
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 9, No. 3, September 2021, pp. 702~718

ISSN: 2089-3272, DOI: 10.52549/ijeei.v9i3.3131  702

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

SQL Injection Vulnerability Detection Using Deep Learning: A

Feature-based Approach

Md. Maruf Hassan1, R. Badlishah Ahmad2, Tonmoy Ghosh3

1,2Universiti Malaysia Perlis, Perlis, Malaysia

1,3Daffodil International University, Dhaka, Bangladesh

Article Info ABSTRACT

Article history:

Received Apr 28, 2021

Revised Jul 29, 2021

Accepted Jul 28, 2021

 SQL injection (SQLi), a well-known exploitation technique, is a serious risk

factor for database-driven web applications that are used to manage the core

business functions of organizations. SQLi enables an unauthorized user to get

access to sensitive information of the database, and subsequently, to the

application’s administrative privileges. Therefore, the detection of SQLi is

crucial for businesses to prevent financial losses. There are different rules

and learning-based solutions to help with detection, and pattern recognition

through support vector machines (SVMs) and random forest (RF) have

recently become popular in detecting SQLi. However, these classifiers ensure

97.33% accuracy with our dataset. In this paper, we propose a deep learning-

based solution for detecting SQLi in web applications. The solution employs

both correlation and chi-squared methods to rank the features from the

dataset. Feed-forward network approach has been applied not only in feature

selection but also in the detection process. Our solution provides 98.04%

accuracy over 1,850 recorded datasets, where it proves its superior efficiency

among other existing machine learning solutions.

Keyword:

SQL injection

injection vulnerability detection

machine learning

neural network

Copyright © 2021 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Md. Maruf Hassan,

Universiti Malaysia Perlis,

Perlis, Malaysia

Email: ancssf@gmail.com

1. INTRODUCTION

The versatility of the internet raises the expectations of its user by offering limitless information and

connectivity. Most businesses, therefore, reshape their existing organizational and commercial processes into

internet-based solutions, i.e. web applications, to reach its targeted audience. Web applications provide

different modes of user engagement in the system so that businesses can observe stakeholders’ need for the

product(s) and can offer them customized deals. All critical business information is stored in the application’s

database whereby owners or the system can make the appropriate decision for action. Therefore, ensuring the

security of the stored data is a vital responsibility of the system’s designer/developer.

However, a large number of web applications are developed without following the secured

convention of software development [1]. As a result, web systems are vulnerable to different kinds of cyber-

attacks [2]. According to the IBM X-Force Threat Intelligence Index, 79% of malicious incidents result from

injection attacks. The number of injection attacks has increased 37% in 2017 compared to 2016 [3]. Also,

since 2010 injection attacks have been at the top of the list of web application attacks, according to the Open

Web Application Security Project (OWASP) [4,5]. These attacks can cause huge financial and reputational

losses to business organizations [6–13].

An SQLi attack occurs due to SQLi vulnerabilities of web applications, which lead the intruder to

perform an attack [14,15]. Such attacks mostly occur due to a lack of proper validation of inputs of web

applications [16–23]. The OWASP’s records from 2010 to 2017 reveal the carelessness of web developers

about good practices for developing web applications.

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

703

Fig. 1 shows an approach to checking SQLi vulnerability. When there is an escape string, i.e., single

quotation, backslash, etc. at end of the URL, it needs also to be at the end of the SQL query generated for the

URL, which makes the SQL query a form of payload.

Figure 1. SQLi vulnerability check of a web application.

Records in the database correspond to the SQL query generated against the web application’s URL.

A query with a single quote at the end is unknown to the database for any records it contains. Therefore, this

forces the database to throw exceptions from which the SQLi vulnerability of a web application can be

known. After analyzing the exceptions, attackers try to inject several malicious SQL queries to get access to

secured confidential information.

The following example explains the processes showed in fig. 1 that how SQLi vulnerability can be

disclosed by converting a simple SQL query which is produced from a URL to a payload.

http://www.example.com/product.php?id=10

Let the above URL a targeted web application to be checked SQLi vulnerability.

After adding a single quotation at the end of URL it looks like,

http://www.example.com/product.php?id=10'

This generates a http request to the web application’s server and the predefined SQL query for this

URL tries get executed with the single quotation

SELECT * FROM products WHERE id_product=$id_product

//This query is to be executed

For the single quotation with the SQL query the database throws an error/exception as there is a

syntactic mistake in the SQL query.

Warning: mysqli_fetch_array() expects parameter 1 to be mysqli_result, bool given in

/nfs/c05/h02/mnt/83231/domains/example.com/html/product.php on line 67

From this error/exception an attacker gets fingerprinting information and a determination that this

web application builder might not follow all the coding conventions.

There are numerous SQLi detection approaches to diminish such attacks through SQLi vulnerability

exploitation. These detection approaches can be of various types: detection using pattern matching [24-32],

learning-based detection [33-43], and other approaches [44-49].

1.1. Pattern Matching Approaches

Pattern matching approaches are mostly focused on comparing a predefined benign SQL query with

the SQL query generated at the runtime. Anything extra coming with the SQL query at the runtime is

considered as an injection attempt.

The papers [24-32] use pattern matching approaches to detect and prevent SQLi attacks. These

operations are performed at the runtime, which makes these practices time-consuming and complex. Wahid

Rajeh and Alshreef Abed have proposed a three-tier method [24]. In their architecture, they use several types

of operations to detect and prevent SQLi attacks. But their method seems costly and time-consuming. Mao

Chenyu and Guo Fan [25] have proposed an intention-oriented approach to detect and prevent SQLi attacks.

At the runtime they check every SQL query corresponding to their SQL intention description language,

which is then converted into deterministic finite automata. Thereafter, it is checked if the request is for an

SQLi attack or not. C. Shi et al. [26] proposed a self-learning SQLi detection approach with a pattern

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

704

matching and feature-filtering method. They generated a tree of selected SQL syntaxes to make a pattern and

use that pattern to identify SQLi attacks. D. Kar et al. [27] developed a tool called SQLiDDS, which they

used to transform particular portions of the SQL query into plain text and compared it with the runtime SQL

query. Inyong Lee et al. [28] proposed a method for SQLi detection where the method removes the value of

an SQL query attribute of web pages when a user submits parameters; it then compares the query with the

predetermined query. A. Ghafarian [29] proposed a hybrid model where they monitored the execution of all

incoming SQL queries dynamically and performed string matching between the received query and their

expected query. Then they compared the result of the string matching process with the valid SQL query to

identify SQLi attacks. In their proposed model, R.P. Karuparthi and B. R.P. Karuparthi and B. Zhou [30]

proposed a dynamic query matching technique where they compared the executed runtime SQL query with a

sanitizer, SQL master file then with predefined threshold value respectively to detect SQLi attack. The result

is then sent to the approximate matching algorithm for analysis. A. Kumar and S. Binu [31] proposed a

method where they made a set of tokens with the SQL query and matched them with user input at the runtime

to detect SQLi attacks. N. Lambert and K. S. Lin [32] broke down various portions of the legal SQL query

and used it in comparison with the user-defined SQL query to identify SQLi attacks.

1.2. Learning-based approaches

Learning-based approaches focus on studies to detect SQLi wherein solutions based on machine

learning are used to solve the problems. Nowadays, learning-based approaches perform better than traditional

rule-based approaches. Rawat and Shrivastav [33] proposed a detection approach based on SQL injection

performable query tokenization [32] using a support vector machine (SVM). Kamtuo and Soomlek [34]

inspected queries that could be used to perform SQLi, and they defined some specific conditions to produce a

dataset in order to detect SQLi vulnerability in a web application. They compared various machine learning

algorithms and received the best performance with the decision jungle algorithm. Zhuang Chen et al. [35]

constructed a dictionary using the selected keywords from SQL injectable queries and HTTP requests, where

the Word2vector algorithm was used to extract dataset from the dictionary. They also selected SVM as a

learning algorithm to predict SQLi vulnerability. Shar and Tan [17] achieved above 85% prediction accuracy

on SQLi and cross site scripting (XSS) vulnerabilities in different web applications using WEKA [36]. They

implemented a tool named “PhpMinerI” to extract data by static analysis. Hua et al. [37] used statistical

features and existing security knowledge to extract the features of SQLi attack requests. They proposed a

web attack detection technology using SVM. Joshi and Geetha [18] used blank separation and query

tokenization to prepare a dataset of SQLi detection features. They used a Naive Bayes algorithm to perform

the detection operation. Moises et al. [38] analyzed the criteria of SQLMap to detect the frequencies of

keywords and non-alphabetic characters used in SQLi. They used Naive Bayes and decision tree classifiers to

classify SQLi attacks. D. Das et al. [39] indexed the strings of dynamic SQL queries and employed SVM to

classify a runtime SQL query as normal or an attack attempt. Y. Wang and Z. Li [40] generated a parse tree

of SQL queries, analyzed HTTP request parameters, and used them to compare with another parse tree. They

used an SVM classifier to detect SQLi attempts. Other learning-based studies also found for phishing

detection of web applications using features extraction methods.Sahingoz et al. [110] proposed a language-

independent real-time anti-phishing system containing seven different algorithms for classification and NLP-

based features to detect phishing websites. Kasim [111] introduced an approach that evaluated a phishing

event using the classification of deep-hybrid features accompanied by the Light Gradient Boosted Machine

model as soon as the web address entered the address bar. Yang et al. [112] proposed a deep learning-based

fast phishing detection approach focusing on the multidimensional features. Lakshmi et al. [113] suggested a

unique approach to discovering phishing websites where the hyperlinks exist in the HTML page's source

code in the corresponding website. Basitet al. [114] reviewed various phishing attack detection techniques

based on Artificial Intelligence (AI) to evaluate the qualities and shortcomings of the given methodologies.

1.3. Other Approaches

C. Ping [41] used the second-order SQLi to bypass the protection provided to web applications.

They proposed adding random numbers to the selected keywords of executed queries to detect and prevent

SQLi attacks. B.D. Priyaa and M. I. Devi [42] collected a query tree from database logs and extracted SQLi

vulnerability features. They used an efficient data-adapted decision tree (EDADT) and binary SVM to

effectively distinguish between SQLi attacks and normal SQL requests. P. Li et al. [43] proposed an SQLi

attack detection technique that analyzes the user’s interaction with the web application. They analyzed the

user’s log of web applications to find out the criteria of SQLi attacks and applied them to their model. A.

Ciampa et al. [16] developed a tool to inspect SQLi vulnerability of web applications. K. Kemalis and T.

Tzouramanis [44] proposed a technique where they extracted some syntactical structures of SQL queries of a

web application and filtered runtime SQL queries based on those structures to detect SQLi attacks. V.

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

705

Shanmughaneethi and S. Swamynathan [45] proposed syntactic verification with XML and error message

customization for SQLi attack detection.

Thus, researchers sought to detect and prevent SQLi attacks with either traditional rule-based

approaches or machine learning-based approaches, while some worked with other approaches. However, no

studies have so far used deep learning-based approaches in an SQLi attack scenario. Moreover, all the

researchers focused on the SQL query, but no one considered the features of a web application to deal with

SQLi attacks.

SQLi refers to the result of formidable threat to security and privacy concern for both client and web

application. These threats become possible for not abiding the proper development conventions [1,30] by the

developers which imposes the state of weakness of a web application. Lack of those conventions produce

errors that provide information [29,30] about the technologies of that web application. Operators in SQL

queries by which attackers can operate an attacking expedition to a web application are used to fuel learning

based SQLi detection [34,35,38]. Payloads through user inputs [31] and clicking behavior [43] on different

parts of a web application can also lead to SQLi attack.

In view of the above, it can be perceived that SQLi attack can be performed through different types

of strategies and various parts of a web application. Those strategies and different parts together can be called

web application’s features by which a proper implication of the SQLi attacks can be delineated.

Among the types of SQLi detection solutions discussed earlier learning based approaches have

become very popular due to its precision in detection problems. By this time shallow architectures such as

Support Vector Machine (SVM), Naive Bayes are being used widely in various detection and classification

problems. However, these architectures have their limitations which can produce problems in their respective

ways. Some relatable drawbacks of SVM are, it is time and memory consuming [46-52], complexity in

choosing right kernel function [51-54], high algorithmic complexity [50-52] and inability to work with

massive data [55]. Independence assumption [47,51,56,57], sometimes providing bad results with large

dataset [47,57] and sometimes providing good results with large dataset [48,50,58], these are relatable

drawbacks of Naive Bayes. And for that, works done by other researchers on this issue might not provide

very accurate results. Besides, deep learning is another learning based solution which has a very good

reputation over other learning based solutions [59,60]. Moreover, deep learning based solutions have been

shown providing better results than other learning based approaches [59-65] including SVM and Naive

Bayes.

Aiming the above problem, this paper proposed a technique to detect web application's SQLi

vulnerability based on various web features using deep learning. This technique focuses on web features that

could be involved in sensitive data disclosing or can lead to unauthorized access to the database of a web

application. Those web features have been elected after analysis of the responses resulted from various

actions of SQLi on web applications. Moreover, appearances of the name of these web features in scholarly

articles on SQLi increases the assessment of those features.

The contributions of the present study are as follows:

● A dataset with 19 SQLi vulnerability features has been produced using manual penetration, testing

the following double-blinded testing strategy.

● A deep learning-based approach has been used to detect SQLi vulnerabilities.

The rest of the document is organized as follows:

Section II describes the overall architecture of our SQLi vulnerability detection framework and also

tells how the framework works in detail. Section III shows the experimental results and presents the ultimate

feature set used in our framework. Section IV provides a summary of this research and describes the future

outlook.

2. PROPOSED MODEL

Fig. 2 shows the proposed model of SQLi vulnerability detection using a Feedforward Neural

Network. The model is designed to find SQLi vulnerability focusing on predefined rules and deciding

whether a web application is vulnerable or not. It describes the extraction, processing, and optimization of

datasets. It uses feature selection methods along with the feed-forward neural network to bring the dataset

into the best result-producing state. Finally, the neural network model is utilized to predict the SQLi

vulnerability of the target web application with the dataset.

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

706

Figure 2. Proposed model of SQLi vulnerability detection.

Features are engineered on the basis of the logical conditions of SQL procedures and web

applications usability facilities. Those features are used to perform data collection by checking every aspect

of all the particular web applications. Hence, real web data related to SQLi have been acquired and with them

some data which are generated based on real data have been combined to get an operational dataset. Those

features then preprocessed by some predefined processing techniques and then feature selection methods

have been applied to get the final dataset. After that, that dataset has been sent to perform the classification

operation from which a decision can be taken about a particular web application.

From a user’s perspective, the SQLi vulnerability detection processes using our model have the

following steps:

(1) The user will take the desired web address of a web application and put it to a script written in

Python.

(2) The user will be directed to the web application that could be vulnerable to SQLi. Basically, this

web application is test data.

(3) The script will start processing to extract the features of the test data (current web application) and

save them in a data structure.

(4) At this stage, to guess the type of the web application, the implemented model will be activated

based on predefined rules learned from previous data collected from other web applications. To

predict the types of the test data, the rules of the classifier are utilized.

(5) After the prediction operation, a warning will signal if the web application is vulnerable to SQLi;

otherwise, that web application will be marked as benign.

The following sections explain the methodologies used for building the proposed framework. The

framework supports the prediction model in such a way that it can predict the web application’s SQL

injection vulnerability. The technique used for SQL injection vulnerability detection and prediction, and the

neural network model, research methods, and plan are described.

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

707

2.1. Formal definitions of dataset

As it has been said earlier, this paper focusing on web application's various features that can put a

web application at risk and no state-of-art has been given an eye on that issue, implies a new dataset

construction using the web features. That dataset consists of data found with practical testing on various web

applications to maintain efficiency and precision. Based on those real life data some dummy data was created

to prevent data inadequacy for the operation of deep learning models. Those data have been combined and

went through some processing techniques to increase the integrity of the dataset.

Definition 1: D denotes the dataset, while Cj denotes a class in the dataset.

Definition 2: FeatureValue refers to the feature name and feature value. Feature name and value are denoted

as (Fi, fi).

Definition 3: The nth row in the dataset D refers to a set of lists of feature values, which can be denoted as

(Fn1,fn1),….,(Fnk,fnk).

Definition 4: FeatureValueSet refers to a set of disjoint attribute values contained in a row as a training case,

denoted as {(Fi1,fi1),….(Fik,fik)}.

Definition 5: {antecedent, C} denotes the form of a rule item r in the D, where the antecedent refers to

FeatureValueSet and C refers to the class.

Definition 6: A single rule belonging to a class is represented as antecedent → C, where the antecedent

refers to FeatureValueSet and C refers to the class.

Table 1. Dataset Sample
Instance Number Attr1 Attr2 Attrn Class

1 F1 F2 Fn C0

2 F1 F4 Fn C0

3 F3 F7 Fn C1

4 F5 F6 Fn C1

5 F2 F5 Fn C0

2.1.1. Feature Extraction for SQLi Vulnerability

 The extraction process has been executed in this study to find out the essential features in order to

detect SQL vulnerability in a web application based on the previous literature. These features help the

proposed model to classify the given weakness of any web application effectively and efficiently. In this

study, 19 different features have been used to determine the class of vulnerability. These features are

discussed in the following sections.

2.1.2. Selected features

The following subsection presents the features used in our detection operation, as well as their

corresponding rules.

(1) Input Validation: Unvalidated input points of a web application offer an easy way to inject malicious

SQL code in order to get access to confidential information [16-23].

Rule: If inputs are validated → Legit

 else → Suspicious

(2) Parameter Tampering: Parameters are used to identify records in the database. Tempering parameters

provides exceptions when no records in the database can be identified [16,18,20,21,51].

Rule: If parameter temperable → Suspicious

 else → Legit

(3) Exception Handling: Exceptions are reactions of the databases when faulty SQL requests are sent to it.

The database can disclose its SQLi vulnerability through exceptions [66].

Rule: If exceptions handled → Legit

 else → Vulnerable

(4) Use of parameterized query: The existence of parameters in query refers to a particular record in the

database. Tempering with parameters raises exceptions [21,22,67,71].

Rule: Existence of parameter → Suspicious

 else → Legit

(5) Visibility of Page Extension: The visibility of page extension denotes that the possible web

technologies have been used in the web application [68].

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

708

Rule: Existence of page extension → Suspicious

 else → Legit

(6) Illegal Input Acceptance: The acceptance of illegal inputs allows injecting any type of malicious

codes that bypass the security logics of the database [21,69].

Rule: Acceptance of illegal inputs → Vulnerable

 else → Legit

(7) Error Controlling: Not controlling fatal errors in the web application and the database can increase

chances of attack to the web application [16,21,23,72].

Rule: Controlling error → Legit

 else → Suspicious

(8) DB Info Disclosing: Database info helps attackers to find the drawbacks of a particular database

technology [70-74].

Rule: Disclosing DB info → Suspicious

 else → Legit

(9) SQL Version Disclosing: The limitations of a specific SQL version can disclose exploitable

vulnerabilities [23,71,75].

Rule: Disclosing SQL version → Suspicious

 else → Legit

(10) Guessable Table/Column Name: Gaining access to private information would become easier if an

attacker could guess the table/column name of the database [76,77].

Rule: If easy to guess table column name → Suspicious

 else → Legit

(11) Directory Readability: An attacker can collect internal information if the directory can be read to

perform a SQLi attack [73].

Rule: If directories readable → Suspicious

 else → Legit

(12) Allowing Null Byte: Force the application to minimize exceptions to continue the execution of

malicious query [78].

Rule: Allows null byte → Suspicious

 Else → Legit

(13) Proper Implementation of Firewall Rules: Find out the level of secured firewall being used to

protect the database as well as the web application [43].

Rule: Rule: If firewall implemented → Legit

 else → Suspicious

(14) Trust Intruders: Make decisions about whether the system allows suspicious activities or not [21].

Rule: Trust intruders → Suspicious

 else → Legit

(15) Use of Real Escape String: Deny the execution of SQL queries containing escape strings [47,79].

Rule: Escape string uses → Legit

 else → Vulnerable

(16) Parameter Encoding: Sometimes developers try to block SQL query execution by encoding the

parameter [21,72].

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

709

Rule: Encoded Parameter → Legit/Suspicious

 else → Legit/Suspicious

(17) Encoding Data while Taking Input: Encoding user inputs can be used to defend against SQLi

attacks [21,72].

Rule: If inputs are encoded → Legit/Suspicious

 else → Legit/Suspicious

(18) Execution of Malicious Code: If any kind of malicious code is executable in a web application, then

it must be in serious danger [16,21,23,71].

Rule: If can execute malicious code → Vulnerable

 else → Legit

(19) SQL Server Info: An attacker can exploit the system’s database based on SQL server information

[71,73].

Rule: Gaining SQL server info → Suspicious

 else → Legit

2.2. Preprocessing

We have used inconsistency reduction, handling null value, and data standardization to preprocess

the data. These techniques are commonly used to ensure the integrity of data in a dataset.

2.2.1. Inconsistency Reduction

Several types of inconsistencies have been discussed in the previous literature [80-82]. They cause

serious problems in the dataset and come in the way of right decision-making, thereby decreasing usability

[83]. Bonding between sets of data has a weakening effect and results in an undesired state of the dataset,

which defines the question of integrity. To counter this problem, other researchers [82, 84-86] have used

various techniques and mechanisms. Inconsistent data may lead to an inaccurate training accuracy in the

model.

2.2.2. Missing Value Reduction

In data preprocessing, missing values remain a concern to the researchers because it spoils the

efficiency of data in the dataset and forces the classification algorithms to produce unreliable and

insubstantial results [87-89]. It could make features biased as well as hamper the desired output from the

dataset [90]. Steps to handle this problem have been discussed on [89-92].

2.2.3. Data Standardization

The data processing technique converts the structure of an unbalanced dataset to a common data

format, known as data standardization [93, 94]. It improves the quality of attributes in the dataset and

prevents an attribute from dominating [96]. Data standardization transforms data from the dataset after the

data is pulled from the source and before it is loaded into the model for training. Sometimes some features in

the dataset influence the training process and make accuracy biased [93-95].

2.3. Feature Selection

Correlation coefficient and chi-square feature selection methods have been used to have a better

understanding of the features. These feature selection methods were chosen because of their model

independency. Correlation helps to find out the relationship between features, because highly correlated

features can influence the training of the model and lead to biased prediction [97-99]. The chi-square method

helps to understand the significance of the features by ranking them [100-103]. The later sections discuss

these techniques.

2.4. Deep Learning for SQLi Vulnerability Classification

The deep learning model has been chosen for the prediction operation because it gives best-in-class

performance in solving classification problems. In recent years researchers have had a good success rate in

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

710

solving detection problems using deep learning [59-65]. The deep learning model used in this paper contains

19 input neurons with one hidden layer. The activation functions used in the model are a rectified linear unit

(ReLU) in the first layer and a sigmoid in the second layer. A formal description of the used neural network

is provided below.

Let n be the neural network, ln = {1,2,3} a layer in the n neural network, xn the input to the

corresponding n neural network, i(ln) the incoming inputs to the layer ln, rn the output of the layer ln, w(ln) the

weights of the layer ln, b(ln) the biases of the layer ln, f the activation function (ReLU) in the layer ln, and o the

function in the output layer (Sigmoid). The equation of the feed-forward operation of the neural network is as

follows:

r(0n) = x (1)

 i(ln+1) = w(ln+1) + b(ln+1) (2)

 r(ln+1) = f(r(ln+1)) = max(0,r(ln+1)) (3)

r(3) = o(r(3)) = 1/(1+e-(r(3))) (4)

The predefined labels for the inputs are determined as shown in Equations (5) and (6). L defines the

predefined labels of inputs, and L0 defines the predicted label result.

{𝑟(3) ≥ 0.5, 𝐿 = 1 𝑟(3) < 0.5, 𝐿0 = 0 (5)

During the training process, the used neural network model is tuned to minimize the value of the

loss function, i.e. cross-entropy function. The loss function is described as follows:

𝐽(𝐿, 𝐿0) = − ∑

2

𝑖=1

𝐿(𝑖)𝑙𝑜𝑔𝐿0
(𝑖)

+ (1 − 𝐿(𝑖)) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐿0
(𝑖)

) (6)

2.5. Regularization

In the case of neural network model training, overfitting is one of the major problems. An overfitted

neural network with a particular train set cannot generally be used in classification. In the neural model of

this research, dropout regularization [104] is used to avoid the overfitting problem. Dropout is a technique to

skip some units of the neural network during the training operation. The incoming and outgoing connections

of some neurons are removed, and during this the probability remains fixed. It prevents the neural network

model from becoming too dependent on a specific set of units and their associated weights and biases. In this

research the neural network is modeled with the dropout rate of 0.2. This rate is generally used in typical

neural network-based models.

2.6. Validation

The overfitting problem discussed in the section on regularization can also be solved by cross

validation. Here, K-fold cross validation [105] has been used to validate the efficiency of data in the dataset,

as well as to make the training process effective. K-fold cross validation is a technique to use the dataset as a

validation set by splitting the whole dataset into equal folds with the random selection of samples. During the

validation process, one fold is randomly selected for test operation, while the rest is taken for training

operation. This process is repeated until all the folds are used as test and training sets. This ensures traversing

through all the data in a dataset and helps to have a good understanding of the dataset used in the model. The

dataset in this research was split into several folds with 30 samples in each fold.

The novelty of the work includes creating a new dataset by extracting 19 SQLi features after

observing the state-of-the-art literature and conducted black-box manual penetration testing to verify the

legitimacy of the records. Feedforward Neural Network classification algorithm has been nominated to detect

SQLi injection vulnerability where it uses both correlation coefficient and chi-square method for selecting

features to increase its accuracy.

3. EVALUATION

3.1. Experimental Environment

 We used a Windows 10 computer with Intel Core i3-5005U CPU, integrated GPU, and 4GB RAM

to deploy our proposed model. We implemented the module of the model in Python. Most of the modules

were executed on the CPython Interpreter [106]. The feed-forward neural network modeling tool was

implemented using the Keras library [107]. Scikit-learn [108] and Tensorflow [109] were also utilized to

implement the clustering and other machine learning algorithms.

3.2. Correlation of input attributes

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

711

Linear correlation is used to identify correlations between 19 input attributes of 1,850 SQL injection

vulnerabilities and to find samples containing a dataset in the neural network. After finding the correlation

among 19 features, iteration has been performed based on the correlation range of -1 to 1, using the score

obtained from the correlation operation. In each phase of the iteration, the neural network has been trained

using the reduced features based on the correlation range value to see which features are effective to detect

the vulnerability. The iteration continues until the best accuracy is acquired. Fig. 3 shows the reduced

features and the correlation heatmap between them.

Figure 3. Visualization of correlated features.

3.3. Chi-square of correlated input attributes

The chi-square feature selection method is applied to the features reduced by correlation to find out

the significance level of the features shown in Fig. 4.

Figure 4. Plot describing chi-square level of significance. Each plot refers to a particular attribute and shows

how important they are to the classification operation.

No samples were reduced during this process. After applying chi-square, the same type of iteration

has been done as in the correlation operation to identify important features. This time the iteration is

performed based on the chi-square value of significance. Table 1 summarizes the reduced features and their

significant values.

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

712

Table 2. Extracted features and the value of importance from Fig. 5

Attributes Chi-square scores Significance

Input validation 288.256 Significant

Parameter tampering 334.047 Significant

Exception handling 409.634 Significant
Use of parameterized queries 5.68944 Not significant

Visibility of page extension 4.19805 Not significant

Illegal input acceptances 290.574 Significant
Error controlling 510.157 Significant

DB info disclosing 440.99 Significant

SQL version disclosing 420.94 Significant
Guessable table/column name 297.471 Significant

Directory readability 0.000650201 Not significant

Allowing null byte 78.2139 Significant
Trust intruders 348.714 Significant

Use of real escape string 28.6231 Not significant

Parameter encoding 5.63055 Not significant

Encoding data while taking input 33.3797 Significant

Execution of malicious code 377.44 Significant

3.4. Model validation

Model validation refers to the integrity and reliability of the neural network model. A validated

model ensures a better acceptance of classification results. The used model was validated based on a

comparison of the results of regularization and validation. Both suggest that the model is reliable to use in

this scenario.

3.5. Deep learning model accuracy

The supervised dataset was split into 90% for testing and 10% for testing. The neural network used

500 epochs with a batch size of 30. The network was randomly initialized. With 17 input attributes from

correlation and chi-square with more than 1,500 samples, the neural network model obtained 98.22%

accuracy (Fig. 4). The loss of model (Fig. 5) denotes how bad the model is. The model sustained very little

loss. Hence, it can be said that the model is close to accuracy.

Table 3. Comparison with other classifiers
Learning Process Accuracy

SVM 94.66%
Random forest 97.33%

Naive Bayes 84.49%

Proposed Method (NN) 98.04%

Table 3 compares the different classifiers used in this research to check if any other machine

learning algorithm can better result from the neural network. Here, an SVM, random forest, and Naive Bayes

with an accuracy of 94.66%, 97.33%, and 84.49%, respectively, have been used because these were used by

other researchers discussed in the learning-based approach in the section on related work. However, in this

research, the neural network has provided the best performance with an accuracy of 98.04%.

Table 4. SQLi Vulnerability Detection Accuracy Comparison

Literatures Accuracy

Shar and Tan [17] 85.00%

Joshi and Geetha [18] 93.30%

Rawat and Shrivastav [33] 96.47%
Lei and Shen [37] 93.30%

Lodeiro-Santiago et al. [38] 97-98%

Proposed Method (NN) 98.04%

Table 4 shows the SQLi vulnerability accuracy compared with the other five models. We found that

85.00%, 93.30%, 96.47%, 93.30%, and 97-98% accuracy obtained by the models of Shar and Tan [17], Joshi

and Geetha [18], Rawat and Shrivastav [33], Lei and Shen [37], and Lodeiro-Santiago et al. [38],

respectively. However, our proposed model ensured 98.04% accuracy.

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

713

Figure 5. Adeptness of model at gaining accuracy. Figure 6. Adeptness of model at sustaining less loss.

Figs. 5 and 6 depict model training accuracy and loss, respectively. The determination of the

training process can be visualized from these plots. The good accuracy shown in Fig. 4 has been due to the

iteration performed. The model training loss shown in Fig. 5 is very low as we know less loss leads to good

accuracy.

4. CONCLUSION AND FUTURE WORK

The objective of this paper has been to propose the framework of SQL injection vulnerability

detection of a web application using deep learning by extracting various vulnerability finding points of the

web application. In this paper, primarily the deep learning part is described since it is the core of the section

on SQL injection vulnerability prediction. More than 1,850 samples of injection vulnerability with selected

features are sent through a neural network model for prediction. The system delivers a performance accuracy

of 98.04%, which is better than that provided by existing systems. Future experiments should focus on

building an automated tool and an effective way to prevent SQL injection.

APPENDIX A

Data Collection Algorithm

An algorithm has taken place to perform the data collection operation against every feature. A

python based technology has been used to build a tool which takes a particular web application and checks

whether the predefined conditions of the features set meet or not. If the checking works according to the

conditions then the data collection operation takes place. An overview of the algorithm has been given below

for better understanding,

Input Feature Existance Based Data Collection
Input: Predefined feature set:F_set, URL, url_feature

Output: Input feature existence based data

1: Input_feature ← [0 | 0 | … | 0]

2: index ← 0

3: if valid ← URL then

4: for ∀f1 ∈ F_set do // for all features in feature set

5: if f1 ∈ url_feature then

6: Input_feature[index] ← 1

7: return input_feature

APPENDIX B

Vulnerable Feature Dataset
Feature Datatype Category Impact

Input Validation Boolean User input Severe
Parameter Tampering Boolean User Input Severe

Exception Handling Boolean Error/Exception Severe
Use of parameterized query Boolean User input Low

Visibility of Page Extension Boolean URL lookup Low

Illegal Input Acceptance Boolean User input Severe
Error Controlling Boolean Error/Exception Severe

DB Info Disclosing Boolean Footprinting/Fingerprinting Severe

SQL Version Disclosing Boolean Footprinting/Fingerprinting Severe
Guessable Table/Column Name Boolean Unsecure coding convention Severe

Directory Readability Boolean Unsecure coding convention Low

Allowing Null Byte Boolean Unsecure coding convention Moderate

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

714

Proper Implementation of Firewall Rules Boolean Unsecure coding convention Moderate

Trust Intruders Boolean Unsecure coding convention Severe

Use of Real Escape String Boolean Unsecure coding convention Moderate
Parameter Encoding Boolean Encryption Low

Encoding Data while Taking Input Boolean Encryption Moderate

Execution of Malicious Code Boolean User input Severe
SQL Server Info Boolean Footprinting/Fingerprinting Moderate

REFERENCES
[1] A. Sadeghian, M. Zamani, and A. A. Manaf, “A Taxonomy of SQL Injection Detection and Prevention

Techniques,” 2013 International Conference on Informatics and Creative Multimedia, 2013.

[2] K. Gupta, “A Survey On Web Application Attack Detection Methods,” International Journal of Advanced

Research in Computer Science, vol. 8, no. 7, pp. 565–569, 2017.

[3] “IBM X-Force Threat Intelligence Index | IBM.” [Online]. Available: https://www.ibm.com/security/data-

breach/threat-intelligence. [Accessed: 27-Apr-2021].

[4] “Open Web Application Security Project | OWASP.” report 2017. Available:

https://www.owasp.org/index.php/Top_10_2017-Main. [Accessed: 27-Apr-2021]

[5] “Open Web Application Security Project | OWASP.” report 2010. Available:

https://www.owasp.org/index.php/Top_10_2010-Main. [Accessed: 27-Apr-2021]

[6] “Questions for TalkTalk | BBC News.” October 26, 2015. Available: https://www.bbc.com/news/technology-

34636308. [Accessed: 27-Apr-2021]

[7] “US man stole 130m card numbers | BBC News.” August 18, 2009. Available:

http://news.bbc.co.uk/2/hi/americas/8206305.stm. [Accessed: 27-Apr-2021]

[8] “RockYou Hacker: 30% of Sites Store Plain Text Passwords | New York Times.” December 16, 2009. Available:

https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/12/16/16readwriteweb-rockyou-

hacker-30-of-sites-store-plain-text-13200.html. [Accessed: 27-Apr-2021]

[9] “Yahoo reportedly hacked: Is your account safe? | CBS News.” July 12, 2012. Avaiable:

https://www.cbsnews.com/news/yahoo-reportedly-hacked-is-your-account-safe/. [Accessed: 27-Apr-2021]

[10] “Hackers Breach 53 Universities and Dump Thousands of Personal Records Online | New York Times.” October

3, 2012. Available: https://bits.blogs.nytimes.com/2012/10/03/hackers-breach-53-universities-dump thousands-of-

personalrecordsonline/?mtrref=en.wikipedia.org&gwh=220D0829194985857B41F9E177E05436&gwt=pay&asse

tType=REGIWALL. [Accessed: 27-Apr-2021]

[11] “Anti-U.S. Hackers Infiltrate Army Servers | Information week.” May 28, 2009. Available:

https://www.informationweek.com/architecture/anti-us-hackers-infiltrate-army-servers/d/d-id/1079964.

[Accessed: 27-Apr-2021]

[12] “Russian Hackers Amass Over a Billion Internet Passwords | New York Times.” Aug. 5, 2014. Available:

https://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-

credentials.html?_r=0. [Accessed: 27-Apr-2021]

[13] “SQL Injections Continue to Embarrass Big Names | EconoTimes.” May 9, 2017. Available:

https://www.econotimes.com/SQL-Injections-Continue-to-Embarrass-Big-Names-690349. [Accessed: 27-Apr-

2021]

[14] D. Scott and R. Sharp, “Abstracting application-level web security,” Proceedings of the eleventh international

conference on World Wide Web - WWW 02, 2002.

[15] J. Abirami, R. Devakunchari, and C. Valliyammai, “A top web security vulnerability SQL injection attack —

Survey,” 2015 Seventh International Conference on Advanced Computing (ICoAC), 2015.

[16] A. Ciampa, C. A. Visaggio, and M. D. Penta, “A heuristic-based approach for detecting SQL-injection

vulnerabilities in web applications,” Proceedings of the 2010 ICSE Workshop on Software Engineering for

Secure Systems - SESS 10, 2010.

[17] L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for predicting SQL injection and cross site

scripting vulnerabilities,” 2012 34th International Conference on Software Engineering (ICSE), 2012.

[18] A. Joshi and V. Geetha, “SQL Injection detection using machine learning,” 2014 International Conference on

Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2014.

[19] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL injection attacks in stored procedures,” Australian

Software Engineering Conference (ASWEC06), 2006.

[20] Y. J. Tian, Z. M. Zhao, and H. C. Zhang, “Second-order SQL Injection Attack Defense Model,” Netinfo Security,

2014.

https://www.owasp.org/index.php/Top_10_2017-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.bbc.com/news/technology-34636308
https://www.bbc.com/news/technology-34636308
http://news.bbc.co.uk/2/hi/americas/8206305.stm
https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/12/16/16readwriteweb-rockyou-hacker-30-of-sites-store-plain-text-13200.html
https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/12/16/16readwriteweb-rockyou-hacker-30-of-sites-store-plain-text-13200.html
https://www.cbsnews.com/news/yahoo-reportedly-hacked-is-your-account-safe/
https://bits.blogs.nytimes.com/2012/10/03/hackers-breach-53-universities-dump
https://www.informationweek.com/architecture/anti-us-hackers-infiltrate-army-servers/d/d-id/1079964
https://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html?_r=0
https://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-billion-stolen-internet-credentials.html?_r=0
https://www.econotimes.com/SQL-Injections-Continue-to-Embarrass-Big-Names-690349

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

715

[21] A. Tajpour, M. Massrum, and M. Z. Heydari, “Comparison of SQL injection detection and prevention

techniques,” 2010 2nd International Conference on Education Technology and Computer, 2010.

[22] L. Qian, Z. Zhu, J. Hu, and S. Liu, “Research of SQL injection attack and prevention technology,” 2015

International Conference on Estimation, Detection and Information Fusion (ICEDIF), 2015.

[23] Priyanka, and V. K. Bohat, “Detection of SQL Injection Attack and Various Prevention strategies,” International

Journal of Engineering and Advanced Technology (IJEAT) Vol. 2, Issue 4, April 2013.

[24] W. Rajeh and A. Abed, “A novel three-tier SQLi detection and mitigation scheme for cloud environments,” 2017

International Conference on Electrical Engineering and Computer Science (ICECOS), 2017.

[25] M. Chenyu and G. Fan, “Defending SQL injection attacks based-on intention-oriented detection,” 2016 11th

International Conference on Computer Science & Education (ICCSE), 2016.

[26] Z. Z. Zhang, Q. Y. Wen, and Z. Zhang, “An Improved Approach for SQL Injection Vulnerabilities

Detection,” Applied Mechanics and Materials, vol. 263-266, pp. 3017–3020, 2012.

[27] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiDDS: SQL Injection Detection Using Query Transformation and

Document Similarity,” Distributed Computing and Internet Technology Lecture Notes in Computer Science, pp.

377–390, 2015.

[28] I. Lee, S. Jeong, S. Yeo, and J. Moon, “A novel method for SQL injection attack detection based on removing

SQL query attribute values,” Mathematical and Computer Modelling, vol. 55, no. 1-2, pp. 58–68, 2012.

[29] A. Ghafarian, “A hybrid method for detection and prevention of SQL injection attacks,” 2017 Computing

Conference, 2017.

[30] R. P. Karuparthi and B. Zhou, “Enhanced Approach to Detection of SQL Injection Attack,” 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA), 2016.

[31] A. Kumar and S. Binu, “Proposed Method for SQL Injection Detection and its Prevention,” International Journal

of Engineering & Technology, vol. 7, no. 2.6, p. 213, 2018.

[32] L. Ntagwabira and S. L. Kang, “Use of Query tokenization to detect and prevent SQL injection attacks,” 2010 3rd

International Conference on Computer Science and Information Technology, 2010.

[33] R. Rawat and S. K. Shrivastav, “SQL injection attack Detection using SVM,” International Journal of Computer

Applications, vol. 42, no. 13, pp. 1–4, 2012.

[34] K. Kamtuo and C. Soomlek, “Machine Learning for SQL injection prevention on server-side scripting,” 2016

International Computer Science and Engineering Conference (ICSEC), 2016.

[35] Z. Chen, M. Guo, and L. Zhou, “Research on SQL injection detection technology based on SVM,” MATEC Web

of Conferences, vol. 173, p. 01004, 2018.

[36] I. H. Witten and E. Frank, Data Mining. Burlington: Elsevier, 2005.

[37] J. Lei and X.-Q. Shen, “A new method for edge detection based on support vector classification,” Proceedings.

International Conference on Machine Learning and Cybernetics.

[38] M. Lodeiro-Santiago, C. Caballero-Gil, and P. Caballero-Gil, “Collaborative SQL-injections detection system

with machine learning,” Proceedings of the 1st International Conference on Internet of Things and Machine

Learning, 2017.

[39] D. Das, U. Sharma, and D. K. Bhattacharyya, “Rule based Detection of SQL Injection Attack,” International

Journal of Computer Applications, vol. 43, no. 19, pp. 15–24, 2012.

[40] Y. Wang, and Z. Li, “SQL Injection Detection with Composite Kernel in Support Vector Machine,” International

Journal of Security and its Applications 6(2), pp. 191–196, April 2012.

[41] C. Ping, “A second-order SQL injection detection method,” 2017 IEEE 2nd Information Technology,

Networking, Electronic and Automation Control Conference (ITNEC), 2017.

[42] B. D. Priyaa and M. I. Devi, “Hybrid SQL injection detection system,” 2016 3rd International Conference on

Advanced Computing and Communication Systems (ICACCS), 2016.

[43] P. Li, L. Liu, J. Xu, H. Yang, L. Yuan, C. Guo, and X. Ji, “Application of Hidden Markov Model in SQL

Injection Detection,” 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),

2017.

[44] K. Kemalis and T. Tzouramanis, “Sql-Ids,” Proceedings of the 2008 ACM symposium on Applied computing -

SAC 08, 2008.

[45] V. Shanmughaneethi, “Detection of SQL Injection Attack in Web Applications using Web Services,” IOSR

Journal of Computer Engineering, vol. 1, no. 5, pp. 13–20, 2012.

[46] P. Chhabra, R. Wadhvani, and S. Shukla, “Spam Filtering using Support Vector Machine,” International Journal

of Computer and Communication Technology, pp. 256–261, 2010.

[47] S. R. Pakize, and A. Gandomi, “Comparative study of classification algorithms based on MapReduce model,”

International Journal of Innovative Research in Advanced Engineering (IJIRAE), 1(7), pp. 251-254, 2014.

[48] S. Archana, and K. Elangovan, “Survey of classification techniques in data mining,” International Journal of

Computer Science and Mobile Applications, 2(2), pp. 65-71, 2014.

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

716

[49] H. Maldonado, L. Leija, and A. Vera, “Selecting a computational classifier to develop a clinical decision support

system (CDSS),” 2015 12th International Conference on Electrical Engineering, Computing Science and

Automatic Control (CCE), 2015.

[50] S. S. Nikam, “A comparative study of classification techniques in data mining algorithms,” Oriental journal of

computer science & technology, 8(1), pp. 13-19, 2015.

[51] M. Y. Asr, M. M. Ettefagh, R. Hassannejad, and S. N. Razavi, “Diagnosis of combined faults in Rotary

Machinery by Non-Naive Bayesian approach,” Mechanical Systems and Signal Processing, vol. 85, pp. 56–70,

2017.

[52] A. S. Subaira and P. Anitha, “Efficient classification mechanism for network intrusion detection system based on

data mining techniques: A survey,” 2014 IEEE 8th International Conference on Intelligent Systems and Control

(ISCO), 2014.

[53] R. Senthilkumar and R. K. Gnanamurthy, “Performance improvement in classification rate of appearance based

statistical face recognition methods using SVM classifier,” 2017 4th International Conference on Advanced

Computing and Communication Systems (ICACCS), 2017.

[54] T.-T. Dai and Y.-S. Dong, “Introduction of SVM Related Theory and Its Application Research,” 2020 3rd

International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE),

2020.

[55] S. Chen, J.-Q. Wang and H.-Y. Zhang, “A hybrid PSO-SVM model based on clustering algorithm for short-term

atmospheric pollutant concentration forecasting,” Technological Forecasting and Social Change, vol. 146, pp. 41–

54, 2019.

[56] O. A. ., “Comparative Study Of Classification Algorithm For Text Based Categorization,” International Journal of

Research in Engineering and Technology, vol. 05, no. 02, pp. 217–220, 2016.

[57] B. K. Bhavitha, A. P. Rodrigues, and N. N. Chiplunkar, “Comparative study of machine learning techniques in

sentimental analysis,” 2017 International Conference on Inventive Communication and Computational

Technologies (ICICCT), 2017.

[58] I. A. A. Amra and A. Y. A. Maghari, “Students performance prediction using KNN and Naïve Bayesian,” 2017

8th International Conference on Information Technology (ICIT), 2017.

[59] Y. Shi, Y. Sagduyu, and A. Grushin, “How to steal a machine learning classifier with deep learning,” 2017 IEEE

International Symposium on Technologies for Homeland Security (HST), 2017.

[60] A. Korotcov, V. Tkachenko, D. P. Russo, and S. Ekins, “Comparison of Deep Learning With Multiple Machine

Learning Methods and Metrics Using Diverse Drug Discovery Data Sets,” Molecular Pharmaceutics, vol. 14, no.

12, pp. 4462–4475, 2017.

[61] W. C. F. Mariel, S. Mariyah, and S. Pramana, “Sentiment analysis: a comparison of deep learning neural network

algorithm with SVM and naϊve Bayes for Indonesian text,” Journal of Physics: Conference Series, vol. 971, p.

012049, 2018.

[62] R. Moraes, J. F. Valiati, and W. P. G. Neto, “Document-level sentiment classification: An empirical comparison

between SVM and ANN,” Expert Systems with Applications, vol. 40, no. 2, pp. 621–633, 2013.

[63] M.-Y. Day and Y.-D. Lin, “Deep Learning for Sentiment Analysis on Google Play Consumer Review,” 2017

IEEE International Conference on Information Reuse and Integration (IRI), 2017.

[64] A. Koutsoukas, K. J. Monaghan, X. Li, and J. Huan, “Deep-learning: investigating deep neural networks hyper-

parameters and comparison of performance to shallow methods for modeling bioactivity data,” Journal of

Cheminformatics, vol. 9, no. 1, 2017.

[65] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “DeepTox: Toxicity prediction using deep

learning,” Toxicology Letters, vol. 280, 2017.

[66] W. G. J. Halfond and A. Orso, “Preventing SQL injection attacks using AMNESIA,” Proceeding of the 28th

international conference on Software engineering - ICSE 06, 2006.

[67] A. Sadeghian, M. Zamani, and A. A. Manaf, “A Taxonomy of SQL Injection Detection and Prevention

Techniques,” 2013 International Conference on Informatics and Creative Multimedia, 2013.

[68] N. Salih and A. Samad, “Protection Web Applications using Real-Time Technique to Detect Structured Query

Language Injection Attacks,” International Journal of Computer Applications, vol. 149, no. 6, pp. 26–32, 2016.

[69] D. A. Kindy, and K. P. Al-Sakib, “A Survey on SQL Injection Vulnerabilities, Attacks, and Prevention

Techniques,” IEEE 15th International Symposium on Consumer Electronics 2011.

[70] M. Howard and D. L. Blane. “Writing Secure Code,” Vol. II. Microsoft Press, Redmond, Washington, 2003.

[71] S. San-Tsai, W. H. Ting, L. Stephen , and L. Sheung, “Classification of SQL Injection Attacks,” University of

British Columbia, Term Project, 2007.

[72] J. P. Singh, “Analysis of SQL Injection Detection Techniques,” Theoretical and Applied Informatics, Vol. 28, No.

1–2, 2017.

IJEEI ISSN: 2089-3272 

SQL Injection Vulnerability Detection Using Deep Learning… (Md. Maruf Hassan et al)

717

[73] C. Anley, “Advanced SQL Injection in SQL Server Applications, white paper Next Generation Security

Software,” 2002.

[74] D. Litchfield, “Director of Security Architecture. Web application dissembly with odbc error message,” a report.

[75] P. Kaur, and K. P. Kour, “SQL injection: Study and augmentation,” 2015 International Conference on Signal

Processing, Computing and Control (ISPCC), 2015.

[76] K. Kemalis and T. Tzouramanis, “Sql-Ids,” Proceedings of the 2008 ACM symposium on Applied computing -

SAC 08, 2008.

[77] X. Ping-Chen, “SQL injection attack and guard technical research,” Procedia Engineering, vol. 15, pp. 4131–

4135, 2011.

[78] C. Victor, “Advanced SQL injection,” OWASP Foundation, April 2005.

[79] L. K. Shar, and H. B. K. Tan, “Defeating SQL Injection,” Computer, 46(3), pp. 69–77, March 2013.

[80] D. Zhang, “Inconsistencies in big data,” 2013 IEEE 12th International Conference on Cognitive Informatics and

Cognitive Computing, 2013.

[81] E. Cabrio, J. Cojan, and F. Gandon, “Mind the Cultural Gap: Bridging Language-Specific DBpedia Chapters for

Question Answering,” Towards the Multilingual Semantic Web, pp. 137–154, 2014.

[82] G. Bingham, B. Yip, M. Ferguson, and C. Nansalo, “MORPH-II: Inconsistencies and Cleaning,” University of

North Carolina Wilmington NSF REU, 2017.

[83] M. C. Rendleman, J. M. Buatti, T. A. Braun, B. J. Smith, C. Nwakama, R. R. Beichel, B. Brown, and T. L.

Casavant, “Machine learning with the TCGA-HNSC dataset: improving usability by addressing inconsistency,

sparsity, and high-dimensionality,” BMC Bioinformatics, vol. 20, no. 1, 2019.

[84] T. Martins, and J. C. dos Reis, “Mechanism for inconsistency correction in the DBPedia Live,” Technical report,

Universidade Estadual de Campinas-UNICAMP, 2019.

[85] P. Pernot, and F. Cailliez, “A critical review of statistical calibration/prediction models handling data

inconsistency and model inadequacy,” AIChE Journal, 63(10), pp. 4642–4665, 2017.

[86] S. Sathya, and A. Rajesh, “Enhanced Hybrid Data Preprocessing Technique for Eliminating Inconsistencies in the

Diabetic Dataset to Improve Mining Results,” Journal of Computational and Theoretical Nanoscience, Vol. 15,

No. 6–7, pp. 1999–2002(4), June 2018.

[87] R. Sridevi, and Dr.S. Priyaa, “An Ensemble approach on Missing Value Handling in Hepatitis Disease Dataset,”

International Journal of Computer Applications, Vol. 130, No.17, November 2015.

[88] M. Juhola, and J. Laurikkala, “Missing values: how many can they be to preserve classification reliability,”

Artificial Intelligence Review, 40(3), pp. 231–245, 2011.

[89] J. Watada, C. Shi, Y. Yabuuchi, R. Yusof, and Z. Sahri, “A Rough Set Approach to Data Imputation and Its

Application to a Dissolved Gas Analysis Dataset,” Third International Conference on Computing Measurement

Control and Sensor Network (CMCSN), 2016.

[90] J. Kaiser, “Dealing with missing values in data,” Journal of systems integration 5(1), pp. 42–51, 2014.

[91] M. Priyakshi, G. A. Choudhury, and T. Dey, “An Effective Method to Estimate Missing Value for Heterogonous

Dataset.” International Journal of Knowledge Based Computer Systems, 6(2), pp. 8–22, December 2018.

[92] Z. Maciej, “Service-Oriented Medical System for SupportingDecisions with Missing and Imbalanced Data,” IEEE

Journal of Biomedical and Health Informatics, Vol. 18, No. 5, SEPTEMBER 2014.

[93] I. B. Mohamad and D. Usman, “Standardization and Its Effects on K-Means Clustering Algorithm,” Research

Journal of Applied Sciences, Engineering and Technology, vol. 6, no. 17, pp. 3299–3303, 2013.

[94] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, and K. A. Robbins, “The PREP pipeline: standardized

preprocessing for large-scale EEG analysis,” Frontiers in Neuroinformatics, 9, p. 16, 2015.

[95] C. Cabanes, A. Grouazel, K. V. Schuckmann, M. Hamon, V. Turpin, C. Coatanoan, F. Paris, S. Guinehut, C.

Boone, N. Ferry, C. de Boyer Mont ́egut, T. Carval, G. Reverdin, S. Pouliquen, and P. Y. Le Traon, “The CORA

dataset: validation and diagnostics of in situ ocean temperature and salinity measurements,” Ocean Science, 9(1),

pp.1–18, 2013.

[96] J. F. Girres, and G. Touya, “Quality Assessment of the French OpenStreetMap Dataset,” Transactions in GIS,

14(4), pp. 435–459, 2010.

[97] A. Wosiak, and D. Zakrzewska, “Integrating Correlation-Based Feature Selection and Clustering for Improved

Cardiovascular Disease Diagnosis,” Complexity, pp. 1–11, 2018.

[98] M. Doshi and S. K. Chaturvedi, “Correlation Based Feature Selection (CFS) Technique to Predict Student

Perfromance,” International journal of Computer Networks & Communications, vol. 6, no. 3, pp. 197–206, 2014.

[99] A. H. Mark, “Correlation-based Feature Selection for Machine Learning,” Department of Computer Science, The

University of Waikato.

[100] C. Jin, T. Ma, R. Hou, M. Tang, Y. Tian, A. Al-Dhelaan, and M. Al-Rodhaan, “Chi-square Statistics Feature

Selection Based on Term Frequency and Distribution for Text Categorization,” IETE Journal of Research, vol. 61,

no. 4, pp. 351–362, 2015.

  ISSN: 2089-3272

IJEEI, Vol. 9, No. 3, September 2021: 702 – 718

718

[101] B. S. Otong, H. M. Kusnadi, and N. Oky Dwi, “Feature selection based on chi square in artificial neural network

to predict the accuracy of student study period,” International Journal of Civil Engineering and Technology

(IJCIET), Vol. 8, Issue 8, pp. 731–739, August 2017.

[102] C. Selvaraj, N. Bhalaji, and K. S. Kumar, “Empirical study of feature selection methods over classification

algorithms,” International Journal of Intelligent Systems Technologies and Applications, vol. 17, no. 1/2, p. 98,

2018.

[103] S. Deysarakar and S. Goswami, “Empirical Study on Filter based Feature Selection Methods for Text

Classification,” International Journal of Computer Applications, vol. 81, no. 6, pp. 38–43, 2013.

[104] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent

neural networks from overfitting,” Journal of machine learning research, Vol. 15, No. 1, pp. 1929–1958.

[105] R. C. Sharma, K. Hara, and H. Hirayama, “A Machine Learning and Cross-Validation Approach for the

Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal

Data,” Scientifica, vol. 2017, pp. 1–8, 2017.

[106] R. V. Guido and B. D. Jelke, “Interactively Testing Remote Servers Using the Python Programming Language”,

CWI Quarterly, Volume 4, Amsterdam, pp. 283–303, Issue 4 (December 1991).

[107] François C. and others, Keras, 2015. Available: https://github.com/keras-team/keras

[108] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, and others, “Scikit-learn: Machine learning in Python.” Journal of machine learning research,

12(Oct), pp. 2825–2830, 2011.

[109] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, and

others, “Tensorflow: A system for large-scale machine learning,” 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.

[110] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based phishing detection from URLs,”

Expert Syst. Appl., vol. 117, no. January 2019, pp. 345–357, 2019, doi: 10.1016/j.eswa.2018.09.029.

[111] O. Kasim, “Automatic detection of phishing pages with event-based request processing, deep-hybrid feature

extraction and light gradient boosted machine model,” Telecommunication Systems, 2021, pp. 1-13.

[112] P. Yang, G. Zhao, and P. Zeng, “Phishing website detection based on multidimensional features driven by deep

learning,” IEEE Access, vol. 7, no. c, pp. 15196–15209, 2019, doi: 10.1109/ACCESS.2019.2892066.

[113] L. Lakshmi, M. P. Reddy, C. Santhaiah, and U. J. Reddy, “Smart Phishing Detection in Web Pages using

Supervised Deep Learning Classification and Optimization Technique ADAM,” Wireless Personal

Communications, 2021, pp. 1-16.

[114] A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, “A comprehensive survey of AI-enabled phishing

attacks detection techniques,” Telecommun. Syst., vol. 76, no. 1, pp. 139–154, 2021, doi: 10.1007/s11235-020-

00733-2.

https://github.com/keras-team/keras

