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 Conventional Convolutional Neural Networks (CNNs), which are realized in 

spatial domain, exhibit high computational complexity. This results in high 

resource utilization and memory usage and makes them unsuitable for 

implementation in resource and energy-constrained embedded systems. A 

promising approach for low-complexity and high-speed solution is to apply 

CNN modeled in the spectral domain. One of the main challenges in this 

approach is the design of activation functions. Some of the proposed solutions 

perform activation functions in spatial domain, necessitating multiple and 

computationally expensive spatial-spectral domain switching. On the other 

hand, recent work on spectral activation functions resulted in very 

computationally intensive solutions. This paper proposes a complex-valued 

activation function for spectral domain CNNs that only transmits input values 

that have positive-valued real or imaginary component. This activation 

function is computationally inexpensive in both forward and backward 

propagation and provides sufficient nonlinearity that ensures high 

classification accuracy. We apply this complex-valued activation function in a 

LeNet-5 architecture and achieve an accuracy gain of up to 7% for MNIST and 

6% for Fashion MNIST dataset, while providing up to 79% and 85% faster 

inference times, respectively, over state-of-the-art activation functions for 

spectral domain.    
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1. INTRODUCTION  

An artificial neural network (ANN) is based on a collection of connected nodes called neurons. ANNs 

must have an input layer, one or more hidden layers and an output layer. The output of each neuron is computed 

(activated) by some non-linear function of the sum of its inputs. It is highly desirable that the activation 

functions are non-linear and differentiable. The hidden layers should employ nonlinear activation functions so 

as to enable the network to learn complex relationships from the input data [1]. In fact, through nonlinear 

activation functions an ANN can learn any nonlinear behavior, provided the network has enough neurons and 

layers [2].   

A convolutional neural network (CNN) is a specific variant of ANNs, built as a series of convolutional 

layers that are interleaved with pooling (or subsampling) layers, a fully-connected multilayer perceptron, and 

ends with a softmax layer [3]. CNN is a fundamental example of deep learning that is commonly applied to 

analyzing visual imagery. CNNs have shown tremendous success in computer vision applications such as 
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image and video recognition [4, 5] and object detection and segmentation [6, 7]. However, CNNs are both 

computationally intensive and memory intensive, making them too slow and difficult to be adopted in resource-

constrained, low-power mobile and embedded systems. This is because the CNN architecture is dominated by 

convolutional layers, which have very high computational complexity and, as a result, consumes 90% of the 

computation and require large memory usage [3].  

In a conventional (spatial domain) CNN, convolution requires multiple multiplications and additions 

(i.e. multiply-accumulate operations) to compute a single pixel of an output feature map. Consequently, 

computations in the convolution layers are slow because there are huge numbers of dot products and 

accumulations that must be performed for each kernel. It has been shown that, for an input array of size NxN 

and a kernel array of size kxk, the computational complexity is O(N2k2) [8]. Hence, it is imperative that the 

CNN architecture is optimized to reduce the computation cost of convolutions and minimize the memory 

footprint. 

An alternative way to compute CNN is to purely perform the computations in the spectral (or 

frequency) domain. To perform convolution equivalent in spectral domain, real-valued input data are first 

transformed to complex-valued Fourier space. In the spectral domain, the convolution equivalent can be 

performed as a single point-wise product [8, 9, 10, 11]. In other words, multiple real-valued multiplications in 

spatial domain are realized with one complex-valued multiplication (from here on we will refer to it as complex 

multiplication) in spectral domain. The computational complexity in the spectral domain reduces to O(N2), 

which is significantly less than O(N2k2) in the spatial domain [8, 9]. Researchers have shown that this attractive 

feature has allowed spectral domain CNNs to offer 55% less computations in LeNet-5 and 67% less 

computations in AlexNet [12]. Consequently, convolution can be computed with significantly lower 

complexity if it is performed in spectral domain, rather than spatial domain. 

One of the key issues in spectral domain CNNs is the lack of activation functions that are effective in 

the spectral domain [8, 9, 13]. Non-linear nature of activation functions is incompatible with the Linear Time 

Invariant (LTI) property of spectral domain. Thus, conventional spectral domain CNN approaches are forced 

to perform the activation function in spatial domain [8, 9, 10]. In such techniques, before performing activation 

function, spectral domain data is transformed to spatial domain using an IFFT block, and then spatial activation 

function is performed, and finally, the data is transformed back to the spectral domain using an FFT block. 

Thus, this approach requires multiple spatial-spectral domain switching. These domain transformations are 

computationally intensive, and hence negate some of the gain in computational complexity achieved with 

spectral domain CNN [9, 12, 14]. In some of these approaches spectral pooling is performed to downsample 

spectral domain feature maps, which is considered equivalent to max pooling in spatial domain [11]. Figure 1 

gives the functional block diagram that illustrates the realization of LeNet-5 CNN modeled using the above-

mentioned conventional approach in spectral domain CNN. Since full-connection and softmax layers are not 

very computationally intensive, one can keep these layers in spatial domain [14]. That is why after the last 

layer of the feature-learning segment, the feature maps are transformed to spatial domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Francesca in [15] was one of the first to propose a spectral activation function. It was based on the 

modified Heaveside function and utilized Laplace Transforms. This activation function was only demonstrated 

in concept; it was not applied in a CNN model.  Ko et al. in [12] proposed a linear approximation of 

Figure 1. Functional block diagram of conventional spectral domain LeNet-5 CNN model  
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sigmoid/tanh type activation function for the spectral domain CNN. However, the authors did not explain how 

nonlinearity is achieved with a linear function nor provide any details on the implementation of the function.  

Recently, Uijens in [13] proposed that a spectral activation function can be developed in the spectral 

domain by computing Fourier equivalent of a point-wise spatial activation function, approximated with the 

Taylor series. The square function is proposed for the spatial function, which is equivalent to auto-convolution 

in Fourier space (Fourier-space input convolved with itself) and hence very computationally intensive. Ayat et 

al. in [14] proposed a spectral version of ReLU, the most commonly used activation function in CNNs. This 

activation function, called SReLU, approximates ReLU with a quadratic function using the Taylor series and 

computes its Fourier equivalent. This activation function also has to compute auto-convolution. This work 

achieved 99% classification accuracy on MNIST dataset with the LeNet-5 CNN. However, just like [13], its 

main drawback is that it is computationally complex.  

There is a class of activation functions, called complex-valued activation functions, which are applied 

in complex-valued neural networks (CVNNs) including complex-valued CNNs (CVCNNs) [16]. CVCNNs are 

applied to classify complex-valued data, that is, inputs that are already in complex form such as complex-

valued images generated by Synthetic Aperture Radar (SAR) and functional Magnetic Resonance Imaging 

(fMRI). This is in contrast to spectral domain CNNs which classify real-valued data that are transformed into 

complex-valued Fourier space. In a CVCNN, instead of realizing convolution as point-wise products (as is 

done in spectral domain CNNs), complex-valued convolutions are performed [16]. 

Some complex-valued activation functions are split-type activation functions, where a spatial 

activation function such as tanh (or sigmoid) is applied to real and imaginary parts of the complex inputs 

separately. Recently, a split-type activation function, called ℂReLU, has been proposed for CVCNN, where 

ReLU is applied separately to the real and imaginary parts [17]. This work has attained excellent accuracy for 

CIFAR-10 and MusicNet datasets using ResNet and VGG CNNs respectively. A split-type tanh function is 

used in a spectral domain CNN as shown in the work of [18]. However, tanh functions possess singular points, 

which requires scaling of inputs and initial weights [16]. 

Another approach in complex-valued activation function involves compressing the complex input 

space for activation by passing input values in certain quadrants, while blocking input values in other regions. 

One such example is zReLU, which is proposed in [19]. However, this activation function has been tested only 

on specialized datasets but not on standardized datasets [19]. A similar activation function is modReLU that 

preserves pre-activation phase but modifies magnitude by the amount of a trainable parameter [20].  

One of the earliest spectral domain CNN models was proposed by Mathieu et al. in [9]. In this work, 

only the convolution operation (realized as point-wise product) was performed in the spectral domain, while 

pooling and activation functions were performed in spatial domain. Spectral pooling was first proposed by 

Rippel et al. in [11], In this work, convolution and pooling operations were realized in spectral domain. 

Recently, Guan et al. in [18] proposed a spectral domain CNN model with computations of convolution and 

activation function (which is complex-valued version of tanh) performed in the spectral domain. In these 

models either pooling or activation function or both were performed in spatial domain and hence, required 

multiple spatial-spectral domain switching (using FFTs and IFFTs).  

The first spectral domain CNN model without multiple domain switching was developed by Ko et al. 

in [12], who implemented convolution, pooling and activation function (realized as linear approximation of 

sigmoid/tanh) in spectral domain. Pratt et al. in [21] has also developed another spectral domain CNN model 

without multiple domain transformations, but do not specify the type of activation function they use or whether 

they have used any activation function at all. More recently, Ayat et al. in [14] proposed another spectral model 

for CNN without multiple domain transformations. They apply their SReLU spectral activation function and 

implement a fused version of convolution in spectral domain where pooling operation is merged with 

convolution. 

This work applies a complex-valued activation function for spectral domain CNNs, where pre-

activation values that have positive-valued real or imaginary part are transmitted through the activation 

function. Here, all feature extraction layers-convolution, pooling and activation-are realized in spectral domain. 

This activation function is beneficial in two ways. First, proposed activation function does not require 

computationally expensive domain switchings, as the activation function works in complex domain. Second, 

it is computationally much lighter than state-of-the-art spectral activation functions such as SReLU [14].  

The main contributions of this research work are the following: (a) we propose a new complex-valued 

activation function for spectral domain CNN. The function has low computational complexity in both forward 

and backward propagation and exhibits sufficient nonlinearity to ensure high classification accuracy can be 

achieved, and (b) we show that a spectral domain CNN model applying this activation function offers more 

accurate and faster inference over state-of-the-art spectral and complex-valued activation functions. In addition 

to having a computationally light activation function, this CNN model removes the need for multiple spatial-

spectral domain switching, which are computationally expensive. This makes such spectral domain CNN 
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solutions ideal for implementing CNNs in embedded hardware systems that have tight constraints in computing 

resources and power consumption. 

The remainder of this paper is organized as follows: Section 2 presents proposed activation function 

and CNN model for this work. Experimental work, analysis and results are described in Section 3. Finally, 

Section 4 presents conclusions. 

 

2. RESEARCH METHOD  

2.1.  Proposed activation function  

The general nature of a complex-valued activation function is that they pass input values in certain 

segment of input space and blocks, from propagating through, input values in other areas of the input space. 

The area of input that a complex-valued activation function propagates to its output is called activation area 

[16, 17, 22]. This activation area is a complex valued space.  

We propose to apply the following complex-valued activation function in our spectral domain CNN 

model. This activation function passes pre-activation values that have either positive-valued real part or 

positive-valued imaginary part. This idea is partly inspired by the operation of Rectified Linear Unit (ReLU) 

that passes only positive valued inputs (and rectifies the negative ones) and are widely employed for real-

valued CNNs. The proposed activation function g(x), where x is the input to the activation function, is defined 

as  

                                    Z = g(x) = {
x, ℛ(x) > 0 ∨  ℑ(x) > 0 
0,                      otherwise 

                                     (1) 

 

where, ℜ(x) and ℑ(x) represent real and imaginary part of the complex variable x. Figure 2 (shaded region) 

illustrates the activation area of the proposed activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

When compared to similar activation functions such as zReLU in [19] and ℂReLU in [17], the 

proposed activation function preserves more of the input magnitude and phase but still provides nonlinearity 

by rectifying inputs that have negative-valued real or imaginary segments. This is supported by the results of 

training and test accuracies of our spectral domain CNN model that utilizes this activation function (which is 

presented in Section 3 of this paper).     

Differentiability is considered an important property of activation functions [23]. The derivatives of 

different layers of neural networks including activation functions are needed to compute error gradients, which 

allows the network to learn and improve accuracy. In backpropagation, error gradient of a layer is computed 

from partial derivative of the layer’s output with respect to input as well as error gradient of the following layer 

with respect to current layer’s output [1]. So, if input and output of layer i are xi and zi and that of the following 

layer (layer i+1) are xi+1 and zi+1, the error gradient of layer i with respect to its input (∂E/∂xi) is 

 

                                                        
∂E

∂xi

=  
∂zi

∂xi

 .
∂E

∂xi+1

=  
∂zi

∂xi

 .
∂E

∂zi

                                                       (2) 

 

where ∂zi/∂xi is the derivative of the current layer’s output, while ∂E/∂zi is the error derivative of the next layer 

with respect to that layer input (which happens to be current layer’s output). 

For this work, we have kept the backpropagation architecture largely in spatial domain. So, the error 

gradient with respect to input of the activation function ∂E/∂xi needs to be in spatial domain. Here, the error 

gradient coming from the following layer (∂E/∂zi) is in spatial domain. However, the output derivative of the 

activation function block (∂zi/∂xi) cannot be computed in spatial domain directly as there is no spatial 

equivalent of the proposed complex-valued activation function. Therefore, the output derivative of the 

activation function block (∂zi/∂xi) must be computed in Fourier space first. So, if x and z are input and output 

Figure 2. Activation area (shaded region) of proposed activation function 
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of a layer in spatial domain and their equivalent in Fourier space are X and Z, one needs to compute ∂Z i/∂Xi, 

the output derivative in Fourier space, where Z = ℱ(z) and X = ℱ(x). Computing output derivatives of the 

activation function is very simple since it either passes input values intact if input values lie within the 

activation area (ℜ(Z)>0 \/ ℑ(Z)>0) and derivative becomes 1, or passes 0 when the input values lie beyond this 

area, where derivative would be 0. This is expressed by the following Equations 3, 4 and 5.  Finally, after the 

error gradient is computed in Fourier space, it is transformed to spatial domain to be consistent with the spatial 

domain nature of backpropagation architecture. 

 

                                                                        Zi = ℱ(zi)                                                                         (3) 

                                                                        Xi = ℱ(xi)                                                                         (4) 

                                                
∂Zi

∂Xi

= {
1, ℛ(Zi) > 0 ∨  ℑ(Zi) > 0 
0, otherwise

                                            (5) 

 

As shown above, the proposed activation function and its derivative are computationally inexpensive. 

This is an important requirement for activation functions in CNNs. Part of the reason why ReLU has become 

the dominant activation function for spatial domain CNNs is that ReLU and its derivative are inexpensive to 

compute. The proposed activation function is also differentiable everywhere in the activation area except at the 

boundary of the activation area. ReLU is similarly not differentiable at origin, which serves as the boundary 

between values that are passed and values that are zeroed out. One should note that even though previously 

activation functions were expected to be non-constant, continuous and differentiable everywhere, many 

modern activation functions including ReLU do not fulfill all these criteria [4, 24]. 

 

2.2.  A spectral domain CNN model for evaluating different activation functions 

As described in Section 1, there have been a couple of models for realizing CNNs in spectral domain. 

Some realize only certain feature-extraction layers in spectral domain such as convolution [9], convolution and 

pooling [11] and convolution and activation function [18]. These models require multiple spatial-spectral 

domain switching as some feature-extraction layers are realized in spatial domain. On the other hand, some 

works realize all feature-extraction layers in spectral domain such as convolution, pooling and activation 

function [12] and convolution and activation function [14] (the latter work does not use a separate pooling 

layer as pooling operation is merged with convolution). We have developed a spectral CNN model for 

evaluating different activation functions, where all feature-extraction layers including convolution, pooling and 

activation function are realized in spectral domain.  

In this spectral domain CNN model, we realize convolution with point-wise products in spectral 

domain. To perform convolution equivalent in spectral domain, first, real-valued input data are transformed to 

complex-valued Fourier space. The well-known convolution theorem establishes the duality between 

convolution in spatial domain and point-wise product in spectral (Fourier) domain. It states that convolution 

of two spatial inputs, say x and w, is equivalent to point-wise product of Fourier-transformed inputs, X and W, 

as defined in Equation 6, where X = ℱ(x) and W = ℱ(w). To compute an output pixel, a point-wise product 

requires just one complex multiplication between an input pixel and a kernel element in Fourier space. If 

convolution were performed on the equivalent spatial domain inputs, computing one output pixel would have 

required k2 real-valued multiplications and k-1 real-valued additions. However, as equation 7 shows, each 

complex multiplication requires four real-valued multiplications and two real-valued additions. Here, A and B 

are real and imaginary components of X, while C and D are real and imaginary components of W. For typical-

sized inputs and kernels in image processing, the number of multiplications and additions needed for point-

wise products is much less than spatial convolution [8, 9, 10, 11]. 

 

                                                            X = ℱ(x)                                                            (6𝑎) 

                                                            W = ℱ(w)                                                           (6𝑏) 

                                                     x ∗ w = ℱ−1(X. W)                                                  (6c) 

  

X . W = (A + iB). (C + iD) 

                                                                     = A. C − B. D + i(B. C + A. D )                        (7) 

 

We apply spectral pooling to perform dimensionality reduction in our model. Spectral pooling does 

this by eliminating higher frequencies in the spectral domain feature maps, while retaining lower frequencies. 

Spectral pooling causes minimal loss of information to the input feature maps as information in natural images 

is largely concentrated on lower frequencies. With spectral pooling one can crop any complex-valued input 

feature map to any arbitrary size determined by the designer [11]. This is illustrated in Equation 8, where X 

and Y represent input and output of the spectral pooling layer with dimensions of PxQ and RxS, respectively. 



                ISSN: 2089-3272 

IJEEI, Vol.9, No. 1, March 2021:  173 - 184 

178 

                Y = Crop (X, R, S),   X ∈ ℂPxQ,   Y ∈ ℂRxS,   R < P, S < Q              (8) 

 

We have moved pooling layer before activation layer as was done in [14]. This allows the activation 

function to operate on a smaller feature map, which can enhance the speed of the activation layer. Following 

pooling operation, we apply our proposed complex-valued activation function to provide nonlinearity. This 

topology serves as the initial model of a feature-learning block of our spectral domain CNN model, as 

illustrated in Figure 3. Transformation between spatial to spectral domain is only needed in the first and last 

feature-extraction blocks (before the first and after the last convolution layers). 

 
Figure 3. A feature-learning block of our spectral domain CNN model 

 

The proposed activation function removes the need for multiple domain switching between spatial 

and spectral domains in the feature-learning segment of the network. Since input data and feature maps in 

spectral domain are complex-valued, a complex-valued activation function is compatible with spectral domain 

CNN networks. One should note that this CNN model performs feature-extraction in Fourier space, but unlike 

CVCNNs, it is meant to classify real-valued data.  

We have developed a spectral domain CNN model for LeNet-5, where spatial convolution and pooling 

are replaced with point-wise product and spectral pooling and proposed complex-valued activation function is 

employed in place of sigmoid or ReLU activation functions (for first two feature extraction blocks) in the 

original model. The classification layers are kept spatial domain, as full connection or softmax layers are not 

that computationally intensive, when compared to convolution. In the last feature extraction block, an IFFT 

layer is utilized to transform spectral data to real-valued data for full-connection block. A spatial ReLU 

activation function follows this IFFT layer. A dropout layer has been added at the end of this last feature 

learning block to enhance generalization capability of the model. Figure 4 illustrates the general architecture 

of this spectral domain CNN model. For our model, we have kept the number of output feature maps same as 

the number used in MatConvNet’s default LeNet-5 implementation (information about our CNN 

implementation environment including MatConvNet is provided in Section 3.1). Table 1 shows output feature 

map dimensions and their numbers as well as kernel dimensions for different layers in this spectral domain 

LeNet-5 model for digit and object recognition with MNIST and Fashion MNIST datasets. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. No. of output feature maps and their dimensions in our spectral domain LeNet-5 CNN model 

 
No of output 

feature maps 

Dimensions of output  

feature maps and kernels 

Layer Dimension of 
output feature maps 

Dimension of 
kernels 

Block Value Input 28x28 - 

1 20 C1 28x28 5x5 

P1 12x12 - 

A1 12x12 - 

2 50 C2 12x12 5x5 
P2 4x4 - 

A2 4x4 - 

3 500 C3 1x1 4x4 
A3 1x1 - 

D3 1x1 - 

4 10 F4 1x1 1x1 

S4 1x1 - 

Figure 4. Functional block diagram of our spectral domain LeNet-5 CNN model 
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As described above, the feedforward model is mostly in spectral domain, with only last activation 

layer and classification layers computed in spatial domain. For ease of computing error gradients, the 

backpropagation model is kept largely in spatial domain. The convolution in backpropagation architecture is 

computed in spatial domain as cyclic convolution, as in [14], to make it compatible with point-wise products 

in feedforward architecture. Error gradients for pooling and activation functions are initially computed in 

spectral domain and then converted to spatial domain.   

 

2.3.  Computational complexity analysis of proposed activation function 

Computational complexity refers to the amount of resources (i.e. time, memory) required to execute 

a computational problem or algorithm. The type of computational complexity that would be useful to analyze 

running time of an algorithm such as inference time of a CNN model is time complexity. Time complexity 

describes the amount of time required to run an algorithm. Time complexity of an algorithm can be computed 

based on the number of elementary operations that need to be executed by the algorithm, assuming each 

elementary operation takes constant time to be executed by a given hardware platform. Sometimes time 

complexity can be difficult to compute exactly in this manner. In such cases, asymptotic behavior of the 

complexity is measured, that is running time of the algorithm for large inputs. Here, coefficients and lower-

order terms of the complexity expression are ignored [25]. From here on when we refer to computational 

complexity, it would mean time complexity. 

Computational complexity of some activation functions can be estimated based on the number of 

elementary operations. For example, ReLU is realized by a simple max operation, as shown in Equation 9, 

where X and Y represent input and output of the ReLU layer with both feature maps having a dimension of 

PxQ. For a ReLU layer, each pixel of the output feature map requires one max operation to be performed on 

the input, which checks whether input is larger than 0. For a 1-dimensional input of size N, each element (or 

pixel) of the output of this layer would require just 1 max operation on an input element and therefore, N output 

elements (or pixel) would require N number of operations. Thus the computational complexity of a ReLU 

activation layer with such 1-dimensional input (of size N) is N. In computer vision, inputs are generally 2-

dimensional and with equal height and width. So, when a 2-dimensional image data with height P = N and 

width Q = N is provided to a ReLU activation layer, total number of elementary operations (in this case, max 

operations) that it needs to execute is N2. So, naturally the computational complexity of ReLU activation 

function can be estimated to be O(N2). 

 

                                Y = max(0, X),   X ∈ ℝPxQ,   Y ∈ ℝPxQ                                 (9) 

 

 Complex-valued activation functions such as ℂReLU [17], zReLU [19] and proposed activation 

function perform two max operations on an input element and hence perform 2N2 operations on a NxN input. 

These activation functions perform an additional N2 operations, as compared to ReLU since they operate on 

both real and imaginary components of the input. However, their complexity is still O(N2) since constants are 

ignored in complexity estimation. Complexity of the spectral activation function proposed by [12] cannot be 

reliably estimated as they do not provide adequate implementation details for it. Another spectral activation 

function is tanh as proposed by [18]. Tanh implementations can vary in different implementation platforms. 

One of the typical real-valued tanh implementations involve multiple exponentiations with a complexity of 

log3N2 and some simpler operations (multiplication, division, addition and subtraction) of N2 complexity [16, 

26]. When tanh is applied on a spectral network, it is applied separately on both real and imaginary components 

of the input. Since computational complexity describes asymptotic behavior and ignores constants [25], the 

computational complexity would be O(log3N2). 

Spectral activation functions developed by [13] and [14] have to employ highly computationally 

intensive spectral convolution or auto-convolution. Spectral convolution for each output pixel would entail a 

complexity of N2k2, where N is the input feature map dimension and k is the kernel dimension. One should 

note that unlike spatial convolution, where k would be smaller in size than N, in case of auto-convolution, k is 

larger than N as it is a padded version of the input feature map [14]. Here, every output pixel is computed with 

k2 complex multiplications, that entails 4k2 real-valued multiplications and 2k2 real-valued additions, that is 

6k2 real-valued operations in total. This can be clearly seen in Equation 7. For an N2 dimensional feature map, 

the number of real-valued operations become 6N2k2 and hence complexity here is O(N2k2). Since [14] utilizes 

a quadratic equation, it requires an extra 2N2 real-valued additions, but complexity remains O(N2k2). Among 

all the related spectral or complex-valued activation functions, the proposed activation function as well as 

zReLU [19] and ℂReLU [17] require least number of operations (2N2), possess the smallest complexity (O(N2)) 

and do not require any computationally intensive auto-convolution. Table 2 lists computational complexity of 

these spectral and complex-valued activation functions that were developed for CNNs. 
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Table 2. Computational complexity of spectral and complex-valued activation functions 
Activation function (AF) Computational complexity 

AF in [13] O(N2k2) 
tanh [18] O(log3N2) 

SReLU [14] O(N2k2) 

zReLU [19] O(N2) 
ℂReLU [17] O(N2) 

Proposed AF O(N2) 

 

3. RESULTS AND DISCUSSION  

3.1.  Experimental Environment  

To compare our work with previous research in this area we have tested our CNN model on the classic 

recognition dataset MNIST and its modern variant Fashion MNIST. MNIST is a widely used dataset in deep 

learning community with well-established benchmark accuracy. Introduced in 1998, MNIST is a dataset for 

digit classification. It consists of 28x28 greyscale images of handwritten digits of 10 classes (0 to 9). There are 

60,000 training images and 10,000 test images [27]. Despite being developed 3 decades ago, MNIST continues 

to serve as the go to dataset for deep learning researchers for establishing proof-of-concept when exploring 

new algorithms. Fashion MNIST has the same structure (number of training and testing images) and images of 

same size as MNIST but consists of images of fashion articles such as shirts, bags and sandals. It is considered 

a more challenging dataset than MNIST [28].  

For the experimental work for this research, we have described our CNN architectures in Matlab (v. 

2018b) simulation environment utilizing MatConvNet (v.2015) toolbox that is tailor made for training CNNs. 

MATLAB is a development platform for scientists and engineers that has usage in diverse areas ranging from 

machine learning and computer vision to communications and computational finance. MatConvNet provides 

lot of built-in functions for CNNs, supports computation with GPUs and training large models (i.e. AlexNet, 

VGG) and complex datasets (i.e. ImageNet) [29]. The CNN model for this work was trained and tested on a 

desktop PC powered by 4-core Intel Core i7 4790K CPU with 8 GB DDR3 RAM operating at 4.00GHz and 

taking advantage of a single NVIDIA GeForce GTX 1070 GPU with 4GB RAM. 

 

3.2.  Experimental Work, Results and Discussion 

We have analyzed test accuracy of our LeNet-5 CNN model employing proposed activation function 

for recognizing handwritten digits in the MNIST dataset and fashion articles in the Fashion MNIST dataset. 

Previous works have applied their activation functions in different CNN models and some were tested on 

different datasets. For instance, the complex-valued activation function ℂReLU [17] and auto-convolution-

based spectral activation function [13] have been tested on CIFAR-10 dataset. Another complex-valued 

activation function zReLU [19] was tested on a specialized dataset. A feature-extraction block in [14] consists 

of a convolution layer (fused type) followed by an activation function, while the same block in the SpecNet 

model by [18] has convolution layer followed by activation function followed by a spatial pooling layer. We 

have applied all these activation functions in our CNN model and tested them on the same MNIST and Fashion 

MNIST datasets so that a fair comparison can be made between this work and related previous works.  

The original work that introduced the world to LeNet-5 and modern CNN networks, LeCun et al. in 

[27], attained 99.05% accuracy on MNIST dataset. This was a spatial domain CNN network. Highlander et al. 

in [8] developed a spectral domain CNN architecture for LeNet-5 that uses spatial activation function and 

attains 92.46% test accuracy. So, this network has multiple transformations between spatial and spectral 

domains to perform activation function in spatial domain. The work by Ko et al. in [12] presents a spectral 

domain CNN solution without domain transformations that employs a linear spectral activation function but 

provides only training accuracy. This work does not describe basic properties of their activation function and 

how it was implemented. Recently Pratt et al. in [21] developed another spectral domain CNN approach without 

domain transformations, attains 97% test accuracy but does not mention the type of activation functions, or 

whether any such has been used at all. Due to lack of implementation details for these two activation functions, 

we have not applied them in our model to compare our work with theirs. Very recently, Ayat et al. in [14] has 

achieved an accuracy similar to spatial domain CNN solutions, attaining 99.20% accuracy. Spectral domain 

CNN model with split type tanh proposed by Guan et al. in [18] attains 95% accuracy. This is the average 

accuracy of six models they propose, where the models differ based on compression rates for input feature 

maps. These spectral domain CNN solutions as well as the spatial domain CNN of LeCun et al. in [27] 

evaluated their models on MNIST dataset using LeNet-5 CNN. For this same MNIST dataset, our spectral 

domain LeNet-5 CNN model with proposed activation function attains a test accuracy of 97.65%, an accuracy 

very close to all these previous works—in some cases outperforming them—as can be seen in Table 3. 

However, to have a fair comparison of test accuracies (since all these works use different architectures for 

LeNet-5 model (having different types of feature-extraction blocks) and different number of parameters (such 
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as number of output feature maps)), all these activation functions have been evaluated in the same model 

discussed in Section 2.2. Accuracy and inference times attained by this model with many of these activation 

functions (as well as proposed activation function) are listed in Tables 4 and 5 for MNIST and Fashion MNIST 

datasets, respectively.   

 

Table 3. Test accuracy of LeNet-5 CNN model attained by some of the previous works on spatial and 

spectral CNNs evaluated on MNIST dataset 

 
Work 

 
Year 

 
Domain 

 
Activation Function (AF) 

 

Test 

Accuracy 

LeCun et al. [27] 1998 Spatial Sigmoid 99.05% 

Highlander et al [8] 2016 

Spectral 

-*1 92.46% 

Ko et al. [12] 2017 Linear approximation of tanh/sigmoid 96%*2 
Pratt et al. [21] 2017 -*1 97% 

O. Ayat et al. [14] 2019 SReLU 99.20% 

B. Guan et al. [18] 2019 tanh 95% 

This work 2020 Proposed AF 97.65% 
*1 Information regarding activation function applied in these models are not provided in these works. 

*2 Only training accuracy is provided by Ko et al. in [12] 

 

Our spectral domain LeNet-5 model was trained using Adagrad optimizer. For MNIST and Fashion 

MNIST datasets, the model was trained for 60 epochs with a logarithmically spaced learning rate varying from 

0.005 to 0.0001. The network was trained using all the 60,000 training samples of MNIST and Fashion MNIST 

datasets. At the end of the aforementioned epochs, the model attained a training accuracy of 98.52% (error of 

1.48%) and 88.95% (error of 11.05%) for MNIST and Fashion MNIST datasets, respectively. Figure 5 shows 

the training and test errors for these datasets. 

 

 
Figure 5. Training and test errors for our spectral domain CNN model for (a) MNIST dataset and (b) Fashion 

MNIST dataset  

 

For inference, all test samples-10,000 in total-were tested, for MNIST and Fashion MNIST datasets. 

During each epoch of training, MatConvNet applies inference on test data and records inference times. We 

took average of inference times (for all 10,000 test samples) recorded for first 30 epochs and in multiple runs 

to compare inference times of our model with different activation functions. We recorded peak accuracy 

attained on test data after training was completed. Tables 4 and 5 documents the peak test accuracy and 

inference time attained with different activation functions for MNIST and Fashion MNIST datasets, 

respectively. The difference in accuracy, denoted as DiffAcc in tables 4 and 5, is the change in accuracy for an 

activation function (say A) as compared to the accuracy attained with proposed activation function (say B). So, 

a negative DiffAcc (when B-A is negative) for an activation function would mean its accuracy is lower than 

accuracy attained with proposed activation function, while a positive DiffAcc (when B-A is positive) would 

mean the opposite (proposed activation function attaining a lower test accuracy). The percentage difference in 

inference time is denoted as DiffInf in tables 4 and 5. This reflects the percentage change in inference time when 

compared to the inference time attained with the proposed activation function. So, if the inference time of our 

model with proposed activation function is denoted as Q and inference time of the same model with another 

activation function is denoted as P, DiffInf is calculated as 100*(P-Q)/Q.  Here also a negative DiffInf would 

mean inference time with an activation function is longer than inference time with proposed activation function, 

while a positive DiffInf would mean inference time attained with proposed activation function is longer.  

 For MNIST dataset, our spectral model with proposed activation function attained 97.65% peak 

accuracy (error of 2.35%) in inference, outperforming four state-of-the-art spectral or complex-valued 



                ISSN: 2089-3272 

IJEEI, Vol.9, No. 1, March 2021:  173 - 184 

182 

activation functions when employed in the same model. As table 4 illustrates, our activation function 

outperforms tanh [18] by 7% and SReLU [14] and zReLU [19] by about 1%. When inference time is compared, 

this work offers about 79%  and 8.5% shorter inference times than SReLU and zReLU, respectively. The 

inference times with tanh and proposed activation function are virtually same differing by a mere 0.15%. Our 

test accuracy is almost same as ℂReLU [17] (difference of 0.24%) but we offer about 9.6% shorter inference 

time with our activation function. Even though zReLU, ℂReLU and the proposed activation function have the 

same computational complexity, the run time of their elementary functions may not be the same. For example, 

proposed activation function has to modify only a small number of input values (values in the third quadrant), 

when compared to ℂReLU. That is why our model provides faster inference with proposed activation function 

than with ℂReLU despite both activation functions having the same computational complexity. Overall, our 

approach outperforms three state-of-the-art spectral or complex-valued spatial activation functions in terms of 

both test accuracy and inference time, in varying degrees. In case of tanh, proposed activation function 

outperforms it significantly in terms of accuracy while offering almost same inference time. 

 

Table 4. Test accuracy and average inference times for our spectral domain LeNet-5 CNN model with 

different activation functions evaluated on MNIST dataset 
 

Work 

 

Year 

 

Activation 

Function (AF) 

 

Peak Test 

Accuracy 

 

DiffAcc 

Mean 

Inference 

Time (s) 

 

DiffInf 

O. Ayat et al. [14] 2019 SReLU 96.31% -1.34% 10.09 -79.04% 
B. Guan et al. [18] 2019 tanh 90.46% -7.19% 5.63 +0.15% 

N. Guberman [19] 2016 zReLU 96.68% -0.97% 6.12 -8.49% 
C. Trabelsi et al. [17] 2017 ℂReLU 97.41% -0.24% 6.18 -9.58% 

This work 2020 Proposed AF 97.65% 0.00% 5.64 0.00% 

 

The work by [14] proposing SReLU is the only work that applies a spectral CNN model for Fashion 

MNIST dataset, achieving a test accuracy of 80.54%. We evaluate our model for Fashion MNIST using the 

same activation functions that were employed to test our model for MNIST dataset, including SReLU. As table 

5 shows, our model employing proposed activation function achieves 87.95% test accuracy (error of 12.05%) 

for Fashion MNIST dataset, outperforming state-of-the-art spectral or complex-valued activation functions. 

Our activation function outperforms SReLU [14] and tanh [18] in test accuracy by about 6% and 2.8%, 

respectively. It also offers about 85% and 7.6% faster inference time over the aforementioned activation 

functions. Our activation function achieves almost same test accuracy as ℂReLU [17] (a difference of about 

0.5%) but offers about 14% faster inference time. In case of comparison with zReLU [19], proposed activation 

function achieves about 4% higher test accuracy but inference time with our activation function is slightly 

longer, by about 5%. In the end, we offer better accuracy and inference time over three state-of-the-art 

spectral/complex-valued activation functions. In case of one activation function (zReLU), we offer better 

accuracy. 

 

Table 5. Test accuracy and average inference times for our spectral domain LeNet-5 CNN model with 

different activation functions evaluated on Fashion MNIST dataset 
Work Year Activation 

Function (AF) 

Peak Test 

Accuracy 

DiffAcc Mean Inference 

Time (s) 

DiffInf 

O. Ayat et al. [14] 2019 SReLU 81.89% -6.06% 10.95 -85.08% 
B. Guan et al. [18] 2019 tanh 85.16% -2.79% 6.37 -7.62% 
N. Guberman [19] 2016 zReLU 84.03% -3.92% 5.63 +4.85% 

C. Trabelsi et al. [17] 2017 ℂReLU 87.46% -0.49% 6.73 -13.71% 

This work 2020 Proposed AF 87.95% 0.00% 5.92 0.00% 

 

 

4. CONCLUSION  

In this work,  it was demonstrated that a spectral domain CNN model employing proposed complex-

valued activation function can provide a low-complexity CNN model that offers very accurate and fast 

inference and can do so without multiple and expensive spectral-spatial domain switchings. This work has 

demonstrated the effectiveness of this model by applying it for two types of recognition tasks—recognotion of 

hand-written digits and objects. Its performance was evaluated in terms of accuracy and inference time on 

standard recognition benchmark datasets (MNIST and Fashion MNIST). The significant acceleration of 

inference speed achieved in our spectral domain CNN model while providing high classification accuracy can 

potentially lead to effective CNN solutions for implementation in resource and energy-constrained embedded 

systems. As future work, one can explore effectiveness of our activation function in terms of classification 

accuracy, reduction in computational complexity and speedup of inference time when applied in larger 
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networks and tested for more complex datasets. Another avenue for future work would be to develop a 

methodology to train our CNN model entirely in spectral domain.    
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