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ABSTRACT

The senescence of system sensor(s) probably causing degenerate system behavior or system
breakdown. Motivated by that, this work considers the synthesis of a gain scheduling control
for linear parameter varying (LPV) system via linear matrix inequalities (LMIs) techniques
such that sensors senescence information incorporated in the design of the controller. That is,
the degradation of sensor effectiveness due to senescence is modeled by the variation of sen-
sor measurements’ noise co-variance. The sensors’ senescence information is incorporated as a
part of the scheduling parameters for the LPV controller. The synthesis control matrices via lin-
ear matrix inequalities have been re-structured and re-formalized in a way that they incorporate
the sensors senescence information to synthesize a gain scheduling dynamic output feedback
(GS− DOF) control. That is, the existing GS− DOF control design LMIs have been modified
to include the noise co-variance matrix. The significant achievement is the control design con-
ditions description of GS− DOF control in a way that ensures the desired integrated H2&H∞
performances in the presence of sensors senescence, where sensors’ senescence information is
incorporated as a part of the scheduling parameters for the LPV controller. In addition, two sets
of controllers have been synthesized and studied. The simulation expresses the benefits of the
proposed controllers, and closed loop system H∞ and H2 performances are also studied. The
synthesized controller ensures the performance associate with a closed loop, the closed loop
system stability, and the scheme of control is simple enough for real time implementations.
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1. INTRODUCTION
Dynamical systems in the control community are represented in a framework such that the available techniques

and software can handle the control formalization. The linear time-invariant (LTI) or linear time-varying (LTV) modeling
of the dynamical system has been widely used in control literature. The point against them is that all system matrices are
linear, which is conservative formalization. Nonlinear modeling of a dynamical system is much better than the linear one,
but the lack of simplicity and available parsers to simulate it is the main difficulty. The LPV systems framework consider
dynamical systems, which have been described by linear differential equations modeled data depend on time-varying
parameters; that is, for the linear and nonlinear dynamics, the LPV scheme lies in-between [1]. Considering the control
design problem, the goal of the LPV control synthesis issue is to design a compensator such that the system satisfies the
desired performance and stability over the domain of the considered parameters. In other words, the LPV controller invests
the online values of the time-varying parameters to satisfy the stability and performance over the robust controllers, where
the time-varying parameters are defining the operating point of the system. That is, LPV controllers have an advantage
over the classical gain scheduling controllers such that the controller is automatically gain scheduled without any ad hoc
process. The point of using LPV control synthesis techniques is that they provide a structured synthesis procedure for
gain scheduling controllers while allowing performance, robustness, and bandwidth restrictions to be incorporated into
a coherent framework investing the available parsers in solving the LMIs set of the nonlinear system. Many kinds of
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literature have investigated the LPV control synthesis since the first presenting of gain scheduling control by Ref. [2],
where the focus was on the synthesis framework to ensure system stability. The other trend was for satisfying system
performance, which has been considered by many researchers, for instance, Refs. [3–5]. In the same manner, the multi-
objective (i.e., mixed H2&H∞) LPV control synthesis trend has been considered also, for example, Refs. [6–8]. The point
against all the above literature is that they consider the output measurement may (or not) be affected by a known and time-
invariant statistical characteristics noise. To be specific, no sensor performance degradation due to sensor senescence had
been considered, , which is the focus of this work.

Indeed, system performance is directly influenced by a sensor failure, which could lead to negative consequences.
A faulty sensor (or sensors) may cause system performance degradation, system shut down, and/or fatal accident. The
recent literature trend towards the effect of sensors malfunctions to the system performance in different applications, like,
wind power generation [9], transmission lines [10, 11], wireless sensor networks [12, 13], and high-voltage systems [14].
The scope of fault tolerant control is not recent in literature. The common trend in recent literature is to model the sensor
fault as an additive or multiplicative term (i.e., fixed value and time-invariant) in the measurement equation and augment
the fault terms with system states. A virtual sensor approach was invested to cover the faulty sensor measurement(s)
and ensures the nominal system performance; see Refs. [15–17]. The point missed by the literature trend mentioned
above is that sensor performance degradation is a dynamical process, and model it as a fixed and time-invariant term is a
conservative assumption and far away from reality and the practical world, which motivates this paper.

In this work, the faulty sensor (or sensor failure) is considered as a dynamical process (i.e., a time-varying
sensor noise statistics model the sensor senescence), which affects system output performance directly and could lead
to catastrophic consequences. That is, sensor fault could be caused by gradual degradation of sensor performance [18,
19], or abrupt (intermittent) performance change [20, 19], and it impacts system performance, stability, and reliability.
Then, sensor performance deterioration information needs to be utilized by the closed loop control strategy in real time.
Motivated by that, this work considers the utilization of the sensor effectiveness deterioration information by the closed
loop control strategy in real time to reduce system breakdowns and preserves the stability for acceptable performance,
where the sensor faults are due to senescence.

Consequently, the main purpose here is to synthesize multi-objective GS− DOF control preserves the desired
performances in the presence of sensor effectiveness deterioration resulting from sensor senescence for an LPV (LPV)
system. The GS− DOF control problem has been considered by recent literature, like, Refs. [21–27], which does
not consider sensor performance deterioration. In contrast to the existing literature, this work considers sensor fault
as a dynamical process (i.e., the time-varying sensor noise statistics model the sensor senescence). Specifically, the
time-varying sensor measurements noise co-variance has been used to model the sensor performance deterioration due to
senescence. Besides, sensor senescence information has been considered as a part of the scheduling parameters. Moreover,
the control design LMIs set has been modified to incorporate the sensor noise co-variance matrix. Furthermore, the
designed controller aims to ensure stability and satisfy the system’s desired performances, while the sensor performance
deterioration is derived by sensor senescence.

This work has many contributions. First, an integrated H2&H∞ GS− DOF control problem for the discrete-time
linear parameter varying (DT− LPV) system with sensors senescence is proposed. Note that the point of using LPV tech-
niques is that they provide a structured synthesis procedure for gain scheduled controllers while allowing performance,
robustness, and bandwidth restrictions to be incorporated into a coherent framework investing the available parsers in
solving the LMIs set of the nonlinear system. Second, a parameterized LMIs set formulated in a way such that the sensor
senescence information is invested. Third, the parameterized LMIs are employed to design a controller with scheduling
parameters involved sensor senescence information to minimize the control exertion. In addition, the sensor effectiveness
deterioration owing to sensor senescence is simulated by noise co-variance alteration of sensor measurements. Practi-
cally, as the sensor gets more matured, its measurement becomes more noisy, then noise co-variance alteration of sensor
measurements simulates that issue. That is, sensor performance deterioration owing to sensor senescence is simulated
by noise co-variance alteration of sensor measurements. Moreover, a collection of the estimated noise co-variance and
time-varying parameters are invested in scheduling the controls’ gains. Furthermore, two sets of controllers have been
synthesized and studied. Simulation studies legitimate those controllers for a DT− LPV system. Additionally, the synthe-
sized controllers improve system performance, H2-norm, and ensures the closed loop stability, exposed to H∞-performance
constraint. Similarly, the feasibility for real time implementations handled by the designed controllers. This paper used
standard notations. The paper is laid out as following. Section 2. expresses the proposed problem, and mathematical
background. Section 3. shows the design of parameterized LMI constraints for the considered integrated H2&H∞ control
issue. Section 4. exhibits the simulations. Section 5. lists the conclusions.
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2. DYNAMICAL SYSTEM PERFORMANCES
The polytopic DT− LPV system can be described by a state-space model below,





x(k + 1) = A(ξ(k)) x(k) + Bu(ξ(k)) u(k) + B∞w(ξ(k)) w∞(k) + B2w(ξ(k)) w2(k),

z∞(k) = C∞z(ξ(k)) x(k) +D∞u(ξ(k)) u(k) +D∞w(ξ(k)) w∞(k),

z2(k) = C2z(ξ(k)) x(k) +D2u(ξ(k)) u(k),

y(k) = Cy(ξ(k)) x(k) +Dyυ υ̃(k),

(1)

1

(1)

where z2(k) ∈ Rp2 is the performance output vector; z∞(k) ∈ Rp∞ is the controlled output vector, which related to
modeling error; and the other vectors and matrices are with suitable dimensions. The parameter-independent proposition
is considered for matrix Dyυ since the sensor noise statistics are not known in advance and they are estimated online;
see Refs. [28, 18, 20] for more details. The matrices for system (1) are proposed to possess polytopic parametrization
dependent on parameters ξ(k) =

[
ξ1(k), · · · , ξnξ

(k)
]T

, which are polytopic, that is,

Ω(ξ(k)) =

nξ∑

r=1

ξr(k)Ωr, (2)

where the rth component of the vector ξ(k) =
[
ξ1(k), · · · , ξnξ

(k)
]T

is ξr(k); the parameter dependent matrix of sys-
tem (1) is Ω(ξ(k)); and Ωr is a constant matrix. The controllability and observability are proposed for system (1), where
this proposition is used widely due to the non-well-defined detectability and stabilizability in the LPV control publica-
tions. The modeling error disturbance is designated by w∞(k) ∈ Rr∞w ; the process noise by w2(k) ∈ Rr2w ; and the
measurement noise by υ̃(k) ∈ Rrυ̃ , where, the uncorrelated Gaussian white proposition is considered with their means
and co-variances defined by





E [w2(k)] = 0, E
[
w2(k)w

T
2 (j)

]
=Wk2 δ(tk − tj), ∀ k, j ∈ R,

E [w∞(k)] = 0, E
[
w∞(k)wT

∞(j)
]
=Wk∞ δ(tk − tj), ∀ k, j ∈ R,

E [υ̃(k)] = 0, E
[
υ̃(k)υ̃T (j)

]
= I δ(tk − tj), ∀ k, j ∈ R, υ̃(k) = V

−1
2

k υ(k),

E [υk] = 0, E
[
υkυ

T
j

]
= Vk δ(tk − tj),∀ k, j ∈ Z+,

E
[
w2(k)υ̃

T (j)
]
= E

[
w∞(k)υ̃T (j)

]
= E

[
w2(k)x

T (j)
]
= E

[
υ̃(k)xT (j)

]
= 0,

(1)

1

(3)

where δ(0) = 1 and δ(k) = 0; ∀ k ̸= 0. The known positive semi-definite assumption is considered for the matrices,
Wk∞ and Wk2 . In addition, Vk = diag

(
λ1(k), · · · , λq(k)

)
, and λi(k) is the variance of the independent noise of the

ith sensor measurement. The vector of the scheduling parameters is

ξ(k) =
[
ξ1(k), · · · , ξq(k), ξq+1(k), · · · , ξnξ

(k)
]T

, (4)

where ξ1(k), · · · , ξq(k) are scheduling parameters simulate the noises co-variance alteration of the sensors measure-
ments; and ξq+1(k), · · · , ξnξ

(k) are scheduling parameters simulate the alterations of system parameters. Practically,
control system attributes may be shifted by the physical parameter alterations and sensor noise co-variance alterations.
Therefore, an algorithm to online predicts the alteration of noise co-variance has been built in [28, 18, 20]. The innova-
tion sequences being consistent with their theoretical co-variance is the core idea; see Refs. [28, 18, 20, 19]. The vector
ξ(k) =

[
ξ1(k), · · · , ξnξ

(k)
]T

is proposed to be in a known a space Λnξ
, which is polytopic, where ξi(k) ∈ Λ, ∀i =

1, · · · , nξ. The bounds of the independent parameters are ξ
i
≤ ξi(k) ≤ ξi , ∀ i = 1, · · · , nξ ∀ k ∈ Z+, and they

are known, where the lower and the upper bounds are ξ
i

and ξi, respectively, associated with the ith parameter. Conse-
quently, the rate of alteration of the ith parameter is ∆ξi(k) = ξi(k+1)− ξi(k),∀ i = 1, · · · , nξ,∀ k ∈ Z+, with bounds
∆ξi

≤ ∆ξi(k) ≤ ∆ξi , ∀ i = 1, · · · , nξ, ∀ k ∈ Z+, where the upper and lower bounds of the rate of alteration are

∆ξi and ∆ξi , respectively. The vector ∆ξ(k) =
[
∆ξ1(k), · · · ,∆ξnξ

(k)
]T

∈ Λnξ
, where ∆ξi(k) ∈ Λ, ∀i = 1, · · · , nξ

denotes the parameters alteration rates, which yields
∑nξ

i=1 ∆ξi = 0. The alteration rates bounds of parameter ξi is∣∣∣∆ξi

∣∣∣ ≤ ai ∈ {0, 1},∀i = 1, · · · , nξ, In fact, the alteration rate depends on the associated parameter value for the

discrete-time case. Considering the uncertainty space Πa contains the vector
[
ξT (k),∆T

ξ (k)
]T

∈ Λ2nξ
; see Ref.[19] for

more details, each ξi(k) ∈ Λ and ∆ξi(k) ∈ Λ, which are belong to ξ(k), and∆ξ(k) vectors, respectively, are given as
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[19],

ξi(k) =

M∑

j=1

f j
i ξ̃j(k), ∆ξi(k) =

M∑

j=1

hj
i ξ̃j(k), i = 1, · · · , nξ, (5)

where ξ̃(k) =
[
ξ̃1(k), · · · , ξ̃M (k)

]T ∈ Πa. Next, the PLMI-based synthesis conditions for designing multi-objective
GS− DOF controllers are discussed.

3. DYNAMIC OUTPUT FEEDBACK CONTROL SYNTHESIZE LMIS
The DOF− LPV controller (which is strictly proper and full-order) is

K :=

{
xc(k + 1) = Ac(ξ(k)) xc(k) + Bc(ξ(k)) y(k),

u(k) = Cc(ξ(k)) xc(k),
(1)

1

(6)

the vector is xc(k) designates the states of the controller; Ac(ξ(k)) ∈ Rn×n; Bc(ξ(k)) ∈ Rn×q; and Cc(ξ(k)) ∈ Rm×n

are controller parameter dependent matrices. Consider system (1), then the closed loop system,

Hcl :=





xcl(k + 1) = Acl(ξ(k)) xcl(k) + B2cl(ξ(k)) w̃2p(k) + B∞cl(ξ(k)) w̃∞p(k),

z̃∞(k) = C∞cl(ξ(k)) xcl(k) +D∞cl(ξ(k)) w̃∞p(k),

z̃2(k) = C2cl(ξ(k)) xcl(k),
(1)

1

(7)

where xcl(k) =
[
x(k)T xc(k)T

]T ∈ R2n is the augmented state; and the matrices of the closed loop system are

Acl(ξ(k)) =

[
A(ξ(k)) Bu(ξ(k))Cc(ξ(k))

Bc(ξ(k))Cy(ξ(k)) Ac(ξ(k))

]
, B2cl(ξ(k)) =

[
B2w(ξ(k))

Bc(ξ(k))Dyυ

]
,

B∞cl(ξ(k)) =

[
B∞w(ξ(k))

0

]
, C∞cl(ξ(k)) =

[
C∞z(ξ(k)) D∞u(ξ(k))Cc(ξ(k))

]
,

D∞cl(ξ(k)) =
[
D∞w(ξ(k)) 0

]
, C2cl(ξ(k)) =

[
C2z(ξ(k)) D2u(ξ(k))Cc(ξ(k))

]
,

w̃∞p(k) =
[
wT∞(k) υ̃T (k)

]T
, w̃2p(k) =

[
wT2 (k) υ̃

T (k)
]T
.

(1)

1

(8)

The exponential stability inherited by system (7) regarding all permissible trajectories of ξ(k) =
[
ξ1(k), · · · , ξnξ

(k)
]T ∈

Λnξ
. In the same manner, the upper bound on the H∞&H2 performances of the closed loop are guaranteed. To make the

considered issue manageable, the H2-performance upper bound is optimized alternatively, exposed to the constraint on
the H∞-performance. The H2&H∞ performances are defined, such as, Considering that the system (7) has exponential
stability, and the transfer matrix from w̃∞p(k) ∈ ℓ r∞w+rυ̃

2 to z̃∞(k) ∈ ℓ p∞̃
2 is ℜz̃∞,w̃∞p

. The H∞-performance is [19]

||<z̃∞,w̃∞p(ξ(k))||∞ = sup
||w̃∞p(k)||2 6=0

||̃z∞(k)||2
|w̃∞p(k)||2

, (1)

1

(9)

Then, the H∞-performance (9) is upper bounded by

sup
ξ(k)∈Λnξ

||Gz̃∞,w̃∞p
(ξ(k))||∞ ≤ α, (10)

where α is a positive scalar number. Considering that system (7) has exponential stability. The H2-performance is [19]

||ℜz̃2,w̃2p
(ξ(k))||22 = lim

T →∞
sup

ξ(k)∈Λnξ

E

{
1

T
T∑

k=0

z̃T2 (k)z̃2(k)

}
, (11)

where the transfer function matrix from w̃2p to z̃2 is ℜz̃2,w̃2p
, the polytopic space, where the scheduling parameters be is

Λnξ
; the expectation operator is E; and the positive integer T refers the time horizon. The formulation of the minimization

of the upper bound of H2-performance exposed to a constraint on the H∞-performance is provided by the PLMIs set in
the next a few subsections, where the PLMIs set has been invested in synthesizing a GS− DOF control for a polytopic
DT− LPV system.
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3.1. H∞ Gain Scheduling DOF
The following lemma states the H∞-performance of system (7).

Lemma 1 Consider the GS− DOF control (6) and system (7). The later has H∞-performance bound (α) if a matrix
P∞(ξ) ∈ R2n×2n be in existence and a matrix G(ξ) ∈ R2n×2n, which are symmetric positive-definite, such that, ∀k ≥ 0,
the following retains,




P∞(ξ(k + 1)) Acl(ξ(k))G(ξ(k)) B∞cl(ξ(k)) 0

? G(ξ(k)) + G(ξ(k))T − P∞(ξ(k)) 0 G(ξ(k))TC∞cl(ξ(k))
T

? ? αI D∞cl(ξ(k))
T

? ? ? αI



> 0.

(1)

1

(12)

Remark 1 Clearly, substituting the matrices of system (8) into the inequality (12) causes a nonlinear inequality. To
remedy this, a nonlinear mutation of variables is used. Furthermore, due to the fact that the slack variable G(ξ(k))
appears in the nonlinear mutation of variables, parameter independent structure (i.e., G(ξ(k)) = G) is mandatory.

3.1.1. Nonlinear mutation of variables
To deal with coupling between controller gain and plant matrices, the matrices K(ξ(k)), P(ξ(k)), G, and G−1

are defined as

K(ξ(k)) =

[
Ac(ξ(k)) Bc(ξ(k))

Cc(ξ(k)) 0

]
, P∞(ξ(k)) =

[
P∞(ξ(k)) P2∞(ξ(k))

P2∞(ξ(k))T P3∞(ξ(k))

]
,

G =

[
X Z1

U Z2

]
, G−1 =

[
Y T Z3

V T Z4

]
.

(1)

1

(13)

Considering the structure of G and G−1, obviously the next inequality must satisfy

GG−1 =

[
X Z1

U Z2

][
Y T Z3

V T Z4

]
=

[
X Y T + Z1V T X Z3 + Z1Z4

U Y T + Z2V T U Z3 + Z2Z4

]
=

[
I 0

0 I

]
,

(1)

1

(14)

in a way that X Y T +Z1V T = I and U Y T +Z2V T = 0. The transformation matrix (which is parameter independent)
is

T =

[
I Y T

0 V T

]
. (15)

Consequently, the parameter dependent nonlinear mutation of variables is introduced:

[
Q(ξ(k)) F (ξ(k))

L(ξ(k)) 0

]
:=

[
V Y Bu(ξ(k))

0 I

]
K(ξ(k))

[
U 0

Cy(ξ(k))X I

]
+

[
Y

0

]
A(ξ(k))

[
X 0

]
,

[
P∞(ξ(k)) J(ξ(k))

J(ξ(k))T H(ξ(k))

]
:= TTP∞(ξ(k))T,

S := Y X + V U .

(1)

1

(16)

Linearizing the transformation depends on identities:

TTAclGT =

[
A(ξ(k))X + Bu(ξ(k))L(ξ(k)) A(ξ(k))

Q(ξ(k)) Y A(ξ(k)) + F (ξ(k))Cy(ξ(k))

]
,

TTB∞cl(ξ(k)) =

[
B∞w(ξ(k))

Y B∞w(ξ(k)) + F (ξ(k))Dyυ(ξ(k))

]
,

C∞cl(ξ(k))GT =
[
C∞z(ξ(k))X +D∞u(ξ(k))L(ξ(k)) C∞z(ξ(k))

]
,

D∞cl(ξ(k)) =
[
D∞w(ξ(k)) 0

]
,

TTGT =

[
X I

S Y

]
.

(1)

1

(17)
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Multiplying from the right of Eqn. (12) by T := diag(T,T, I, I) and by TT from the left results the upcoming LMI
with P∞(ξ(k)) and H(ξ(k)), which are symmetric positive-definite matrices, and matrices X , L(ξ(k)), Y , F (ξ(k)),
Q(ξ(k)), S, J(ξ(k)):




P∞(ξ(k + 1)) J(ξ(k + 1)) ξ13(ξ(k)) A(ξ(k)) B∞w(ξ(k)) 0

? H(ξ(k + 1)) Q(ξ(k)) ξ24(ξ(k)) ξ25(ξ(k)) 0

? ? X + X T − P∞(ξ(k)) I + ST − J(ξ(k)) 0 ξ36(ξ(k))

? ? ? Y + Y T −H(ξ(k)) 0 C∞z(ξ(k))
T

? ? ? ? αI D∞w(ξ(k))
T

? ? ? ? ? αI




= ξ(ξ(k)) > 0,

(1)

1

(18)

where,

ξ13(ξ(k)) = A(ξ(k))X + Bu(ξ(k))L(ξ(k)),
ξ24(ξ(k)) = Y A(ξ(k)) + F (ξ(k))Cy(ξ(k)),

ξ25(ξ(k)) = Y B∞w(ξ(k)) + F (ξ(k))Dyυ(ξ(k)),

ξ36(ξ(k)) = X TC∞z(ξ(k))
T + L(ξ(k))TD∞u(ξ(k))

T .

1

If full ranking fit matrix V , T will be the same, which leads to having a full rank T . If the PLMI in Eqn. (18) is held, a
recovery of the gain scheduling H∞ control done by inverting the transformation in Eqn. (16),

K(ξ) =

[
V −1 −V −1Y Bu(ξ)
0 I

][
Q(ξ)− Y A(ξ)X F (ξ)

L(ξ) 0

][
U −1 0

−Cy(ξ)X U −1 I

]
.

1

As a result, the controller matrices are

Ac(ξ) = V −1
(
Q(ξ)− Y A(ξ)X − Y Bu(ξ)L(ξ)− F (ξ)Cy(ξ)X

)
U −1,

Bc(ξ) = V −1F (ξ),

Cc(ξ) = L(ξ)U −1.

(19)

The following parameter dependent framework to the Lyapunov matrix P (ξ(k)) (i.e., both P∞(ξ(k)) and P2(ξ(k))) and
system parameter dependent matrices in Eqn. (8) is imposed to satisfy the requirements of a finite set of LMI conditions,

P (ξ(k)) =

nξ∑

i=1

ξi(k)Pi, ξ(k) ∈ Λnξ
. (20)

Each ith component of the scheduling parameters and their variation rate vectors, (i.e., ξi(k) and ∆ξi(k), respectively)
can be given by

ξi(k) =
M∑

j=1

f ji ξ̃j(k) and ∆ξi(k) =
M∑

i=1

hji ξ̃j(k), (1)

1

(21)

such as

P̃ (ξ̃(k)) =
M∑

j=1

ξ̃j(k)P̃j. (1)

1

(22)

where the matrix P̃j =
∑nξ

i=1 f
j
i Pi. Combining that with Eqn. (21) and ξ(k + 1) = ∆ξ(k) + ξ(k), yields

P̂ (ξ̃(k)) =

M∑

j=1

ξ̃j(k)P̂j , (23)
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where P̂j =
∑nξ

i=1

(
f j
i + hj

i

)
Pi. Then, the LMI in Eqn. (18) is




P̂∞(·) Ĵ(·) Ã(·)X + B̃u(·)L̃(·) Ã(·) B̃∞w(·) 0

? Ĥ(·) Q̃(·) Y Ã(·) + F̃ (·)C̃y(·) Y B̃w(·) + F̃ (·)D̃yυ(·) 0

? ? X + X T − P̃∞(·) I + ST − J̃(·) 0 X T C̃∞z(·)T + L̃(ξ̃)T D̃∞u(·)T
? ? ? Y + Y T − H̃(·) 0 C̃∞z(·)T
? ? ? ? αI D̃∞w(·)T
? ? ? ? ? αI




> 0

(1)

1

(24)

where, for simplicity, (·) = (ξ̃(k)) is used. Accordingly, the LMIs with finite-dimensional is expressed in next Lemma to
synthesize the H∞/GS− DOF control.

Lemma 2 Consider system (7) with a prescribed H∞-performance upper bound (α), and given f j and hj vectors. If there
exist Pi,∞, Hi, which are symmetric positive-definite matrices, and Ji, Li, Fi, Qi, S, Y , X matrices, such the following
hold,




P̂j,∞ Ĵj ÃjX + B̃u,jL̃j Ãj B̃∞w,j 0

? Ĥj Q̃j Y Ãj + F̃j C̃y,j Y B̃∞w,j + F̃jD̃yυ,j 0

? ? X + X T − P̃j,∞ I + ST − J̃j 0 X T C̃T∞z,j + L̃Tj D̃T∞u,j

? ? ? Y + Y T − H̃j 0 C̃T∞z,j

? ? ? ? αI D̃T∞w,j

? ? ? ? ? αI




= ξj > 0, (1)

1

(25)

for j = 1, . . . ,M




P̂j,∞ + P̂`,∞ Ĵj + Ĵ` ξ13,j` Ãj + Ã` B̃∞w,j + B̃∞w,` 0

? Ĥj + Ĥ` Q̃j + Q̃` ξ24,j` ξ25,j` 0

? ? 2X + 2X T − P̃j,∞ − P̃`,∞ 2I + 2ST − J̃j − J̃` 0 ξ36,j`

? ? ? 2Y + 2Y T − H̃j − H̃` 0 C̃T∞z,j + C̃T∞z,`

? ? ? ? 2αI D̃T
∞w,j + D̃T

∞w,`

? ? ? ? ? 2αI




= ξj` > 0,

(1)

1

(26)

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M with

ξ13,j` = ÃjX + Ã`X + B̃u,jL̃` + B̃u,`L̃j,
ξ24,j` = Y Ãj + Y Ã` + F̃j C̃y,` + F̃`C̃y,j,
ξ25,j` = Y B̃∞w,j + Y B̃∞w,` + F̃jD̃yυ,` + F̃`D̃yυ,j,

ξ36,j` = X T C̃T∞z,j + X T C̃T∞z,` + L̃Tj D̃T
∞u,` + L̃T` D̃T

∞u,j,

1
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where

P̂j,∞ =

nξ∑

i=1

(f ji + hji )Pi,∞, Ĵj =

nξ∑

i=1

(f ji + hji )Ji, Ĥj =

nξ∑

i=1

(f ji + hji )Hi,

P̃j,∞ =

nξ∑

i=1

f ji Pi,∞, J̃j =

nξ∑

i=1

f ji Ji, H̃j =

nξ∑

i=1

f jiHi,

Q̃j =

nξ∑

i=1

f jiQi, L̃j =

nξ∑

i=1

f ji Li, F̃j =

nξ∑

i=1

f ji Fi, D̃yυ,j =

nξ∑

i=1

f ji Dyυ,i

Ãj =

nξ∑

i=1

f jiAi, B̃∞u,j =

nξ∑

i=1

f ji B∞u,i, B̃∞w,j =

nξ∑

i=1

f ji B∞w,i, C̃y,j =
nξ∑

i=1

f ji Cy,i,

C̃∞z,j =

nξ∑

i=1

f ji C∞z,i, D̃∞u,j =

nξ∑

i=1

f ji D∞u,i, D̃∞w,j =

nξ∑

i=1

f ji D∞w,i.

(1)

1

(27)

Subsequently, the robustly parameter-dependent DOF control in Eqn. (6) stabilizes exponentially system (7) with ensured
H∞-performance upper bound α.

The next subsection expresses the LMIs set need to be satisfied to have H2/GS− DOF control.

3.2. H2 Gain Scheduling DOF
The finite-dimensional LMIs set to have H2/GS− DOF control are only presented, to eliminate the redundancy

by starting from PLMIs and then re-cast them in a finite-dimensional LMIs.

Lemma 3 Consider Eqn. (7) with a prescribed f j and hj vectors. If there exist matrices Pi,2, Hi, which are symmetric
positive-definite, and Wi, Ji, Li, Fi, Qi, S, Y , X matrices such that




P̂j,2 Ĵj ÃjX + B̃u,jL̃j Ãj B̃2w,j

? Ĥj Q̃j Y Ãj + F̃jC̃y,j Y B̃2w,j + F̃jD̃yυ,j

? ? X + XT − P̃j,2 I + ST − J̃j 0

? ? ? Y + Y T − H̃j 0

? ? ? ? I




= Ψj > 0,

(1)

1

(28)

for j = 1, . . . ,M




P̂j,2 + P̂`,2 Ĵj + Ĵ` Ψ13,j` Ãj + Ã` B̃2w,j + B̃2w,`

? Ĥj + Ĥ` Q̃j + Q̃` Ψ24,j` Ψ25,j`

? ? 2X + 2XT − P̃j,2 − P̃`,2 2I + 2ST − J̃j − J̃` 0

? ? ? 2Y + 2Y T − H̃j − H̃` 0

? ? ? ? 2I




= Ψj` > 0, (1)

1
(29)

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , with

Ψ13,j` = ÃjX + Ã`X + B̃u,jL̃` + B̃u,`L̃j,

Ψ24,j` = Y Ãj + Y Ã` + F̃jC̃y,` + F̃`C̃y,j,

Ψ25,j` = Y B̃2w,j + Y B̃2w,` + F̃jD̃yυ,` + F̃`D̃yυ,j,

1




W̃j − D̃2w,jD̃
T
2w,j C̃2z,jX + D̃2u,jL̃j C̃2z,j

? X + XT − P̃j,2 I + ST − J̃j

? ? Y + Y T − H̃j


 = Φj > 0, (1)

1

(30)
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for j = 1, . . . ,M




W̃j + W̃` − D̃2w,jD̃
T
2w,` + D̃2w,`D̃

T
2w,j C̃2z,jX + C̃2z,`X + D̃2u,jL̃` + D̃2u,`L̃j C̃2z,j + C̃2z,`

? 2X + 2XT − P̃j,2 − P̃`,2 2I + 2ST − J̃j − J̃`

? ? 2Y + 2Y T − H̃j − H̃`




= Φj` > 0,

(1)

1

(31)

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , where,

P̂j,2 =

nξ∑

i=1

(f ji + hji )Pi,2, Ĵj =

nξ∑

i=1

(f ji + hji )Ji, Ĥj =

nξ∑

i=1

(f ji + hji )Hi,

P̃j,2 =

nξ∑

i=1

f ji Pi,2, J̃j =

nξ∑

i=1

f ji Ji, H̃j =

nξ∑

i=1

f jiHi, W̃j =

nξ∑

i=1

f ji Wi,

Q̃j =

nξ∑

i=1

f jiQi, L̃j =

nξ∑

i=1

f ji Li, F̃j =

nξ∑

i=1

f ji Fi, C̃y,j =

nξ∑

i=1

f ji Cy,i,

Ãj =

nξ∑

i=1

f ji Ai, B̃2u,j =

nξ∑

i=1

f ji B2u,i, B̃2w,j =

nξ∑

i=1

f ji B2w,i, D̃yυ,j =

nξ∑

i=1

f jiDyυ,i

C̃2z,j =

nξ∑

i=1

f ji C2z,i, D̃2u,j =

nξ∑

i=1

f jiD2u,i, D̃2w,j =

nξ∑

i=1

f jiD2w,i.

(1)

1

(32)

Subsequently, the robustly parameter-dependent DOF control in Eqn. (6) stabilizes exponentially system (7) with ensured
H2-performance upper bound (Γ), as

Γ2 = min
Pi,2,Hi,Wi,Ji,Li,Fi,Qi,S,Y,X

max
i

trace
(
Wi

)
, (33)

4. RESULT AND DISCUSSION
The benefits of considering sensor senescence information during control design are expressed by simulations

and numerical models, where constraints are imposed on the system outputs’ performances. Two-fold of controllers
are synthesized. A collection of the estimated noise co-variance and time-varying parameters is invested in scheduling a
controller called fully gain scheduling. The other is scheduled by the latter only, which is called a partially gain scheduling.
As a measure, the proportional improvement is considered to compare the fully gain scheduling control and partially one
performances, such as

proportional improvement =
HPGS
2 − HFGS

2

HPGS
2

× 100%, (34)

where the upper bounds of the H2-performance for the proposed fully and partially GS− DOF controls are HFGS
2 and

HPGS
2 , respectively. The computation complexity regarding the optimization process investing the linear matrix inequali-

ties (LMIs) set is [29]

computation complexity = log(JK3), (35)

where the LMIs set have raws and scalar variables numbers denote by J and K, respectively. Note that, MATLAB R2019
and semi-definite programming (SDP); solver SeDuMi [30]; interfaced by the parser YALMIP [31] have been invested to
implement the simulation results. Example: consider system (1) with





A(ξ(k)) =



−1 + ξ1(k) + ξ2(k) 0 1

1 0.5 0

0 1 −0.5


 ,Bu(k) =



1

0

0


 , C∞z(k) =

[
1 0 0

]
,

B∞w = B2w =



1

0

0


 , Cy =

[
1 0 0

]
,D∞u = D2u =

[
1
]
, C2z =

[
1 1 1

]
,

(36)
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Table 1. Positions of System (36) poles (i.e., open loop) along a broad extent of scheduling parameters.

ξ1 = −0.2 ξ1 = −0.2 ξ1 = 0.2 ξ1 = 0.2

ξ2 = 10−7 ξ2 = 0.9 ξ2 = 10−7 ξ2 = 0.9

pole1 0.8579 1.0074 0.9131 1.1125

pole2 −1.0289 + 0.6758i −0.6537 + 0.7999i −0.8565 + 0.7619i −0.5062 + 0.7875i

pole3 −1.0289− 0.6758i −0.6537− 0.7999i −0.8565− 0.7619i −0.5062− 0.7875i

Table 2. Poles position of closed loop system along a broad extent of scheduling parameters, where the full GS− DOF
controller is considered.

ξ1 ∈ {−0.2, 0.2}, ξ1 ∈ {−0.2, 0.2}, ξ1 ∈ {−0.2, 0.2}, ξ1 ∈ {−0.2, 0.2},
ξ2 ∈ {10−7, 10−4} ξ2 ∈ {10−7, 10−2} ξ2 ∈ {10−7, 0.2} ξ2 ∈ {10−7, 0.9}

pole1 0.0663 0.0663 0.1364 + 0.0318i 0.3979 + 0.0506i

pole2 −0.0353 −0.0358 0.1364− 0.0318i 0.3979− 0.0506i

pole3 0.0081 0.0080 −0.0519 + 0.0986i −0.2340 + 0.4302i

pole4 0.0081− 0.0042i 0.0080− 0.0050i −0.0519− 0.0986i −0.2340− 0.4302i

pole5 −0.0050 −0.0046 −0.0670 + 0.0165i −0.2059 + 0.1054i

pole6 −0.0050− 0.0001i −0.0050 −0.0670− 0.0165i −0.2059− 0.1054i

where the bounds ξ1(k) ∈ [−0.2, 0.2], ξ2(k) ∈
[
10−7, 0.9

]
are imposed to the time-varying parameters. The scheduling

parameters variations’ rates, ∆ξ1(·) and ∆ξ2(·), are assigned to 0.02 and 0.002, respectively. Correspondingly, ξ1(k) =
0.2 sin( 0.01∗k ) and ξ2(k) = 0.15 cos( 0.001∗k )+0.15 are the scheduling parameters’ pattern. The considered system
above was firstly employed in [32] and later in [33], and it re-considered here as a state-of-art in standing literature,
and to provide a fair comparison to these in existing LPV literature. Finally, a soft modification is made to the model
to address the sensor senescence and demonstrate the proposed approach. Evoke that the GS− DOF control syntheses
is the desired target, where the controller minimizes the upper bound of the system output H2-performance imposes to
the constraint on the H∞-performance bound. In addition, α = 100 is the assigned H∞-performance upper bound. A
line-search optimization technique is invested in obtaining this value, and it gives a feasible solution employing the SDP,
SeDuMi along with YALMIP. Indeed, regarding the considered problem, the value near the minimum feasible value is
α = 100. A worthy contrast between the GS− DOF controller and a conventional one is that the conventional controller
dynamic matrices are parameter independent. Comparatively, the GS− DOF controller matrices in Eqn. (6) are parameter
dependent matrices. Specifically, GS− DOF controller parameter dependent matrices are a convex collection for the
parameter value at that moment, the DOF controller matrices computed at the vertices of the system for the imposed
parameters and their alteration rates domains. Consequently, stack of matrices are computed for system performance in
different application fields, as [9], transmission lines [10, 11], wireless sensor networks [12, 13], high-voltage systems
[14]. For instance, utilizing Lemmas 3 and 2, system (36); and considering fully GS− DOF controller (6), where the
sensor senescence is set to 0.9, the robustly synthesized DOF controller matrices are

Ac1 =




0.0321 −1.6781 −0.3603
0.6125 −0.7683 −0.2779
−0.1500 0.0759 −0.3946


 Ac2 =




0.0396 −2.3966 −0.5935
0.6127 −0.9282 −0.3273
−0.1497 0.0576 −0.4024




Ac3 =




0.0428 −2.6228 −0.6669
0.6119 −0.9549 −0.3358
−0.1492 0.0441 −0.4068


 Ac4 =




0.0500 −3.9998 −1.1003
0.6024 −1.2441 −0.4277
−0.1465 −0.0336 −0.4304




Bc1 =



0.0141
0.0079
0.0045


 Bc2 =



0.0198
0.0092
0.0046


 Bc3 =



0.0216
0.0094
0.0047


 Bc4 =



0.0327
0.0117
0.0053




Cc1 =
[
−41.3546 −51.1791 −106.5410

]
Cc2 =

[
−61.8772 −49.1910 −100.3390

]

Cc3 =
[
−68.5629 −48.5762 −98.1815

]
Cc4 =

[
−87.4414 −45.4387 −90.6900

]

For the system poles’ locations, Table. 1 shows the positions of the open-loop system poles upon a broad extent of param-
eters. Obviously, the open-loop system owns unstable poles upon a vast extent of parameters. The full gain scheduling
control is taken into account for the location of the closed loop poles. Table. 2 shows the positions of those poles for
multiple values of the scheduling parameters, where they are located within a unit circle. Regarding the system perfor-
mance, Fig. 1 shows the upper limit of the H2-performance like a function of the sensor senescence for full and partial
GS− DOF controls. Fig. 2 shows the proportional improvement defined in Eqn. (34) for the proposed GS− DOF con-
trollers. Those figures have motivating explications: as the sensor becomes senescence, the system performance to fulfill
the imposed constraints gets worse. Besides, for the imposed sensor senescence information, the upper bound of the H2-
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Fig. 1. The upper limit of the H2-performance (i.e., Γ in Eqn.(33)) like a function of the sensor senescence in terms of the
estimated co-variance of the sensor measurements noise (i.e., V̂) for full and partial GS− DOF controls.
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Fig. 2. The proportional improvement defined in Eqn. (34) like a function of the sensor senescence in terms of the
estimated co-variance of the sensor measurements noise (i.e., V̂) for the synthesized GS− DOF controllers.

performance can be realized under the H∞-performance upper bound. Moreover, the synthesized full GS− DOF control
compensates the impact of slow-deterioration of sensor effectiveness due to senescence and guards the coveted perfor-
mance. Otherwise, the partial GS controller attempts to compete with full GS for a while and then starts to retreat. To
clarify, the designed full GS− DOF control has better performance over the partial one since the scheduling parameters
only schedule the latter due to sensors senescence information. Finally, the closed loop system’s performance with all
GS− DOF controls deteriorates with fairly senescent sensors. Equally important, considering the full GS− DOF con-
trol and Lemmas 3 and 2, the designed controller effort demonstrates in terms of the L2-norm of the Lyapunov matrix,
Popt, that satisfies Lemmas 3 and 2, while achieved control effort presents in terms of the L2-norm of the solution of
discrete-time Lyapunov matrix equation, Plap. Fig. 3 shows the designed and achieved controller efforts expressed by the
L2-norm of the Lyapunov matrix (i.e., ||Popt||2 and ||Plap||2, respectively) as a function of the sensor senescence. Clearly,
the synthesized full GS− DOF control has achieved-effort less than the designed one for the considered system overall
vertices, since the fully GS control scheduled by a combination of scheduling parameters due to system parameters and
sensors senescence information. Touching with the computation complexity evaluation, Fig. 4 presents the computation
complexity, and it shows that a full GS− DOF control has the highest computation complexity, while partially one has
the lowest complexity. Regarding the system response to initial conditions. The time response for system (36) states have
been shown in Fig. 5, considering full GS− DOF control, where sensor senescence information (i.e., noise co-variance)
is imposed to 0.9. Worth mentioning that the poles number in the upper right sub-figures is six, which are calculated
at the closed loop system vertices (i.e., vertices of the augmented system of the plant and controller); see Table 2 for
details. Those figures have impressing interpretation: when the sensor senescence grows, the response becomes slower.
That is, the designed GS− DOF control requires more period to compensate for the sensor senescence impact. Next, a
summarization of the current work is presented.

5. CONCLUSION
In this work, a robust multi-objective GS− DOF control for LPV systems with sensor effectiveness degeneration

caused by sensor senescence is addressed, where the synthesized gain scheduling (GS) dynamic output feedback (DOF)
controller is imposed to a constraint on the H∞-performance output. The recent literature considers the output measure-
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Fig. 3. The designed and achieved controller efforts expressed by the L2-norm of the Lyapunov matrix (i.e.,
||Popt||2 and ||Plap||2, respectively) as a function of the sensor senescence (i.e., co-variance of the sensor measurements

noise V̂), where the solid and dotted lines associated with achieved and designed Lyapunov matrix L2-norm, respectively.

Fig. 4. Computation complexity (i.e., Eqn.(35)) comparison between synthesized GS− DOF controls.
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Fig. 5. Closed-loop system poles (upper right) and closed loop system initial condition response (rest of the sub-figures)
for the considered system with fully gain scheduling control, where the noise co-variance is imposed to be 0.9.
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performance degradation as a fixed term is a conservative assumption. This paper considers that sensor effectiveness de-
generation due to sensor senescence is a dynamical process, and it is characterized by the time-varying noise co-variance
of the sensor measurements. Utilizing that, a multi-objective GS− DOF controller is designed using the LPV framework
as well, as two sorts of controllers are synthesized. That is, a full gain scheduling (GS) controller is scheduled by a blend
of the time-varying parameters, which are caused by the variation of system parameters and information of the sensor
senescence alteration. A partial gain scheduling (GS) controller is scheduled only by the time-varying parameters caused
by the sensor senescence information alteration. The layout of multi-objective GS− DOF control is formulated as an
integrated H2&H∞ control issue that reduces the upper bound of system output H2-performance exposed to a constraint
on the H∞-performance. This issue can be remedied effectively by employing LMI optimization mechanisms. The de-
signed DOF controller invests the sensor senescence information to minimize its impact upon the system and enhances the
closed loop system performance. The synthesized multi-objective GS− DOF controller remedies for deteriorating sensor
effectiveness caused by senescence and preserves the aimed performance. In addition, the synthesized control ensures
the closed loop system stability. The simulations indicate that the synthesized full GS control does better than the partial
one regarding the performance with steadily deteriorating sensor performance. Equally, the controller’s performance gets
worse when the sensor senescence increases significantly. Experimental validation is considered as an extension of future
work of the current one.
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