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Facial expressions are critical indicators of human emotions where 

recognizing facial expressions has captured the attention of many academics, 

and recognition of expressions in natural situations remains a challenge due to 

differences in head position, occlusion, and illumination. Several studies have 

focused on recognizing emotions from frontal images only, while in this paper 

wild images from the FER2013 dataset have been used to make a more 

generalizing model with the existence of its challenges, it is among the 

most difficult datasets that only got 65.5 % accuracy human-level. This 

paper proposed a model for recognizing facial expressions using pre-

trained deep convolutional neural networks and the technique of transfer 

learning. this hybrid model used a combination of two pre-trained deep 

convolutional neural networks, training the model in multiple cases for more 

efficiency to categorize the facial expressions into seven classes. The results 

show that the best accuracy of the suggested models is 74.39%  for the hybrid 

model, and 73.33% for Fine-tuned the single EfficientNetB0 model, while the 

highest accuracy for previous methods was 73.28%. Thus, the hybrid and 

single models outperform other state of art classification methods without 

using any additional, the hybrid and single models ranked in the first and 

second position among these methods. Also, The hybrid model has even 

outperformed the second-highest in accuracy method which used extra data. 

The incorrectly labeled images in the dataset unfairly reduce accuracy but our 

best model recognized their actual classes correctly. 
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1. INTRODUCTION

One of the strongest, natural, and global signals that reflect human emotions and state is facial 

expression. In the age of artificial intelligence, facial expression recognition (FER) is essential. Machines can 

give customized services based on human reaction data. Many systems, such as personalized suggestions, 

virtual reality, customer satisfaction, etc., rely on the ability to identify facial expressions quickly and 

accurately.In recent years, due to the rapid growth in artificial intelligence, automatic facial expression 

recognition (FER) has an increasing interest among researchers in the field of computer vision, psychology, 

and pattern recognition [1], also, facial expression's classification has become a fundamental portion of 

computer systems and the quick interaction between humans and computers. It is used in many applications, 

including customer service, forensic crime detection, observation of victims in court, mentoring of students in 
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academics [2], robotics, digital entertainment, advanced driver assistance, and monitoring systems [3], virtual 

reality, augmented reality, and education.  Although many researchers work on developing the robust FER, 

they still face many problems and challenges that reduce the recognition accuracy rate, such as illumination, 

noise, and occlusion that affect the feature extraction. In addition, the large data dimension can deteriorate the 

accuracy rate and recognition performance. Deep learning solved some of the problems but still needs a large 

amount of data to overcome the overfitting. In addition, many other parameters have a significant effect on the 

recognition performance, some of them are a variation of personal attributes that can cause high inter-subject 

variations, in addition to age, gender, ethnic backgrounds, and pose variation [4].  

In this paper, we will be focusing on only improving the recognition of facial expression using the 

FER2013 dataset without adding any further data, while most similar works done involves adding extra training 

data from other sources and datasets to improve the accuracy rather than work on the recognition model itself, 

and thus compare the current work with works of other researches.  

The rest of this paper is organized as follows: Section two focuses on the facial expression analysis, 

followed by related works in section three. While section four introduced a general background, about three of 

the main methods used in this work (CNN, Deep CNN, and transfer learning). Then we covered the proposed 

model in section five. Results and performance comparing have been discussed in sections six and seven. 

Finally, the discussion and conclusion section. 

 

2. RELATED WORKS 

             Many strategies have been investigated for FER, they have been grouped into two main classifications: 

classical and deep learning-based methods. Several studies examined different FER techniques. This section 

provides a summary of the most modern approaches. 

Zhao and Zhang [5] merged the neural network with a deep belief network (DBN) for FER. In [6] they 

employed a conventional CNN and two of the convolutional-pooling layers on self-collected images for face 

emotional. 

 Mollahosseini et.al. [7] investigated a more complicated architecture with four layers from type 

inception and two layers from convolutional-pooling. According to [8], multiple CNN learned using different 

filter sizes, with fully connected layers' different numbers of neurons have been tested. Although in [9] the 

trained of hundred CNNs have been done, they only employed a limited number in their final model and it is 

taken as an ensemble of CNNs. Jain et al. described the development of a CNN-RNN hybrid deep learning 

system in [10].  Also in [11], a hybrid system has been developed with TL, where SVM is used to classify 

features obtained from AlexNet. The researchers of [12] used CNN for DWT obtained features. 

Liliana [13] employed architecture containing eighteen convolutional and four subsampling layers to get her 

results.  A CNN-based clustering technique for FER has been proposed in [14]. Authors in [15] used a graph 

based on CNN to investigate FER from facial landmark characteristics. Experimented with various data 

augmentation approaches, such as using synthetic images, and discovered that a combination of synthetic data, 

as well as other methods, performed well for facial expression recognition [16]. Leila and Mohammad Baqer 

suggested extracted features as local binary features, and according to changes in points of windows, facial 

points get a directional motion per each facial expression. Classification is provided according to the nearest 

neighbor [17] 

 

3. FACIAL EXPRESSION ANALYSIS  

In human communication and behavior, facial expressions are extremely important. Paul Ekman was 

the first American psychologist who distinguished six basic categories of facial expressions: anger, disgust, 

fear, happiness, sadness, and surprise remain the same among various cultures. He then launched the Face 

Action Encoding System (FACS), in which he explains more than 40 different facial action units (AUs) [4]. 

With the advancement of artificial intelligence technologies, deep learning's remarkable progress, and 

the growing demand for applications that use big data, FER research will increasingly concentrate on 

spontaneous expressions in the wild. In such complicated situations, new solutions for problems such as multi-

view, occlusion, and multi-objective are required. In general, a FER system consists of several phases, as shown 

in Figure 1. 

 

4. GENERAL BACKGROUND    

    The FER has tested using a variety of pre-trained deep convolutional neural network models to see 

which one was most suited for it. This section explains CNN, as well as various DCNN models and TL. 

 

4.1.  Convolutional Neural Network (CNN) 

CNN's are a class of deep learning networks that are used for processing by a grid pattern and they 

are most typically used to evaluate visual imagery [18] [19]. It has been built to mechanically and proactively 
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discover spatial hierarchies of characteristics from level patterns, from low-level to high. Employing 

convolutional layers instead of fully connected has essentially two key benefits, the first one is sharing of 

parameters, and the second one is the sparsity of connections, thus reducing the number of parameters and 

speeding up the computation [20]. Three types of blocks (or layers) make up CNN, "convolution, pooling, and 

fully connected layers". The convolution and pooling layers extract features, while the full layer transfers those 

features to the final output. A CNN's filters slide across an image-using convolution to discover interesting 

patterns, and usually, its activation function is ReLU, which provides a feature map that adds to the next layer. 

Other layers such as "pooling, fully connected, and normalization" layers may be added after this [19]. 

 

 
Figure 1. Conventional diagram for FER system. 

 

A convolution layer is an important part of CNN, which is made up of stacking of arithmetic 

computations, as convolution ً  ًwhich is a particular form of a linear operation. Pooling is a non-linear down-

sampling technique where the pooling layer merges non-overlapping areas from one layer to generate a single 

value that is transferred to the next layer. Feature maps can evolve hierarchically and progressively and be 

more complicated as the output from one-layer feeds to the next. Training is the process of adjusting parameters 

like kernels (filters) to reduce the difference between outputs and ground truth labels using optimization 

methods such as gradient descent, backpropagation [20]. Forward propagation refers to the process of 

transforming input data into output data across layers. Figure 2 depicts the general architecture of a 

conventional CNN and training. 

 

 

 

 

 

 

Figure 2. The architecture of a standard CNN and the training process [18]. 

 

4.2.  Transfer Learning and Deep Neural Network 

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly 22,000 

categories. The images were collected from the web and labeled by human labelers using Amazon’s 

Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual Object Challenge, an 

annual competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) has been held. 

ILSVRC uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are 

roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images [22]. 
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From 2012 to 2015, the famous CNN models that achieved the best accuracy and won in the ILSVRC 

were: AlexNet, where CNN employs a five-layer system [23], then ZFNet is built on the same concept, except 

the difference it has fewer parameters, where the large kernels swapped out for smaller ones [24], Google Net, 

VGG-16 [25] presented a broader model containing thirteen convolutional layers with smaller kernels. 

Using sixteen convolutional layers, VGG-19 is another model from this type [26], and ResNet [27], 

in which the skip-connection was first proposed and it has become a key concept used by models that come 

following later. Currently, a few distinct ResNet models with varying depths are published, including ResNet-

18, ResNet-34, ResNet-50, and ResNet -52. Later DenseNet [28] featured dense skip connections among layers 

in addition to a single skip link.  Meaning is that every layer gets signals from the above layer, and other 

succeeding layers use each layer's output. The input of a layer is coupled with the channel aggregation from 

the previous layers. There are numerous variants of this paradigm.  

DCNN features numerous hidden convolutional layers, and it works with images of large size, this 

makes inputs and training extremely difficult.  Every DCNN model has distinct important layouts and 

interconnections [21]. Due to many parameters, training a large DCNN model is a difficult undertaking. A 

huge network frequently necessitates a significant amount of training data. Due to the high cost of data 

collecting and costly annotation in some disciplines, such as bioinformatics and robotics, building a large-scale 

well-annotated dataset is extremely challenging, limiting its evolution. However, transfer learning [29], which 

is focused on knowledge transfer between domains, is a potential machine learning strategy for overcoming 

the above difficulty, and the researchers have demonstrated that TL [30] [31] can even be highly effective in 

solving such issue. Deep learning has recently gotten a lot of interest from researchers as a modern 

categorization platform, and it has been effectively implemented in many different fields. 

Transfer learning TF is a useful approach for dealing with limited training examples. Instead of 

learning from the beginning, the model might begin utilizing the pre-trained weights [20]. It attempts to 

transfer the knowledge from the source to the target domain by loosening the requirement that the training set 

is independently and identically distributed as the test data [32]. This will have a significant positive impact on 

a variety of areas that are hard to enhance due to a lack of training examples. Figure 3 depicts a conceptual 

diagram of the TR approach. 

TL is a strategy that enables employing representations of knowledge obtained through a variety of 

tasks that have similar applicability. It has been observed that the TL performs better if the two tasks 

were identical [30]. More recently, it has been explored on tasks that are not related to its training, also it has 

shown to be effective ً[33]. 

 

 
Figure 3. Conceptual diagram of TR: Pre-trained using ImageNet and retraining using PASCAL 

dataset [20]. 

 

5. THE PROPOSED MODEL  

In this section, the proposed model for FER has been described. ً ًThis model includes two parts: the 

features extraction part and the classifier part. The features extraction part result from integrating the features 

we get from pre-trained models MobileNetV2 and EfficientNetB0 that have trained on the ImageNet dataset. 

The training of the models will be in two cases as described later. The best one is taken as the final best model. 

 

5.1.  The Fer2013 Dataset 

The dataset that has been used in this work is the FER2013 dataset, which consists of 35887 grayscale 

images with sizes (48x48), all images are the cropped faces, samples of these images are shown in Figure 4. 
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FER2013 dataset has the basic seven expressions, are "angry, disgust, fear, joy, neutral, sad, surprise". The 

challenges of these images are (have a small size and the low resolution), in addition to being highly 

imbalanced, because the number of images is different from one emotion to others, making it hard to obtain a 

model that can work well and accurately for all expressions, also some of the images are rotated, occluded, and 

with various illumination. 

 

 

Figure 4. Samples of images for different emotions from FER2013 Dataset 

 

5.2.  Preprocessing The Dataset 

 The preprocessing can be summarized as a method for resizing the images to the proper size as the 

model requires, converting images to RGB, and reshaping the image array to desired dimensions. The images 

and the corresponding label will be saved as (.pkl) file; " This is a file generated by Pickle, a Python module 

that allows items to be serialized as files on disk and then deserialized back into the application as needed. It 

reloaded into memory during execution time to save space in storage or transition. The file can be used directly 

for reading data instead of reading the images every training, thus will reduce the required time taken for 

training and testing, also data augmentation has been used to increase sample size, reduce overfitting, and 

increase generalization. The data augmentations that have been used are (Flip, Shift, Rotate, and Zoom). In this 

work, the distribution of data as training and testing data are unchanged of data images as stated in the original 

dataset page, with 28709 training samples and 3589 validation samples, without adding any external images as 

the other researchers did, where a lot of researchers used external images from other datasets or those that are 

self- obtained images. 

 

5.3.  The Architecture Of The Proposed Model 

 The proposed model is structured as shown in Figure 5, the weights from the pre-trained models such 

as (EfficientNetB0 and MobileNetV2) transferred to the newly built model by taking only the features 

extraction part from it, leaving its old classifier, and replaced with new classifier. Features of EfficientNetB0 

and MobileNetV2 models have been combined to create a feature extractor part for the model.  

 The Classifier part is created by adding two Dense-Dropout layers with (4096 and 1024) neurons 

respectively. The activation function that been used in these layers was of type ReLU. The last layer of the 

model is the Dense layer with seven neurons (because the model will be used to "classify image to one of seven 

expressions") and the activation function was Softmax. 

 

5.4.  Training The Models 

 In general, when the models have been trained using transfer learning, the training speed can be faster, 

then the weights of its feature extraction layers (ignore the classification part) can be used to initialize the 

feature extraction layers of a new model. In addition, to increase the accuracy and generalization of the model, 

fine-tuning techniques are used. The proposed hybrid model described in the previous subsection has been 

training using features extraction parts pre-trained on Imagenet and separately on  Fer2013 Itself. Also, for 

single and hybrid models ,the training is done using two cases as mentioned bellow and the best obtained results 

for the models are listed in this paper.  

o Case 1: freezing the features extraction part and training only the classification part, the extracted 

general features will be good enough at the start. Freezing the extraction part allows the classification layers to 

get some knowledge about what features to look for in the output, it takes less training time than other cases 

because the parameters that need training are less. 

o Case 2: fine-tune the extraction part and the classification part, so the whole model is trained without 

freezing any part. This may make the learning process give better accuracy, but it takes more training time. 
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Figure 5. The structure of the proposed hybrid model 

 

6. THE EXPERIMENTAL RESULTS  

The parameters that used for training all models are listed in Table 1, the following subsections explain 

the results obtained from training two pre-trained models separately, and that get from the proposed combining 

models trained in two cases (directly using the weights from pre-trained models on ImageNet and by using the 

two pre-trained models weights trained on FER-2013 separately). 

 

Table 1. Training parameters 
Parameter Value 

Input Image Size 200x200 

Image Color Space  RGB 3 Layers 
Batch Size                                  32 

No of Epochs 100 

Dropout Rate  0.2 
optimization function   ADAM 

Learning Rate  0.001 

 

6.1.  The EfficientnetB0 Model 

 In this model, the weights from the EfficientNetB0 model are transferred to the newly built model by 

replacing its old classifier with the new classifier consisting of two Dense-Dropout layers with (4096 and 1024) 

neurons respectively, and Rectified Linear Unit (ReLU) activation function. Also, the last layer is the Dense 

layer with 7 neurons and Softmax activation function.  

The structure of this model is shown in Figure 6.The model has been trained by fine-tuning both parts (features 

extractor and the classifier). Model accuracy and Loss for this case are plotted in Figure 7 and the best accuracy 

was (73.32) at epoch 95. The confusion matrix and the classification report on testing the final best model on 

a test set of FER2013 are shown in Figure 8. 
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Figure 6. The structure of the proposed EfficientNetB0 model. 

 

6.2.  The MobilenetV2 Model  

The MobileNetV2 has been trained using the same strategy for EfficientNetB0 in the previous 

subsection with the same structure shown in Fig. 6 except that EfficientNetB0 was replaced by     MobileNetV2. 

The best accuracy for the training with fine-tuning was (0.71038) at epoch 85. Model accuracy and Loss have 

been plotted in Figure 9. The confusion matrix and the classification   report on testing the final best model on 

a test set of  FER2013 are shown in Figure 10. 

 

 

Figure 7. The proposed EfficientNetB0 Model: accuracy and loss after fine-tuning 
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Figure 8. The confusion matrix and the classification report of the final best EfficientNetB0 model on 

FER2013. 

 
Figure 9. The proposed MobileNetV2 model: accuracy and loss after fine-tuning 

 
Figure 10. The confusion matrix and the classification report of testing the final best MobileNetV2 model on 

the FER2013 test set 

 

6.3.  The Hybrid Model Using Features Extraction Parts Pre-Trained On Imagenet.  

The proposed hybrid model described in the previous section has been trained in the two cases with 

the following results: 

Case 1: training by freezing the features extraction parts of the model, the accuracy and loss have been 

plotted in Figure 11; the best accuracy was 0.588 at epoch 147. 

Case 2: training by fine-tuning (unfreezing) the features extraction parts of the model, the accuracy 

and Loss have plotted in Figure 12, in this case, the best accuracy was 0.7322 at epoch 74. A confusion matrix 
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and a snapshot of the classification report contain "precision, recall, F1-score, support" metrics obtained from 

testing the hybrid model, in this case, are shown in Figure 13. 

  

 

Figure 11. The proposed hybrid model using pre-trained features extraction parts pre-trained on ImageNet: 

accuracy and loss after case 1 

 
Figure 12. The proposed hybrid model using pre-trained features extraction parts pre-trained on ImageNet: 

accuracy and loss after case 2 

 
Figure 13. The confusion matrix and the classification report of testing the proposed hybrid model (pre-

trained on ImageNet) after case 2 
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6.4.  The Hybrid Model Using Features Extraction Parts Pre-Trained Separately On  Fer2013 Itself.  

The weights from EfficientNetB0 and MobileNetV2 models that trained speratly as described in 

subsection 6.1 and 6.2 are used as features extraction parts for the proposed hybrid model. By freezing these 

features extraction parts, the model got a higher accuracy up to (0.7439) at epoch number 16. The increasing 

accuracy results may be because of the good features (weights) obtained from the feature extraction parts. The 

accuracy and Loss for the final best model are shown in Figure 14. In addition, the confusion matrix and a 

snapshot of the classification report contain "precision, recall, F1-score, support" metrics obtained from testing 

the best hybrid model are shown in Figure 15. 

  

 

 
Figure 14. The proposed hybrid model using features extraction parts pre-trained separately on FER2013 

itself: accuracy and loss 

 
Figure 15. The confusion matrix and the classification report of testing the final best hybrid model 

(features extraction parts pre-trained separately) on the FER2013 test set. 

 

7. TESTING THE BEST MODEL 

Table 2 presents samples of images on which the best hybrid model was tested to distinguish its 

expression, the first three columns containing samples of correctly predicted images which are labeled with 

green text, while the last three columns indicate samples of incorrectly predicted images which they labeled 

with red text. As noticed, when looking for images which are incorrectly recognized by the system, for 

example, images in the last column in the rows of the expressions “Fear, Sad, Natural and Surprise”, it is clear 

that most of these images have happiness expression, but it is incorrectly labeled in the FER2013 dataset. This 

means that the suggested model predicted the correct expression in spite that it is regarded as wrong predictions 

from the model. There are a lot of incorrectly labeled images in the fer2013 dataset which affects a lot in the 

accuracy but the suggested model correctly recognized them. Examples of these images are shown in the last 

two columns of Table 2. 
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Table 2. Examples of correctly and incorrectly predicted images from testing the best model 
True 

label 

True prediction          

                  1                                   2                                    3 

False prediction          

              1                              2                              3 

Angry 

      

Disgust 

 
 

    

Fear 

      

Happy 

      
Sad  

  
  

  
Surprise 

 

  
    

Neutral 

      

 

8. PERFORMANCE COMPARISON 

Table 3 listed all the results of training the models that have been done. Training the model from the 

base means that it is depending on the pre-trained weights from the ImageNet dataset. Training it using loading 

weights means that its weights are obtained from training each model (EfficientNetB0, MobileNetV2) 

separately on the FER2013 dataset. FER2013's prior reported classification accuracies are shown in Table 4 

with a comparison with the best of our models.  

The best-reported accuracy that was achieved without using any additional data was 73.28 %. In this work 

we did not add any data for training the models and depending only on the dataset with its all challenges, the 

best-achieved accuracy was 74.39 % by combining the two models (EfficientNetB0, MobileNetV2) that are 

trained separately on FER2013. 

 

Table 3. The Comparison between our models. 
The model 

 

Accuracy 

% 

Best Epoch 

EfficientNetB0  73.32 95 

MobileNetV2 71.04 85 

Hybrid Model Using Features Extraction Parts Pre-Trained on Imagenet : FFa   58.63 147 
Hybrid Model Using Features Extraction Parts Pre-Trained on Imagenet.  : TTb  73.22 74 

Hybrid Model Using Features Extraction Parts Pre-Trained on Fer2013 : FFa   74.39 16 

a: (Mobilenetv2_classifier.trainable = False, EfficientNetB0.trainable = False) 

b:(MobileNetV2_classifier.trainable = True and EfficientNetB0.trainable = True) 
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Table 4. The Comparison Comparison with recent models on the FER2013 dataset. 
Year 

 

The model/ Method Accuracy 

% 

Proposed 
Hybrid Model by freezing the Features Extraction Parts Pre-Trained on 

Fer2013.   

74.39 

2020 Residual Masking Network (using extra data) [35] 74.14 

Proposed EfficientNetB0 model with Fine tuining 73.32 

2021 VGGNET [34] 73.28 

Proposed 
Hybrid Model by Fine tuining the Features Extraction Parts Pre-Trained 

on Imagenet   
73.22 

2016 VGG [36] 72.70 

2016 Resnet [36] 72.40 

2021 CNN Hyperparameter Optimisation [37] 72.16 

2016 Inception [36] 71.60 

2021 ARM( ResNet-18) [38] 71.38 

Proposed MobileNetV2 model with Fine tuining 71.04 

2019 AttentionalConvNet [39] 70.02 

2016 Con+Inception layer [7] 66.40 

2019 VGG+SVM [40] 66.31 

 

9. DISCUSSION 

This research provides a method for recognizing facial emotions using pre-trained deep Neural 

Networks and the TL by developing single and hybrid models. The pre-trained models used in this work are 

EfficientNetB0 and MobileNetV2 models, the single pre-trained models are trained by using a new classifier 

and fine-tuning the features extraction part.the proposed hybrid model contains a mix of two single pre-trained 

models which are EfficientNetB0 and MobileNetV2 models to categorize facial expression into seven 

categories. Also, the hybrid model uses the same classifier which used with single models.  

When examining Table 3 ,It is noticed that fine-tuning the feature extraction part of the single models 

gives better accuracy compared with cases that the feature extraction part is freezing. This is because the 

FER2013 dataset that contains only faces is very different from the Imagenet dataset that single models trained 

with, Thus, the features extracted by using these models differ greatly from the facial features. Especially in 

the final layers that give a clearer perception of the image.For the hybrid model, the results are different 

depending on the data set on which the individual models were previously trained and if the training is with or 

without fine-tuning. 

Due to the limitation of the resources like (RAM, GPU, CPU), the training was for just 100 epochs, 

except that without tuning there is trying to train for 150 epochs to get better accuracy, but as we see there is 

no enhancement. For more epochs, this will slow the training and elapse more time because training the model 

on a large dataset required a lot of computational operations and memory.  

As the results have shown, our models outperform other state-of-the-art classification methods 

without using any additional data and the best model gives accuracy equal to 74.39 %. This accuracy is highest 

than all the models that are not used extra data (the highest accuracy for methods that do not use extra data was 

73.28 [34]).  

It even outperforms the method that is considered the second-highest accuracy for the classification 

of expressions [35] using the FER2013 dataset with 74.14 % accuracy according to the site 

(https://paperswithcode.com/sota/facial-expression-recognition-on-FER-2013). In addition, their model is 

more complex and requires high resources.In this case, the best-proposed model in this paper ranked the second 

position among all methods in the classification of facial expressions for the FER-2013 database, exceeding 

all methods that do not use extra data; also, it can be used in devices with limitations resources. 

The results show that the best accuracy of the suggested models is 74.39%  for the hybrid model, and 

73.33% for Fine-tuned the single EfficientNetB0 model, while the highest accuracy for previous methods was 

73.28%[34]. Thus, the hybrid and single models outperform other state of art classification methods without 

using any additional, the hybrid and single models ranked in the first and second position among these methods. 

Also, The hybrid model has even outperformed the second-highest accuracy for the classification of 

expressions [35] which used extra data with 74.14 % accuracy according to the site 

(https://paperswithcode.com/sota/facial-expression-recognition-on-FER-2013). Also, The incorrectly labeled 

images in the dataset unfairly reduce accuracy but our best model recognized their actual classes correctly. 

The accuracy of the happy and surprised expressions was the highest, but the fear, sadness, and angry 

expressions had less accurate. It has maybe natural because the first two expressions have more images than 

the rest and their features are distinctive. On the other side, even for a human, it is difficult for classifying some 

of such images. This may be because the features for these expressions are more similar to each other, which 

leads to confusion and inaccurate classification. 

https://paperswithcode.com/paper/challenges-in-representation-learning-a
https://paperswithcode.com/paper/convolutional-neural-network-hyperparameters
https://paperswithcode.com/sota/facial-expression-recognition-on-FER-2013
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Table 5 displays the largest amount of confusion between expressions. The largest confusion was 

between Disgust expressions and angry expressions where the model predicted 0.18 % of Disgust expression 

as angry expression, sad expression confused with neutral expression with value 0.15, fear expression with sad 

expression by 0.14.  

Furthermore, it is clear that only anger expression has been predicated as disgust expression, and in a 

very small percentage that is almost negligible about 0.01. Thus the model does not predict wrongly any other 

expressions as disgust. 

Table 5. The Most Confusion between Expressions. 
True Expression Confused/ Predicted  Expression Value 

Angry Sad 0.13 

Disgust Angry 0.18 

Fear Sad 0.18 

Happy Neutral 0.03 

Sad Neutral 0.14 

Surprise Fear 0.07 

Neutral Sad 0.15 

 

10. CONCLUSION  

  In this thesis, a system for facial expression recognition from images is implemented by using 

different pre-trained models and the proposed hybrid model. two pre-trained models have been applied after 

changing classifiers then constructing the hybrid model. The proposed hybrid model consists of merging two 

models and training them both to rely on the ImageNet data set and by using weights from each model pre-

trained on the Fer2013 data set separately.However, facial expression recognition is not an easy task and still 

suffers from difficulties especially since some facial expressions are almost similar and the confusion happens 

between them for the same person or with another person. In addition, the available datasets may have many 

conditions in various environments, like there was various lighting, occlusion for some facial features, etc., 

which adds difficulties in classification. The proposed model Has the ability to address most of these problems 

found in the images and is not limited to images of the front faces only. A list of conclusions from this paper 

are listed below: 

- If the database is completely or significantly different from the one on which the model was 

previously trained, the performance will not be very effective. Because only elementary features such as basic 

lines and shapes are extracted correctly, but more complex features will not be extracted well using previously 

trained weights. 

- If the model is previously trained on a database similar or close to the one on which training is 

required, in this case, the results will be better and the performance more effective because the weights are set 

correctly to extract almost all the features, even the complex ones. 

- The proposed hybrid model outperforms other methods without using any additional images, 

whereas more approaches used additional data to achieve more accuracy. 

- Although the best models performed differently, they all produced encouraging results, exceeding 

various state-of-the-art techniques for the classification of facial expressions for the FER-2013 database  

- There are a lot of incorrectly labeled images in the fer2013 dataset which unfairly reduces the 

accuracy but the model correctly recognized them. 

Future work could include training the model with various values for training parameters (batch size, 

training epochs, optimization functions, and so on), also can train the model for other cases like freezing one 

of its feature extraction parts and fine-tuning the others..  
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