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 SQL injection (SQLi), a well-known exploitation technique, is a serious risk 

factor for database-driven web applications that are used to manage the core 

business functions of organizations. SQLi enables an unauthorized user to get 

access to sensitive information of the database, and subsequently, to the 

application’s administrative privileges. Therefore, the detection of SQLi is 

crucial for businesses to prevent financial losses. There are different rules 

and learning-based solutions to help with detection, and pattern recognition 

through support vector machines (SVMs) and random forest (RF) have 

recently become popular in detecting SQLi. However, these classifiers ensure 

97.33% accuracy with our dataset. In this paper, we propose a deep learning-

based solution for detecting SQLi in web applications. The solution employs 

both correlation and chi-squared methods to rank the features from the 

dataset. Feed-forward network approach has been applied not only in feature 

selection but also in the detection process. Our solution provides 98.04% 

accuracy over 1,850 recorded datasets, where it proves its superior efficiency 

among other existing machine learning solutions. 
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1. INTRODUCTION  

The versatility of the internet raises the expectations of its user by offering limitless information and 

connectivity. Most businesses, therefore, reshape their existing organizational and commercial processes into 

internet-based solutions, i.e. web applications, to reach its targeted audience. Web applications provide 

different modes of user engagement in the system so that businesses can observe stakeholders’ need for the 

product(s) and can offer them customized deals. All critical business information is stored in the application’s 

database whereby owners or the system can make the appropriate decision for action. Therefore, ensuring the 

security of the stored data is a vital responsibility of the system’s designer/developer.  

However, a large number of web applications are developed without following the secured 

convention of software development [1]. As a result, web systems are vulnerable to different kinds of cyber-

attacks [2]. According to the IBM X-Force Threat Intelligence Index, 79% of malicious incidents result from 

injection attacks. The number of injection attacks has increased 37% in 2017 compared to 2016 [3]. Also, 

since 2010 injection attacks have been at the top of the list of web application attacks, according to the Open 

Web Application Security Project (OWASP) [4,5]. These attacks can cause huge financial and reputational 

losses to business organizations [6–13]. 

An SQLi attack occurs due to SQLi vulnerabilities of web applications, which lead the intruder to 

perform an attack [14,15]. Such attacks mostly occur due to a lack of proper validation of inputs of web 

applications [16–23]. The OWASP’s records from 2010 to 2017 reveal the carelessness of web developers 

about good practices for developing web applications. 
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Fig. 1 shows an approach to checking SQLi vulnerability. When there is an escape string, i.e., single 

quotation, backslash, etc. at end of the URL, it needs also to be at the end of the SQL query generated for the 

URL, which makes the SQL query a form of payload. 

 
Figure 1. SQLi vulnerability check of a web application. 

 

Records in the database correspond to the SQL query generated against the web application’s URL. 

A query with a single quote at the end is unknown to the database for any records it contains. Therefore, this 

forces the database to throw exceptions from which the SQLi vulnerability of a web application can be 

known. After analyzing the exceptions, attackers try to inject several malicious SQL queries to get access to 

secured confidential information. 

The following example explains the processes showed in fig. 1 that how SQLi vulnerability can be 

disclosed by converting a simple SQL query which is produced from a URL to a payload.  

http://www.example.com/product.php?id=10 

 

Let the above URL a targeted web application to be checked SQLi vulnerability. 

After adding a single quotation at the end of URL it looks like, 

http://www.example.com/product.php?id=10' 

 

This generates a http request to the web application’s server and the predefined SQL query for this 

URL tries get executed with the single quotation 

SELECT * FROM products WHERE id_product=$id_product 

//This query is to be executed 

 

For the single quotation with the SQL query the database throws an error/exception as there is a 

syntactic mistake in the SQL query. 

Warning: mysqli_fetch_array() expects parameter 1 to be mysqli_result, bool given in 

/nfs/c05/h02/mnt/83231/domains/example.com/html/product.php on line 67 

From this error/exception an attacker gets fingerprinting information and a determination that this 

web application builder might not follow all the coding conventions. 

There are numerous SQLi detection approaches to diminish such attacks through SQLi vulnerability 

exploitation. These detection approaches can be of various types: detection using pattern matching [24-32], 

learning-based detection [33-43], and other approaches [44-49]. 

 

1.1. Pattern Matching Approaches 

Pattern matching approaches are mostly focused on comparing a predefined benign SQL query with 

the SQL query generated at the runtime. Anything extra coming with the SQL query at the runtime is 

considered as an injection attempt. 

The papers [24-32] use pattern matching approaches to detect and prevent SQLi attacks. These 

operations are performed at the runtime, which makes these practices time-consuming and complex. Wahid 

Rajeh and Alshreef Abed have proposed a three-tier method [24]. In their architecture, they use several types 

of operations to detect and prevent SQLi attacks. But their method seems costly and time-consuming. Mao 

Chenyu and Guo Fan [25] have proposed an intention-oriented approach to detect and prevent SQLi attacks. 

At the runtime they check every SQL query corresponding to their SQL intention description language, 

which is then converted into deterministic finite automata. Thereafter, it is checked if the request is for an 

SQLi attack or not. C. Shi et al. [26] proposed a self-learning SQLi detection approach with a pattern 
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matching and feature-filtering method. They generated a tree of selected SQL syntaxes to make a pattern and 

use that pattern to identify SQLi attacks. D. Kar et al. [27] developed a tool called SQLiDDS, which they 

used to transform particular portions of the SQL query into plain text and compared it with the runtime SQL 

query. Inyong Lee et al. [28] proposed a method for SQLi detection where the method removes the value of 

an SQL query attribute of web pages when a user submits parameters; it then compares the query with the 

predetermined query. A. Ghafarian [29] proposed a hybrid model where they monitored the execution of all 

incoming SQL queries dynamically and performed string matching between the received query and their 

expected query. Then they compared the result of the string matching process with the valid SQL query to 

identify SQLi attacks. In their proposed model, R.P. Karuparthi and B. R.P. Karuparthi and B. Zhou [30] 

proposed a dynamic query matching technique where they compared the executed runtime SQL query with a 

sanitizer, SQL master file then with predefined threshold value respectively to detect SQLi attack. The result 

is then sent to the approximate matching algorithm for analysis. A. Kumar and S. Binu [31] proposed a 

method where they made a set of tokens with the SQL query and matched them with user input at the runtime 

to detect SQLi attacks. N. Lambert and K. S. Lin [32] broke down various portions of the legal SQL query 

and used it in comparison with the user-defined SQL query to identify SQLi attacks. 

 

1.2. Learning-based approaches 

Learning-based approaches focus on studies to detect SQLi wherein solutions based on machine 

learning are used to solve the problems. Nowadays, learning-based approaches perform better than traditional 

rule-based approaches. Rawat and Shrivastav [33] proposed a detection approach based on SQL injection 

performable query tokenization [32] using a support vector machine (SVM). Kamtuo and Soomlek [34] 

inspected queries that could be used to perform SQLi, and they defined some specific conditions to produce a 

dataset in order to detect SQLi vulnerability in a web application. They compared various machine learning 

algorithms and received the best performance with the decision jungle algorithm. Zhuang Chen et al. [35] 

constructed a dictionary using the selected keywords from SQL injectable queries and HTTP requests, where 

the Word2vector algorithm was used to extract dataset from the dictionary. They also selected SVM as a 

learning algorithm to predict SQLi vulnerability. Shar and Tan [17] achieved above 85% prediction accuracy 

on SQLi and cross site scripting (XSS) vulnerabilities in different web applications using WEKA [36]. They 

implemented a tool named “PhpMinerI” to extract data by static analysis. Hua et al. [37] used statistical 

features and existing security knowledge to extract the features of SQLi attack requests. They proposed a 

web attack detection technology using SVM. Joshi and Geetha [18] used blank separation and query 

tokenization to prepare a dataset of SQLi detection features. They used a Naive Bayes algorithm to perform 

the detection operation. Moises et al. [38] analyzed the criteria of SQLMap to detect the frequencies of 

keywords and non-alphabetic characters used in SQLi. They used Naive Bayes and decision tree classifiers to 

classify SQLi attacks. D. Das et al. [39] indexed the strings of dynamic SQL queries and employed SVM to 

classify a runtime SQL query as normal or an attack attempt. Y. Wang and Z. Li [40] generated a parse tree 

of SQL queries, analyzed HTTP request parameters, and used them to compare with another parse tree. They 

used an SVM classifier to detect SQLi attempts. Other learning-based studies also found for phishing 

detection of web applications using features extraction methods.Sahingoz et al. [110] proposed a language-

independent real-time anti-phishing system containing seven different algorithms for classification and NLP-

based features to detect phishing websites. Kasim [111] introduced an approach that evaluated a phishing 

event using the classification of deep-hybrid features accompanied by the Light Gradient Boosted Machine 

model as soon as the web address entered the address bar. Yang et al. [112] proposed a deep learning-based 

fast phishing detection approach focusing on the multidimensional features. Lakshmi et al. [113] suggested a 

unique approach to discovering phishing websites where the hyperlinks exist in the HTML page's source 

code in the corresponding website. Basitet al. [114] reviewed various phishing attack detection techniques 

based on Artificial Intelligence (AI) to evaluate the qualities and shortcomings of the given methodologies.    

 

1.3. Other Approaches 

C. Ping [41] used the second-order SQLi to bypass the protection provided to web applications. 

They proposed adding random numbers to the selected keywords of executed queries to detect and prevent 

SQLi attacks. B.D. Priyaa and M. I. Devi [42] collected a query tree from database logs and extracted SQLi 

vulnerability features. They used an efficient data-adapted decision tree (EDADT) and binary SVM to 

effectively distinguish between SQLi attacks and normal SQL requests. P. Li et al. [43] proposed an SQLi 

attack detection technique that analyzes the user’s interaction with the web application. They analyzed the 

user’s log of web applications to find out the criteria of SQLi attacks and applied them to their model. A. 

Ciampa et al. [16] developed a tool to inspect SQLi vulnerability of web applications. K. Kemalis and T. 

Tzouramanis [44] proposed a technique where they extracted some syntactical structures of SQL queries of a 

web application and filtered runtime SQL queries based on those structures to detect SQLi attacks. V. 
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Shanmughaneethi and S. Swamynathan [45] proposed syntactic verification with XML and error message 

customization for SQLi attack detection. 

Thus, researchers sought to detect and prevent SQLi attacks with either traditional rule-based 

approaches or machine learning-based approaches, while some worked with other approaches. However, no 

studies have so far used deep learning-based approaches in an SQLi attack scenario. Moreover, all the 

researchers focused on the SQL query, but no one considered the features of a web application to deal with 

SQLi attacks. 

SQLi refers to the result of formidable threat to security and privacy concern for both client and web 

application. These threats become possible for not abiding the proper development conventions [1,30] by the 

developers which imposes the state of weakness of a web application. Lack of those conventions produce 

errors that provide information [29,30] about the technologies of that web application. Operators in SQL 

queries by which attackers can operate an attacking expedition to a web application are used to fuel learning 

based SQLi detection [34,35,38]. Payloads through user inputs [31] and clicking behavior [43] on different 

parts of a web application can also lead to SQLi attack.  

In view of the above, it can be perceived that SQLi attack can be performed through different types 

of strategies and various parts of a web application. Those strategies and different parts together can be called 

web application’s features by which a proper implication of the SQLi attacks can be delineated. 

Among the types of SQLi detection solutions discussed earlier learning based approaches have 

become very popular due to its precision in detection problems. By this time shallow architectures such as 

Support Vector Machine (SVM), Naive Bayes are being used widely in various detection and classification 

problems. However, these architectures have their limitations which can produce problems in their respective 

ways. Some relatable drawbacks of SVM are, it is time and memory consuming [46-52], complexity in 

choosing right kernel function [51-54], high algorithmic complexity [50-52] and inability to work with 

massive data [55]. Independence assumption [47,51,56,57], sometimes providing bad results with large 

dataset [47,57] and sometimes providing good results with large dataset [48,50,58], these are relatable 

drawbacks of Naive Bayes. And for that, works done by other researchers on this issue might not provide 

very accurate results. Besides, deep learning is another learning based solution which has a very good 

reputation over other learning based solutions [59,60]. Moreover, deep learning based solutions have been 

shown providing better results than other learning based approaches [59-65] including SVM and Naive 

Bayes. 

Aiming the above problem, this paper proposed a technique to detect web application's SQLi 

vulnerability based on various web features using deep learning. This technique focuses on web features that 

could be involved in sensitive data disclosing or can lead to unauthorized access to the database of a web 

application. Those web features have been elected after analysis of the responses resulted from various 

actions of SQLi on web applications. Moreover, appearances of the name of these web features in scholarly 

articles on SQLi increases the assessment of those features. 

The contributions of the present study are as follows: 

● A dataset with 19 SQLi vulnerability features has been produced using manual penetration, testing 

the following double-blinded testing strategy. 

● A deep learning-based approach has been used to detect SQLi vulnerabilities. 

 

The rest of the document is organized as follows: 

Section II describes the overall architecture of our SQLi vulnerability detection framework and also 

tells how the framework works in detail. Section III shows the experimental results and presents the ultimate 

feature set used in our framework. Section IV provides a summary of this research and describes the future 

outlook. 

 

 

2. PROPOSED MODEL 

Fig. 2 shows the proposed model of SQLi vulnerability detection using a Feedforward Neural 

Network. The model is designed to find SQLi vulnerability focusing on predefined rules and deciding 

whether a web application is vulnerable or not. It describes the extraction, processing, and optimization of 

datasets. It uses feature selection methods along with the feed-forward neural network to bring the dataset 

into the best result-producing state. Finally, the neural network model is utilized to predict the SQLi 

vulnerability of the target web application with the dataset. 
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Figure 2. Proposed model of SQLi vulnerability detection. 

 

Features are engineered on the basis of the logical conditions of SQL procedures and web 

applications usability facilities. Those features are used to perform data collection by checking every aspect 

of all the particular web applications. Hence, real web data related to SQLi have been acquired and with them 

some data which are generated based on real data have been combined to get an operational dataset. Those 

features then preprocessed by some predefined processing techniques and then feature selection methods 

have been applied to get the final dataset. After that, that dataset has been sent to perform the classification 

operation from which a decision can be taken about a particular web application. 

From a user’s perspective, the SQLi vulnerability detection processes using our model have the 

following steps: 

(1) The user will take the desired web address of a web application and put it to a script written in 

Python. 

(2) The user will be directed to the web application that could be vulnerable to SQLi. Basically, this 

web application is test data. 

(3) The script will start processing to extract the features of the test data (current web application) and 

save them in a data structure. 

(4) At this stage, to guess the type of the web application, the implemented model will be activated 

based on predefined rules learned from previous data collected from other web applications. To 

predict the types of the test data, the rules of the classifier are utilized.  

(5) After the prediction operation, a warning will signal if the web application is vulnerable to SQLi; 

otherwise, that web application will be marked as benign. 

 

The following sections explain the methodologies used for building the proposed framework. The 

framework supports the prediction model in such a way that it can predict the web application’s SQL 

injection vulnerability. The technique used for SQL injection vulnerability detection and prediction, and the 

neural network model, research methods, and plan are described. 
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2.1. Formal definitions of dataset 

As it has been said earlier, this paper focusing on web application's various features that can put a 

web application at risk and no state-of-art has been given an eye on that issue, implies a new dataset 

construction using the web features. That dataset consists of data found with practical testing on various web 

applications to maintain efficiency and precision. Based on those real life data some dummy data was created 

to prevent data inadequacy for the operation of deep learning models. Those data have been combined and 

went through some processing techniques to increase the integrity of the dataset. 

Definition 1: D denotes the dataset, while Cj denotes a class in the dataset. 

Definition 2: FeatureValue refers to the feature name and feature value. Feature name and value are denoted 

as (Fi, fi). 

Definition 3: The nth row in the dataset D refers to a set of lists of feature values, which can be denoted as 

(Fn1,fn1),….,(Fnk,fnk). 

Definition 4: FeatureValueSet refers to a set of disjoint attribute values contained in a row as a training case, 

denoted as {(Fi1,fi1),….(Fik,fik)}. 

Definition 5: {antecedent, C} denotes the form of a rule item r in the D, where the antecedent refers to 

FeatureValueSet and C refers to the class. 

Definition 6: A single rule belonging to a class is represented as antecedent → C, where the antecedent 

refers to FeatureValueSet and C refers to the class. 

 

Table 1. Dataset Sample 
Instance Number Attr1 Attr2 Attrn Class 

1 F1 F2 Fn C0 

2 F1 F4 Fn C0 

3 F3 F7 Fn C1 

4 F5 F6 Fn C1 

5 F2 F5 Fn C0 

 

2.1.1. Feature Extraction for SQLi Vulnerability 

  The extraction process has been executed in this study to find out the essential features in order to 

detect SQL vulnerability in a web application based on the previous literature. These features help the 

proposed model to classify the given weakness of any web application effectively and efficiently. In this 

study, 19 different features have been used to determine the class of vulnerability. These features are 

discussed in the following sections. 

 

2.1.2. Selected features 

The following subsection presents the features used in our detection operation, as well as their 

corresponding rules. 

(1) Input Validation: Unvalidated input points of a web application offer an easy way to inject malicious 

SQL code in order to get access to confidential information [16-23]. 

Rule: If inputs are validated → Legit 

                      else → Suspicious 

 

(2) Parameter Tampering: Parameters are used to identify records in the database. Tempering parameters 

provides exceptions when no records in the database can be identified [16,18,20,21,51]. 

Rule: If parameter temperable → Suspicious 

                     else → Legit 

 

(3) Exception Handling: Exceptions are reactions of the databases when faulty SQL requests are sent to it. 

The database can disclose its SQLi vulnerability through exceptions [66]. 

Rule: If exceptions handled → Legit 

                  else → Vulnerable 

 

(4) Use of parameterized query: The existence of parameters in query refers to a particular record in the 

database. Tempering with parameters raises exceptions [21,22,67,71]. 

Rule: Existence of parameter → Suspicious 

                  else → Legit 

 

(5) Visibility of Page Extension: The visibility of page extension denotes that the possible web 

technologies have been used in the web application [68]. 
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Rule: Existence of page extension → Suspicious 

                   else → Legit 

 

(6) Illegal Input Acceptance: The acceptance of illegal inputs allows injecting any type of malicious 

codes that bypass the security logics of the database [21,69]. 

Rule: Acceptance of illegal inputs → Vulnerable 

                   else → Legit 

 

(7) Error Controlling: Not controlling fatal errors in the web application and the database can increase 

chances of attack to the web application [16,21,23,72]. 

Rule: Controlling error → Legit 

                  else → Suspicious 

 

(8) DB Info Disclosing: Database info helps attackers to find the drawbacks of a particular database 

technology [70-74]. 

Rule: Disclosing DB info → Suspicious 

                   else → Legit 

 

(9) SQL Version Disclosing: The limitations of a specific SQL version can disclose exploitable 

vulnerabilities [23,71,75]. 

Rule: Disclosing SQL version → Suspicious 

                    else → Legit 

 

(10) Guessable Table/Column Name: Gaining access to private information would become easier if an 

attacker could guess the table/column name of the database [76,77]. 

Rule: If easy to guess table column name → Suspicious 

                    else → Legit 

 

(11) Directory Readability: An attacker can collect internal information if the directory can be read to 

perform a SQLi attack [73]. 

Rule: If directories readable → Suspicious 

                 else → Legit 

 

(12) Allowing Null Byte: Force the application to minimize exceptions to continue the execution of 

malicious query [78]. 

Rule: Allows null byte → Suspicious 

                  Else → Legit 

 

(13) Proper Implementation of Firewall Rules: Find out the level of secured firewall being used to 

protect the database as well as the web application [43]. 

Rule: Rule: If firewall implemented → Legit 

            else → Suspicious 

 

(14) Trust Intruders: Make decisions about whether the system allows suspicious activities or not [21]. 

Rule: Trust intruders → Suspicious 

             else → Legit 

 

(15)  Use of Real Escape String: Deny the execution of SQL queries containing escape strings [47,79]. 

Rule: Escape string uses → Legit 

              else → Vulnerable 

 

 

(16) Parameter Encoding: Sometimes developers try to block SQL query execution by encoding the 

parameter [21,72]. 
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Rule: Encoded Parameter → Legit/Suspicious 

            else → Legit/Suspicious 

 

(17) Encoding Data while Taking Input: Encoding user inputs can be used to defend against SQLi 

attacks [21,72]. 

Rule: If inputs are encoded → Legit/Suspicious 

                       else → Legit/Suspicious  

 

(18)  Execution of Malicious Code: If any kind of malicious code is executable in a web application, then 

it must be in serious danger [16,21,23,71]. 

Rule: If can execute malicious code → Vulnerable 

                               else → Legit 

 

(19) SQL Server Info: An attacker can exploit the system’s database based on SQL server information 

[71,73]. 

Rule: Gaining SQL server info → Suspicious 

                            else → Legit 

 

 

2.2. Preprocessing 

We have used inconsistency reduction, handling null value, and data standardization to preprocess 

the data. These techniques are commonly used to ensure the integrity of data in a dataset.  

 

2.2.1. Inconsistency Reduction 

Several types of inconsistencies have been discussed in the previous literature [80-82]. They cause 

serious problems in the dataset and come in the way of right decision-making, thereby decreasing usability 

[83]. Bonding between sets of data has a weakening effect and results in an undesired state of the dataset, 

which defines the question of integrity. To counter this problem, other researchers [82, 84-86] have used 

various techniques and mechanisms. Inconsistent data may lead to an inaccurate training accuracy in the 

model.  

 

2.2.2. Missing Value Reduction 

In data preprocessing, missing values remain a concern to the researchers because it spoils the 

efficiency of data in the dataset and forces the classification algorithms to produce unreliable and 

insubstantial results [87-89]. It could make features biased as well as hamper the desired output from the 

dataset [90]. Steps to handle this problem have been discussed on [89-92].  

 

2.2.3. Data Standardization 

The data processing technique converts the structure of an unbalanced dataset to a common data 

format, known as data standardization [93, 94]. It improves the quality of attributes in the dataset and 

prevents an attribute from dominating [96]. Data standardization transforms data from the dataset after the 

data is pulled from the source and before it is loaded into the model for training. Sometimes some features in 

the dataset influence the training process and make accuracy biased [93-95]. 

 

2.3. Feature Selection 

Correlation coefficient and chi-square feature selection methods have been used to have a better 

understanding of the features. These feature selection methods were chosen because of their model 

independency. Correlation helps to find out the relationship between features, because highly correlated 

features can influence the training of the model and lead to biased prediction [97-99]. The chi-square method 

helps to understand the significance of the features by ranking them [100-103]. The later sections discuss 

these techniques. 
 

 

 

 

2.4. Deep Learning for SQLi Vulnerability Classification 

The deep learning model has been chosen for the prediction operation because it gives best-in-class 

performance in solving classification problems. In recent years researchers have had a good success rate in 
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solving detection problems using deep learning [59-65]. The deep learning model used in this paper contains 

19 input neurons with one hidden layer. The activation functions used in the model are a rectified linear unit 

(ReLU) in the first layer and a sigmoid in the second layer. A formal description of the used neural network 

is provided below. 

Let n be the neural network, ln = {1,2,3} a layer in the n neural network, xn the input to the 

corresponding n neural network, i(ln) the incoming inputs to the layer ln, rn the output of the layer ln, w(ln) the 

weights of the layer ln, b(ln) the biases of the layer ln, f the activation function (ReLU) in the layer ln, and o the 

function in the output layer (Sigmoid). The equation of the feed-forward operation of the neural network is as 

follows: 
 

r(0n) = x          (1) 

 i(ln+1) = w(ln+1) + b(ln+1)        (2) 

 r(ln+1) = f(r(ln+1)) = max(0,r(ln+1))       (3) 

r(3) = o(r(3)) = 1/(1+e-(r(3)))        (4) 

The predefined labels for the inputs are determined as shown in Equations (5) and (6). L defines the 

predefined labels of inputs, and L0 defines the predicted label result.  

{𝑟(3) ≥ 0.5, 𝐿 = 1   𝑟(3) < 0.5, 𝐿0 = 0                                                                                                                     (5) 

      

During the training process, the used neural network model is tuned to minimize the value of the 

loss function, i.e. cross-entropy function. The loss function is described as follows: 

𝐽(𝐿, 𝐿0) = − ∑

2

𝑖=1

𝐿(𝑖)𝑙𝑜𝑔𝐿0
(𝑖)

+ (1 − 𝐿(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐿0
(𝑖)

)                                                                        (6) 

 

2.5. Regularization 

In the case of neural network model training, overfitting is one of the major problems. An overfitted 

neural network with a particular train set cannot generally be used in classification. In the neural model of 

this research, dropout regularization [104] is used to avoid the overfitting problem. Dropout is a technique to 

skip some units of the neural network during the training operation. The incoming and outgoing connections 

of some neurons are removed, and during this the probability remains fixed. It prevents the neural network 

model from becoming too dependent on a specific set of units and their associated weights and biases. In this 

research the neural network is modeled with the dropout rate of 0.2. This rate is generally used in typical 

neural network-based models. 

 

2.6. Validation 

The overfitting problem discussed in the section on regularization can also be solved by cross 

validation. Here, K-fold cross validation [105] has been used to validate the efficiency of data in the dataset, 

as well as to make the training process effective. K-fold cross validation is a technique to use the dataset as a 

validation set by splitting the whole dataset into equal folds with the random selection of samples. During the 

validation process, one fold is randomly selected for test operation, while the rest is taken for training 

operation. This process is repeated until all the folds are used as test and training sets. This ensures traversing 

through all the data in a dataset and helps to have a good understanding of the dataset used in the model. The 

dataset in this research was split into several folds with 30 samples in each fold. 

The novelty of the work includes creating a new dataset by extracting 19 SQLi features after 

observing the state-of-the-art literature and conducted black-box manual penetration testing to verify the 

legitimacy of the records. Feedforward Neural Network classification algorithm has been nominated to detect 

SQLi injection vulnerability where it uses both correlation coefficient and chi-square method for selecting 

features to increase its accuracy. 

 

3. EVALUATION 

3.1. Experimental Environment 

  We used a Windows 10 computer with Intel Core i3-5005U CPU, integrated GPU, and 4GB RAM 

to deploy our proposed model. We implemented the module of the model in Python. Most of the modules 

were executed on the CPython Interpreter [106]. The feed-forward neural network modeling tool was 

implemented using the Keras library [107]. Scikit-learn [108] and Tensorflow [109] were also utilized to 

implement the clustering and other machine learning algorithms. 

 

3.2. Correlation of input attributes 
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Linear correlation is used to identify correlations between 19 input attributes of 1,850 SQL injection 

vulnerabilities and to find samples containing a dataset in the neural network. After finding the correlation 

among 19 features, iteration has been performed based on the correlation range of -1 to 1, using the score 

obtained from the correlation operation. In each phase of the iteration, the neural network has been trained 

using the reduced features based on the correlation range value to see which features are effective to detect 

the vulnerability. The iteration continues until the best accuracy is acquired. Fig. 3 shows the reduced 

features and the correlation heatmap between them. 

 
Figure 3. Visualization of correlated features. 

 

3.3. Chi-square of correlated input attributes 

The chi-square feature selection method is applied to the features reduced by correlation to find out 

the significance level of the features shown in Fig. 4. 

 
Figure 4. Plot describing chi-square level of significance. Each plot refers to a particular attribute and shows 

how important they are to the classification operation. 

 

No samples were reduced during this process. After applying chi-square, the same type of iteration 

has been done as in the correlation operation to identify important features. This time the iteration is 

performed based on the chi-square value of significance. Table 1 summarizes the reduced features and their 

significant values. 
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Table 2. Extracted features and the value of importance from Fig. 5 

Attributes Chi-square scores Significance 

Input validation 288.256 Significant 

Parameter tampering 334.047 Significant 

Exception handling 409.634 Significant 
Use of parameterized queries 5.68944 Not significant 

Visibility of page extension 4.19805 Not significant 

Illegal input acceptances 290.574 Significant 
Error controlling 510.157 Significant 

DB info disclosing 440.99 Significant 

SQL version disclosing 420.94 Significant 
Guessable table/column name 297.471 Significant 

Directory readability 0.000650201 Not significant 

Allowing null byte 78.2139 Significant 
Trust intruders 348.714 Significant 

Use of real escape string 28.6231 Not significant 

Parameter encoding 5.63055 Not significant 

Encoding data while taking input 33.3797 Significant 

Execution of malicious code 377.44 Significant 

 

3.4. Model validation 

Model validation refers to the integrity and reliability of the neural network model. A validated 

model ensures a better acceptance of classification results. The used model was validated based on a 

comparison of the results of regularization and validation. Both suggest that the model is reliable to use in 

this scenario. 

 

3.5. Deep learning model accuracy 

The supervised dataset was split into 90% for testing and 10% for testing. The neural network used 

500 epochs with a batch size of 30. The network was randomly initialized. With 17 input attributes from 

correlation and chi-square with more than 1,500 samples, the neural network model obtained 98.22% 

accuracy (Fig. 4). The loss of model (Fig. 5) denotes how bad the model is. The model sustained very little 

loss. Hence, it can be said that the model is close to accuracy. 

 

Table 3. Comparison with other classifiers 
Learning Process Accuracy 

SVM 94.66% 
Random forest 97.33% 

Naive Bayes 84.49% 

Proposed Method (NN) 98.04% 

 

Table 3 compares the different classifiers used in this research to check if any other machine 

learning algorithm can better result from the neural network. Here, an SVM, random forest, and Naive Bayes 

with an accuracy of 94.66%, 97.33%, and 84.49%, respectively, have been used because these were used by 

other researchers discussed in the learning-based approach in the section on related work. However, in this 

research, the neural network has provided the best performance with an accuracy of 98.04%.    

 

Table 4. SQLi Vulnerability Detection Accuracy Comparison 
 

Literatures Accuracy 

Shar and Tan [17] 85.00% 

Joshi and Geetha [18] 93.30% 

Rawat and Shrivastav [33] 96.47% 
Lei and Shen [37] 93.30% 

Lodeiro-Santiago et al. [38] 97-98% 

Proposed Method (NN) 98.04% 

 

Table 4 shows the SQLi vulnerability accuracy compared with the other five models. We found that 

85.00%, 93.30%, 96.47%, 93.30%, and 97-98% accuracy obtained by the models of Shar and Tan [17], Joshi 

and Geetha [18], Rawat and Shrivastav [33], Lei and Shen [37], and Lodeiro-Santiago et al. [38], 

respectively. However, our proposed model ensured 98.04% accuracy. 
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Figure 5. Adeptness of model at gaining accuracy.     Figure 6. Adeptness of model at sustaining less loss. 

 

Figs. 5 and 6 depict model training accuracy and loss, respectively. The determination of the 

training process can be visualized from these plots. The good accuracy shown in Fig. 4 has been due to the 

iteration performed. The model training loss shown in Fig. 5 is very low as we know less loss leads to good 

accuracy. 

 

4. CONCLUSION AND FUTURE WORK 

The objective of this paper has been to propose the framework of SQL injection vulnerability 

detection of a web application using deep learning by extracting various vulnerability finding points of the 

web application. In this paper, primarily the deep learning part is described since it is the core of the section 

on SQL injection vulnerability prediction. More than 1,850 samples of injection vulnerability with selected 

features are sent through a neural network model for prediction. The system delivers a performance accuracy 

of 98.04%, which is better than that provided by existing systems. Future experiments should focus on 

building an automated tool and an effective way to prevent SQL injection. 

 

APPENDIX A 

Data Collection Algorithm 

An algorithm has taken place to perform the data collection operation against every feature. A 

python based technology has been used to build a tool which takes a particular web application and checks 

whether the predefined conditions of the features set meet or not. If the checking works according to the 

conditions then the data collection operation takes place. An overview of the algorithm has been given below 

for better understanding, 

 

Input Feature Existance Based Data Collection 
Input:       Predefined feature set:F_set, URL, url_feature 

Output:    Input feature existence based data 

1:  Input_feature ← [0 | 0 | … | 0]  

2:  index ← 0  

3: if valid ← URL then 

4:  for ∀f1 ∈ F_set do // for all features in feature set  

5:  if f1 ∈ url_feature then  

6:  Input_feature[index] ← 1  

7:  return input_feature  
 

 

APPENDIX B 

Vulnerable Feature Dataset 
Feature Datatype Category Impact 

Input Validation Boolean User input Severe 
Parameter Tampering Boolean User Input Severe 

Exception Handling Boolean Error/Exception Severe 
Use of parameterized query Boolean User input Low 

Visibility of Page Extension Boolean URL lookup Low 

Illegal Input Acceptance Boolean User input Severe 
Error Controlling Boolean Error/Exception Severe 

DB Info Disclosing Boolean Footprinting/Fingerprinting Severe 

SQL Version Disclosing Boolean Footprinting/Fingerprinting Severe 
Guessable Table/Column Name Boolean Unsecure coding convention Severe 

Directory Readability Boolean Unsecure coding convention Low 

Allowing Null Byte Boolean Unsecure coding convention Moderate 
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Proper Implementation of Firewall Rules Boolean Unsecure coding convention Moderate 

Trust Intruders Boolean Unsecure coding convention Severe 

Use of Real Escape String Boolean Unsecure coding convention Moderate 
Parameter Encoding Boolean Encryption Low 

Encoding Data while Taking Input Boolean Encryption Moderate 

Execution of Malicious Code Boolean User input Severe 
SQL Server Info Boolean Footprinting/Fingerprinting Moderate 
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