to-peak voltage ripple of 

the sub-module capacitor particularly at low frequencies. The vector control 

strategy with the closed-loop speed control is used to indicate an accurate and 

wide-speed range. MATLAB / Simulink is used to simulate and obtain the 

simulation results of hybrid and traditional MMC with induction motor drive 

and compare from the standpoint of capacitor voltage ripple. The results are 

shown the reduction of peak-to-peak voltage ripple of the sub-module 

capacitor as the hybrid MMC is operated. 
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1. INTRODUCTION

Multilevel converter topologies in the power electronic industries are generally accepted as one of the 

latest technological advances. One of its applications with variable speed motor drive due to its higher 

performance [1-2]. Therefore the modular multilevel converters in recent years are become efficient topology 

in high and medium-power applications because of their efficiency, modularity, low redundancy expense, 

scalability [3-6]. They have reshaped power transmission systems based high voltage source converters (VSC-

HVDC) [7, 8], and are considered to be the key technology for developing successful DC Super Grids [9]. 

They are used in the medium-voltage motor drive applications in recent years [10-16]. MMC presents more 

advantages in relation to the three most widely used topologies [17, 18], namely flying capacitor (FC), neutral 

point clamping (NPC), and cascaded H Bridges (CHB) as shown in Figure 1 [19]. MMC has major advantages: 

it can easily increase the number of levels without increased control complexity or unequal distribution of 

losses and does not need costly and bulky isolation transformers. 

Despite the advantages of the MMC. The peak-to-peak capacitor voltage ripple is one of the main 

problems that appeard in the variable speed drive applications, which must be taken into consideration. The 

peak-to-peak capacitor voltage ripple will increase when the motor operates at a low speed. This because that 

the capacitor voltage ripple is inversely proportional to the frequency and is proportional to the ampiltued of 

the load current, and also the value of the sub-module (SM) capacitor should be taken into consideration [20]. 

Therefore it is difficult to drive the motor at low speeds with constant torque. 

 This paper suggests a hybrid topology by adding a controllable series switch that connects between 

the MMC and the DC bus voltage. The main advantage of this topology is to reduce the peak-to-peak voltage 

ripple of the SM capacitor, specifically at low motor speeds. In this paper, the hybrid MMC is used to drive a 

medium voltage induction motor, also the vector control strategy is used to get accurate speed control. Lower 

peak-to-peak voltage ripple of the SM capacitor can be observed when hybrid MMC is used compared with 

traditional MMC. 
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Figure 1. MMC circuit diagram 

 

2. THE HYBRID MMC: ANALYSIS AND OPERATION  

Figure 2 shows the suggested hybrid MMC circuit diagram. A controllable series switch is applied 

between the MMC and the DC-bus voltage in order to minimize the average arm voltages of the MMC, leading 

to minimize capacitor voltage ripples [21]. The thyristor and IGBT can be used as this switch. In additional, a 

snubber circuit [22] is required to filter the harmonics of the switching voltage. The converter can be grounded 

to the earth by two grounding resistors Rg. The three-phase MMC circuit as well-known, each phase includes 

two arms (upper and lower) are attached by two buffer inductors L; each arm includes N identical half bridge 

SMs which are connected in series to build the output voltage stepwise, and SM has a capacitor with average 

voltage of 𝑈𝑑𝑐 𝑁⁄   . The output voltage term is 𝑢𝑗𝑜 in phase of j (j∈{A,B,C}), the output current is 𝑖𝑗𝑜, and the 

DC bus voltage is 𝑈𝑑𝑐, and the MMC dc terminal voltage is 𝑢𝑑, the upper and lower arm voltages are 𝑢𝑗𝑢 and 

𝑢𝑗𝑙 respectively, the upper and lower arm currents are 𝑖𝑗𝑢 and 𝑖𝑗𝑙  respectively. 

 
Figure 2.  Circuit diagram of hybrid MMC [23] 

 

The upper and lower currents of the MMC can be expressed as: 
 

               {
𝑖𝑗𝑢 = 𝑖𝑐𝑗 + 1

2⁄  𝑖𝑗𝑜

𝑖𝑗𝑙 = 𝑖𝑐𝑗 − 1
2⁄  𝑖𝑗𝑜

                                                                                                                            (1)      

 

Where 𝑖𝑐𝑗  represents the circulating current inside the arms of phase j. The MMC output voltages and 

currents can be expressed as: 
 

𝑢𝑗𝑜 = 𝑈𝑂  cos(𝜔𝑡 + 𝛿𝑗)     

𝑖𝑗𝑜 = 𝐼𝑂  cos(𝜔𝑡 + 𝛿𝑗 −  𝜑)                                                                                                               (2) 
 

 Where 𝛿𝑗  is the phase angle of the output (𝛿𝐴 = 0°, 𝛿𝐵 = 120°
, 𝛿𝐶 = 240°), and the angular 

frequency is 𝜔, and the phase lag angle is 𝜑, and the magnitudes of the output voltage and current are 𝑈𝑂 and 

𝐼𝑂 respectively. The magnitude of the output voltage can be expressed as: 
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𝑈𝑂 =  1
2⁄ 𝑚 𝑈𝑑𝑐                                                                                                                                                   (3)                                                                                    

Where the modulation index ratio is 𝑚, which represents V/f ratio and adjusting between 0-1. It must 

be approximately ensured constant when the converter used in variable-speed drive application, the modulation 

index can be written as: 
 

𝑚 =
𝜔

𝜔𝑟𝑎𝑡𝑒𝑑
                                                                                                                                           (4)            

 

The average arm voltages of the MMC per phase can be written as: 
 

𝑢𝑗𝑢 = 1
2⁄  𝑈𝑑𝑐(1 − 𝑚 cos(𝜔𝑡))

𝑢𝑗𝑙 = 1
2⁄  𝑈𝑑𝑐(1 + 𝑚 cos(𝜔𝑡))

                                                                                                      (5)   

                                                                                           

When the power balance between the DC side and ac output side is achieved, the rated DC current 𝐼𝑑𝑐  

component can be expressed as: 
 

𝐼𝑑𝑐 = 3
4⁄  𝑚 𝐼𝑂  cos 𝜑                                                                                                                                 (6) 

 

2.2. Operation Principle of Hybrid MMC 
 

Figure 3 shows the operation principle of the hybrid MMC. When the series switch is switched on, 

the dc terminal voltage 𝑢𝑑 equal to 𝑈𝑑𝑐. When the series switch is switched off, the dc terminal voltage 𝑢𝑑 of 

MMC is minimized to twice of the output voltage amplitude (2𝑈𝑂) per phase, this leads to reduce the capacitor 

voltage ripple. The switching frequency of series switch is 𝑓ℎ (𝑓ℎ = 1 𝑇ℎ⁄ ) is 10 times of the output voltage 

frequency 𝑓𝑜 [23]. The DC currents of the hybrid MMC are expressed as: 

𝐼𝑑𝑐 = {
𝐼𝑑𝑐(𝑟𝑎𝑡𝑒𝑑) , 𝑖𝑓 (𝑆𝑠 = 1)

0,                  𝑖𝑓 (𝑆𝑠  = 0)
 𝑎𝑛𝑑  𝑖𝑐 =  

1

3
 𝑖𝑑𝑐                                                                                                                    (7) 

Based on (3), the expression of dc terminal voltage 𝑢𝑑 is: 

𝑢𝑑 = {
𝑈𝑑𝑐 , 𝑖𝑓 (𝑆𝑠 = 1)

𝑚 𝑈𝑑𝑐 , 𝑖𝑓 (𝑆𝑠 = 0)
                                                                                                                                                        (8) 

  The average dc terminal of 𝑢𝑑 is: 

𝑈𝑑 = 𝐷𝑈𝑑𝑐 + (1 − 𝐷)𝑚𝑈𝑑𝑐                                                                                                                                                      (9) 

The arm voltages of hybrid MMC for phase A are [23]: 

{
𝑢𝑗𝑢= 1 2⁄  𝑢𝑑−1

2⁄  𝑚 𝑈𝑑𝑐 𝑐𝑜𝑠(𝜔𝑡)− ∆𝑢𝑑

𝑢𝑗𝑙 = 1 2⁄  𝑢𝑑+1
2⁄  𝑚 𝑈𝑑𝑐 𝑐𝑜𝑠(𝜔𝑡)− ∆𝑢𝑑

                                                                                                                            (10) 

 

Figure 3. Hybrid MMC Sketch waveforms [24] 
 

Where ∆𝑢𝑑 is used to control the circulating current 𝑖𝑐. The balancing of the active power between ac 

and dc terminals can be achieved by varying the duty cycle 𝐷: (𝑈𝑑𝑐𝐼𝑑𝑐(𝑟𝑎𝑡𝑒𝑑)𝐷 =
3

2
𝑈𝑂𝐼𝑂 cos 𝜑), the balance 



IJEEI  ISSN: 2089-3272  

 

Reduction of Capacitor Voltage Ripples in Modular Multilevel Convertor…(Ahmed K. Hannan et al) 

25 

must be occurred when the motor speed varies. Hence the duty cycle 𝐷 can be derived for constant torque 

drives with 𝐼𝑂 = 𝐼𝑂(𝑟𝑎𝑡𝑒𝑑) [25].  

𝐷 = 𝑚 =
𝜔

𝜔𝑟𝑎𝑡𝑒𝑑
                                                                                                                                                 (11)                                

The peak-to-peak voltage ripple of The SM capcitor of hybrid MMC in [23] can be expressed as: 

∆𝑈𝐶(𝑝𝑝) =  (2 −
𝜔

𝜔𝑟𝑎𝑡𝑒𝑑
)

𝐼𝑂(𝑟𝑎𝑡𝑒𝑑)

2𝜔𝑟𝑎𝑡𝑒𝑑𝐶
                                                                                                                   (12) 

Where the capacitance of SM is 𝐶. The capacitor voltage ripple of traditional MMC can be obtained 

by [19]:                                                                       

∆𝑈𝐶(𝑝𝑝) =  
𝐼𝑂

2𝜔𝐶
                                                                                                                                                     (13) 

3. CONTROL SCHEME 

       Figure 4 shows the suggested control scheme for hybrid MMC to drive the induction motor based on 

vector control strategy, it includes of five main blocks, that are the series switch control block, circulating 

current  control block, induction motor vector control block, the SM balancing control block, and the phase-

shifted carrier PWM(PSC-PWM).  

 
Figure 4. The suggested control scheme for hybrid MMC 

3.1. Series Switch Control Block 

The power balance between dc input and ac output must be achieved to ensure a stable operation of 

the hybrid MMC. It is necessary to measure the average voltage of the SMs capacitors (𝑈𝐶_𝑎𝑙𝑙(𝑎𝑣𝑔)) to keep it 

equal to 𝑈𝑑𝑐 𝑁⁄  as a reference value because the difference between the input and output powers would affect 

the stored energy in the capacitors. So the duty cycle 𝐷 is adjusted for this purpose as shown in figure 5 [23]. 

The 𝑈𝐶_𝑎𝑙𝑙(𝑎𝑣𝑔)  represents the dc average voltage of all the SMs capacitors. To obtain the dc average voltage 

of the SMs capacitors, the SM capacitor voltages of the upper and lower arms must be calculated, it can be 

expressed as [26]: 

𝑢𝐶−𝑎𝑣𝑔_𝑗𝑢 = ∑ 𝑢𝑐𝑎𝑝−𝑗𝑢(𝑖)
𝑁

𝑖=1
                                                                                                             (14) 

 

𝑢𝐶−𝑎𝑣𝑔_𝑗𝑙 = ∑ 𝑢𝑐𝑎𝑝−𝑗𝑙(𝑖)
𝑁

𝑖=1
                                                                                                             (15) 

 

Subsequently, the average voltage of SMs capacitors in phase j is obtained [27]  
 

𝑢𝐶−𝑎𝑣𝑔_𝑗 =
1

2𝑁
∑ 𝑢𝑐𝑎𝑝−𝑗(𝑖)

2𝑁

𝑖=1
                                                                                                           (16) 

 

The 𝑢𝐶−𝑎𝑣𝑔_𝑎𝑙𝑙  is obtained by summation the average voltage of the SMs capacitors in phase j. it can be 

expressed as [28]: 

𝑢𝐶−𝑎𝑣𝑔_𝑎𝑙𝑙 =
1

3
∑ 𝑢𝐶−𝑎𝑣𝑔_𝑗                                                                                                                       (17) 
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Due to the sensitivity of PI controller to the harmonics, a moving average filter (MAF) is used to 

obtain the dc average voltage of the SMs capacitor. 

 
Figure 5. Series switch control block [23] 

 

3.2.   Circulating Current Control Block 
 

The stored energy in each phase j must be kept balanced by modifying the dc component of the 

circulating current [23]. As shown in Figure 6, the dc average voltage of all SMs capacitors of three-phase 

(𝑈𝐶_𝑎𝑙𝑙(𝑎𝑣𝑔)) is compared with the dc average voltage of SMs capacitors in phase j (𝑈𝐶(𝑎𝑣𝑔−𝑗)). PI control is 

used to minimize this voltage variation and to produce a dc circulating current Δ𝐼𝑗𝑐 . After that, this current 

added to the 1/3𝐼𝑑𝑐(𝑟𝑎𝑡𝑒𝑑)component to obtain 𝐼𝑐−𝑟𝑒𝑓 . It is necessary to multiply 𝐼𝑐−𝑟𝑒𝑓  by the duty cycle, and 

the circulating current reference will be obtained [23]. The aim of that is to force the actual circulating current 

to follow 𝐼𝑐−𝑟𝑒𝑓 . Thus the    controlled variable is ∆𝑢𝑑. So the circulating current control is used for this purpose.  

 
Figure 6. Circulating current control [23] 

3.3. Vector Control Block 
 

Vector control is a high-efficiency control strategy that similar to the DC machine speed control 

system [29]. Figure 7 shows the implementation of vector control fed induction motor. The motor speed 𝜔𝑚 is 

compared to the desired speed 𝜔𝑚_𝑟𝑒𝑓  in the speed control loop, and the error is applied to PI control to 

produce 𝑖𝑞𝑠_𝑟𝑒𝑓. In 𝑖𝑞𝑠 control loop the 𝑖𝑞𝑠_𝑟𝑒𝑓  is compared to the 𝑖𝑞𝑠which is equivalent to the output torque, 

and the error is applied to PI control to obtain 𝑢𝑞_𝑟𝑒𝑓 . In flux control loop the flux of the motor 𝜓𝑟  is compared 

to the desired flux 𝜓
𝑟_𝑟𝑒𝑓

 , obtaining the 𝑖𝑑𝑠_𝑟𝑒𝑓 which compared to the 𝑖𝑑𝑠 to obtain 𝑢𝑑_𝑟𝑒𝑓  using PI controllers. 

The motor excitation can be controlled from the id control loop. Finally, the generated (d-q) voltages are 

converted to reference output voltages (ABC) by inverse Clarke-Park transformation. The mathematical 

equations [30]:                         

𝜓𝑟 =
𝐿𝑚

𝑇𝑟𝑃+1
𝑖𝑑𝑠                                                                                                                                                         (18) 

𝜔𝑠𝑙 =  
𝐿𝑚𝑖𝑞𝑠

 𝑇𝑟𝛹𝑟
                                                                                                                                                           (19) 

𝜔𝑠 = 𝜔𝑟 + 𝜔𝑠𝑙                                                                                                                                                          (20) 

𝜃𝑒 = ∫ 𝜔𝑠 𝑑𝑡                                                                                                                                                           (21) 

Where 𝑇𝑟 is the time constant (𝑇𝑟 = 𝐿𝑟 𝑅𝑟⁄ ), 𝜔𝑠𝑙  is the angular slip speed, p is the differential operator and 𝜃𝑒 

is the rotor flux angle, and 𝜔𝑠 is the synchronous speed.  
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Figure 7. Vector control of induction motor block 

 

Subsequently, the references arms voltages 𝑢𝑗𝑢_𝑟𝑒𝑓  and 𝑢𝑗𝑙_𝑟𝑒𝑓 in Figure 4 are applied to the SM 

balancing control block to balance the SMs capacitor voltages.  

 
 

3.4. Capacitor Voltage Balancing Control Block 
 
 

When the SM is activated, current would be pass through the SM causes the charge and discharge and the 

capacitor voltage fluctuation occurs. Due to the difference in switching time in each sub- module, the capacitor 

voltage in the same arm is imbalanced [27].  So the capacitor voltage balancing control is used to avoid the 

imbalance of the capacitor voltage. Figure 8 shows the implementation of the capacitor voltage balancing 

control blocks for upper and lower arms. This method is different compared to individual-balancing listed in 

[31]. The upper and lower arm reference voltages can be expressed as [26]: 
 

𝑢𝑟𝑒𝑓−𝑗𝑢
(𝑖) =

𝑢𝑟𝑒𝑓−𝑗𝑢

𝑁
+ 𝐾𝑝(

𝑢𝐶−𝑎𝑣𝑔_𝑗𝑢

𝑁
− 𝑢𝑐𝑎𝑝−𝑗𝑢

(𝑖)) × sign (𝑖𝑗𝑢)                                                           (22) 

 

𝑢𝑟𝑒𝑓−𝑗𝑙
(𝑖) =

𝑢𝑟𝑒𝑓−𝑗𝑙

𝑁
+ 𝐾𝑝(

𝑢𝐶−𝑎𝑣𝑔_𝑗𝑙

𝑁
− 𝑢𝑐𝑎𝑝−𝑗𝑙

(𝑖)) × sign (𝑖𝑗𝑙)                                                               (23)                                                             

 

Where 𝐾𝑝 represents the proportional gain, “𝑠𝑖𝑔𝑛(𝑥)” denotes signum function it can be written as: 

𝑠𝑖𝑔𝑛(𝑥) = {
  1   ,    𝑥 ≥ 0
−1     , 𝑥 < 0

                                                                                                                       (24) 

The produced references 𝑢𝑟𝑒𝑓−𝑗𝑢
(𝑖)  and 𝑢𝑟𝑒𝑓−𝑗𝑙

(𝑖) will be applied to the PWM modulator to generate the 

gate control pulses for the semiconductor switches to build the voltage stepwise 

 
(a)                                                                                  (b)    

Figure 8. The capacitor voltage balancing control [26], (a) upper arm, (b) lower arm 

 

 

3.5. The Phase-Shifted Carrier PWM Block 
 

Phase-shifted PWM technique is another comprehensive multi-carrier modulation since it improves 

the equivalent switching frequency and minimize the harmonics of output voltage and easy to design. This 

e 

e 
e 



                ISSN: 2089-3272 

IJEEI, Vol.9, No. 1, March 2021:  22 - 36 

28 

method requires N identical triangular carriers with the amplitude of 𝑈𝑑𝑐 𝑁⁄ . Each sub-module have a triangular 

carrier with frequency of  𝑓𝑐, and the phase displacement between them is 2𝜋/𝑁. Carriers of the phase-shifted 

PWM are shown in Figure 9. Figure 10 shows the Block diagram of the Phase-shifted PWM. 
 

 
Figure 9. Phase-shifted carriers [16] 

 

Where 𝜃 is the displacement angle of the carriers between the upper and lower arm. For power 

electronic converters, the higher equivalent switching frequency and lower harmonic content of the output 

voltage mean that the required filter components are smaller and cost less. The lowest output voltage harmonic 

content of MMC can be obtained by selecting the displacement angle as follows [16]: 
 

               𝜃 = {
0      , N is odd
𝜋

𝑁
  , 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

                                                                                                                                     (25) 

 

 
 

Figure 10. Phase-shifted PWM block diagram  
 

4.    SIMULATION AND RESULTS 
 

To evaluate the effectiveness of the proposed hybrid MMC, a 1MW, 4160V hybrid MMC is simulated 

in MATLAB/Simulink environment, with ten half-bridge SMs per arm. Detailed parameters of the proposed 

converter are listed in Table I. In order to verify the dynamic performance of hybrid MMC, a 6-pole 

4.16kV/1MW three phase induction motor (IM) with a constant load torque, was simulated, with the motor 

parameters in Table I. The hybrid MMC was simulated under three cases to show the reduction of peak-to-

peak voltage ripple of the SM capacitor and compared with the traditional MMC. The feasibility of the 

suggested system is verified by comparing it with the system in [23]. 

 

Table 1. Simulation Parameters  

Hybrid MMC parameters 
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4.1. Case 1: 

In this case, the hybrid MMC is operated the same as a traditional MMC, the induction motor operates 

at rated speed of 1189 rpm and no-load torque, after 2 second period a step load torque 7490N.m is applied to 

the induction motor as shown in Figure 11 (a), the motor speed remains the same as before this because the PI 

controller returns it to the reference value as shown in Figure 11 (b). The increase of the load torque leading to 

increase the quadrature current 𝑖𝑞𝑠 which is proportional to the output torque while the direct current 𝑖𝑑𝑠 

remains constant since the flux is constant as shown in Figure 12 (a). Figure 12 (b) shows the increase of the 

stator currents amplitude from 50A to its rated value of 212A. The DC-bus current 𝑖𝑑𝑐 will increase from 

37Amp to 147Amp as shown in Figure 13 (a). Due to the increase of output current the arm currents 𝑖𝐴𝑢 ,𝑖𝐴𝑙  are 

increased from 37 Amp to 155 Amp which are approximate equal to ( 
1

2
𝐼𝑗𝑜 +

1

3
𝐼𝑑𝑐) as shown in Figure 13 (b), 

also the peak–to–peak votlage ripple of the SM capacitor is inceased from 25V to 55V with average voltage of 

𝑈𝑑𝑐 𝑁⁄  (700V), this because of equation (13) as shown in Figure 14 (a). The output voltage of the converter 

with rated frequency at stady state to fit the rated motor speed is shown in Figure 14 (b). 

   

(a)                                                                               (b) 

Figure 11. Simulation results of case 1 (a) motor load torque, (b) motor speed 

Parameters Value 

Number of SMs per arm N 10 

DC-source voltage Udc 7kV 

Nominal SM capacitor voltage UC 700V 
SM capacitance CSM 4000μF 

Arm inductance L 1mH 

Rated output frequency fo(rated) 60Hz 
Rated phase current IO 212A 

PSC-PWM frequency fc 1kHz 

Ss switching frequency fh 10 × 𝑓𝑜 

Snubber resistance 200Ω 
Snubber capacitance 1μF 

IM parameters 

Parameters Value 

Rated active power Ps 1250hp 

Number of pole pairs  pp 3 

Rated speed  𝜔𝑚 1200 rpm 

Rated line-to-line voltage Urated   4160V  

Stator rms current IO 150A 

Power factor cos 𝜑 0.968 

Mechanical load torque Trated  7490N.m 

Stator Flux linkage 𝜓𝑠 9Wb 

Stator resistance Rs 0.21Ω 
Rotor resistance Rr 0.146Ω 

Stator leakage inductance  Lls 5.2mH 

Rotor leakage inductance  Llr 5.2mH 
Magnetizing Inductance Lm 155mH 

Moment of Inertia J 47.6kg-m2 

Stator resistance Stator resistance 
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(a)                                                                         (b) 

Figure 12. Simulation results of case 1 (a) Id and Iq current component of the motor, (b) motor stator currents 

 
 

  
(a)                                                                               (b) 

Figure 13. Simulation results of case 1 (a) DC-bus current, (b) Arm current of phase A 

 

  
(a)                                                                               (b) 

Figure 14. Simulation results of case 1 (a) SM capacitor voltages of phase A, (b) Converter output voltages  
 

4.2. Case 2: 

In this case, the hybrid MMC is operated as a traditional and hybrid MMC, the motor is operated at 

low speed of 200 rpm, at 2 second period a step load torque is increased from zero to its rated value of 7490 
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N.m as shown in Figure 15 (a). Figure 15 (b) shows a good-dynamic performance of vector control to get 

accurate speed control and return the motor speed to its reference value when the load is changed. As the load 

torque is increased the quadrature current 𝑖𝑞𝑠 is also incresed as shown in Figure 16 (a). Figure 16 (b) shows 

increase the stator currents amplitudes form 50A to 212A with high-quality sinusoidal waveforms. Figure 17 

(a) shows the gate signal of the series switch SS that appeared after each time period of 0.01 second, this means 

that the switching frequency 𝑓ℎ of the series switch is equal to 100Hz(10 × 𝑓𝑜), also the dc termial votage 𝑢𝑑 

is appeared after each time period of 0.01 as shown in Figure 17 (b). As the output current is increased the DC-

bus current and arm currents are also increased to their ratied value as shown in Figure 18 (a) and Figure 18 

(b) respectively. Figure 19 (a) shows the peak-to-peake voltage ripple of the SMs 𝑢𝑐𝐴𝑢 𝑢𝑐𝐴𝑙  of the traditional 

MMC significantly increases from 115V to 432V with average value of 700V this because equation (13). If 

the operating frequency is further reduced, the voltage ripple of the capacitor will become extremely large, 

causing the entire converter to fail to operate normally, while the average value of the SM capacitor voltage of 

hybrid MMC is stable at 700V and increased from 40V to 140V this because equations (12). Also, there is a 

good response of voltage balancing control to keep the balance between the SMs capactior during the load 

change. Most importantly, compared to Figure 19 (b), the SM capacitor voltage ripple reduction was 292V, 

which proves that the hybrid MMC has lower capacitor voltage ripple. The converter output voltage with 

frequency of 10Hz at stady state to get the desired speed is shown in Figure 20. 

  

(a)                                                                               (b) 

Figure 15. Simulation results of case 2 (a) motor load torque, (b) motor speed. 

 

  

(a)                                                                               (b) 

Figure 16. Simulation results of case 2 (a) Id and Iq current component of the motor, (b) motor stator currents 
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(a)                                                                               (b) 

Figure 17. Simulation results of case 2 (a) Sgate, (b) dc terminal voltage 

  
(a)                                                                               (b) 

Figure 18. Simulation results of case2 (a) DC-bus current, (b) Arm current of phase A 

  
(a)                                                                               (b) 

Figure 19. Simulation results of case2 (a) traditional MMC SM capacitor voltages of phase A, (b) hybrid 

MMC SM capacitor voltages of phase 
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Figure 20. Converter output voltages 

 

4.3. Case 3: 

In this case, the hybrid MMC is operated at very low frequency (5Hz) to show its ability for reduction 

of capacitor voltage ripple. The motor is operated with very low speed of 100rpm, and the load torque is 

increased from zero to 7490N.m at 4 second period as shown in Figure 21 (a). The motor speed is maintained 

with the reference value because of the closed loop speed control as shown in Figure 21 (b). The 𝑖𝑞𝑠 component 

follows the load torque and has a value which is proportional with the output torque while the direct current 

𝑖𝑑𝑠 remains constant since the flux is constant as shown in Figure 22 (a). Figure 22 (b) shows the increasing 

the stator currents amplitudes form 50A to 212A with high-quality sinusoidal waveforms. Since the output 

frequency is 5Hz, this means that the series switch is operated at frequency of 50Hz as shown in Figure 23 (a), 

also the dc termial votage 𝑢𝑑 is appeared after each time period of 0.02 as shown in Figure 23 (b). Since the 

load torque is increased the DC-bus current and arm currents are also increased to their ratied value as shown 

in Figure 24 (a) and Figure 24 (b) respectively. Figure 25 (a) shows the peak-to-peak voltage ripple of the SM 

capacitor 𝑢𝑐𝐴𝑢 𝑢𝑐𝐴𝑙  of the traditional MMC that significantly increases from 225V to 860V with average value 

of 700V. In practice this required to increase the size of the capacitor, leading to increase cost, therefor it is 

difficult to drive the motor at low speed with traditional MMC. Compared with traditional MMC the peak-to-

peak capacitor voltage ripple, the hybrid MMC can operate with a lower peak-to-peak capacitor voltage ripple 

with 60V to 170V at the same speed as shown in Figure 25 (b). The converter output voltages are set to get the 

required motor speed as shown in Figure 26. 
 

 

(a)                                                                               (b) 

Figure 21. Simulation results of case 3 (a) motor load torque, (b) motor speed. 
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(a)                                                                               (b) 

Figure 22. Simulation results of case 3 (a) Id and Iq current component of the motor, (b) motor stator currents 

 

  
(a)                                                                               (b) 

Figure 23. Simulation results of case 3 (a) Sgate, (b) dc terminal voltage 

 

  
(a)                                                                               (b) 

Figure 24. Simulation results of case 3 (a) DC-bus current, (b) Arm current of phase A 



IJEEI  ISSN: 2089-3272  

 

Reduction of Capacitor Voltage Ripples in Modular Multilevel Convertor…(Ahmed K. Hannan et al) 

35 

 
(a)                                                                       (b) 

Figure 25. Simulation results of case2 (a) traditional MMC SM capacitor voltages of phase A, (b) hybrid 

MMC SM capacitor voltages of phase 

 

 
Figure 26. Converter output voltages 

 

Table 2 shows a lower values of peak-to-peak voltage ripple of SM capacitor of the hybrid MMC 

compared with the traditional MMC, this because of the series switch, reducing the average arm voltage of the 

MMC, leading to reduce the storage energy in the SM capacitor. 
 

Table 2. SM capacitor voltage ripple 
Speed (rpm) Traditional  MMC Hybrid MMC 

1189 rpm 55  V             55  V  

200  rpm 432 V 140 V 
100  rpm 860 V 170 V 

 

5.      CONCLUSION 
 

This paper introduced a hybrid MMC to drive the induction motor. The results show that the ability 

of hybrid MMC to drive the induction motor at constant load torque with wide speed range. Compared with 

the traditional MMC, the hybrid MMC exhibits lower peak-to-peak voltage ripple of the SM capacitor without 

increasing the capacitor value as shown in the simulation results when the induction motor is operated at low 

speed. The motor can be operated with very low speed of 100rpm with peak-to-peak capacitor voltage ripple 

of 170V compared with high value of 860V in traditional system. A suitable control is introduced for the hybrid 

MMC in order to minimize the peak-to-peak voltage ripple of capacitor and to obtain high-quality sinusoidal 

waveform of the induction motor current without using any additional filter. 
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