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 The blood flow that carries various particles results in disturbed physical 

flow in the heart organ caused by speed, density, and pressure. This 

phenomenon is complicated resulting in a wide variety of medical problems. 

This research provides a mathematical technique and numerical experiment 

for a straightforward solution to cardiac blood flow to arteries. Finite element 

analysis (FEA) is used to study and construct mathematical models for 

human blood flow through arterial branches. Furthermore, FEA is used to 

simulate the steady two-dimensional flow of viscous fluids across various 

geometries. The results showed that the blood flow in the carotid artery 

branching is simulated after the velocity profiles obtained are plotted against 

the experimental design. The computational method's validity is evaluated by 

comparing the numerical experiment with the analytical results of various 

functions. 
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1. INTRODUCTION 

Cardiac electrophysiology modeling has advanced dramatically over the past 50 years. Recent 

developments have seen the integration of mechanical function in cardiac simulation, making it an even more 

potent tool for understanding cardiac function from a fundamental science standpoint as well as for designing 

clinical remedies. Because of the various kinematic movements of blood flow, cardiovascular modeling is 

constantly evolving [1-4]. The heart undergoes several activities that involve complicated interactions 

between viscous incompressible fluids and deformable objects [5, 6]. Meanwhile, the cardiovascular system's 

complexity has resulted in the creation of different designs and models to handle the blood flow problem 

using diverse criteria. In blood dynamics simulation, the Reynolds number issue, the uncompressed Navier-

Stoke Equation, and momentum are examples of these. 

Because of the pressure difference at the moment of entry and exit from the heart, the blood flow 

simulation system is quite complex [7]. Furthermore, the issue stems from the three-dimensional idea of 

circulation, which applies boundary criteria for where blood departs, as well as the fluctuation of the human 

body's viscosity coefficient. Because the method is extensively employed in scientific and clinical studies as 

a statistical strategy, it is one of the answers to cardiovascular flow issues [8-10]. Furthermore, it is utilized to 
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examine the relationship between near-wall blood flow characteristics, such as shear wall pressure, and pre-

existing cardiovascular disease [11, 12]. As a result, the use of hemodynamics is critical for future research. 

There has been a lot of interest in the review of the literature on circulatory issues [13, 14]. 

Numerous investigations, however, have demonstrated that porous artery walls may be bent and that the non-

Newtonian character of blood flow changes depending on channel geometry. To address issues with the 

interplay of blood and fluid-structure, nonlinear approaches and a flow field with incompressible viscosity 

were used [15, 16]. Other ways of partitioning include weak [17-20] and strong coupling algorithms [21-26]. 

In the absence of a symmetrical constant flow shape, the dynamics of uncompressed blood were depicted 

[27]. As a result, the composite structure added into the fluid equation can satisfy the no-slip requirement, 

allowing for the evaluation of the fluid-structure interface location and the balance of contact forces [28]. The 

origin of the liquid is not known, and these two pairings result in geometric nonlinear problems. Time-

dependent information from dynamic pressure input and output determines how the medium and fluid-

structure interact [29-31]. 

The contraction of the heart exerts arterial pressure on the blood vessel walls, pushing blood into 

them [14, 32, 33]. Furthermore, when circulation is disturbed due to increased resistance, blood pressure 

increases. Changes in heart activity, vasoconstriction, and vasodilation can all affect it. Resistance to flow 

should be overcome as a primary issue in order to drive blood through the circulatory system. As the 

resistance rises, so should the pressure in order to sustain blood flow. Resistance can be affected by blood 

viscosity, vessel length, and vessel radius. When the viscosity increases, the length of the vessel increases, 

the radius decreases, and the resistance increases. Because of the tiny size of their lumen, the capillaries and 

arterioles are the principal sites of the circulatory system that create resistance. Arterioles can also rapidly 

modify their resistance by changing their radius via vasodilatation or vasoconstriction. To allow flow, the 

vascular resistance caused by the blood arteries must be overcome by the pressure generated in the heart. 

Pressure and resistance closely govern blood movement throughout the body. This is because to achieve a 

relatively constant flow, pressure and resistance are changed to maintain this consistency. Flow rate, 

pressure, blood cross-sectional area, and the effort of the cardiovascular muscles and veins all have an impact 

on the circulatory system [34]. 

Blood moves from the heart to the entire body with the aid of smooth muscle in the walls of blood 

vessels. Furthermore, blood flow carries various kinds of substances important for body activities, such as 

oxygen and other nutrients. It is divided into several directions in the human body. These include towards the 

edge of the vessel and a direction centered in one point. Due to the complexities of blood flow, there have 

been various events involving blood flow with very small and very large rates that have disrupted the 

operations of organs in the body. The circulatory system experiences changes in blood flow and pressure. 

In this paper, a model of blood flow velocity employing Navier-Stokes partial differential equations 

and non-linear partial differential and continuity equations is proposed. To determine velocity and its 

variables, they explain dynamic fluid flow [35]. The resistance, pressure, and radius geometry parameters are 

used in this simulation through Poisseuille's law. This law provides an explanation for the numerical and 

analytical solutions to the conservation of mass and momentum problem. 

 

2. THEORETICAL CONSIDERATIONS 

2.1. Fluid Kinetic Equations 

The phenomenon of human heart oscillation can be viewed from the flow and pressure from or to 

the heart. Circulating blood flow shows kinetic oscillation events in vessels near and far from the heart. 

These oscillations are very complex and vary with the size, structure, and geometry of the vascular channels, 

as well as the composition of the solution present in the blood at each position of the vessels. However, the 

complexity of the elastic channels, varying solutions, and flow pressures from different cardiac sources 

permit a systematic and structured performance. 

The mechanism of fluid flow in blood vessels is very complex, and fluid mechanics phenomena can 

help us understand essential elements of hemodynamics.. This contributes to the continuous mechanics of 

fluid flow in equilibrium without stress in any configuration. Furthermore, the flow can experience isotropic 

(at rest) and non-isotropic stress. The non-isotropic state can cause continuous deformation while the non-

isotropic component depends on the fluid deformation parameters related to the velocity gradient. 

Theoretically, the fluid should satisfy a no-slip condition where the velocity closest to the solid moves at the 

surface velocity, which is known as simple shear flow. The stress shear 𝜏 constrains and inhibits the velocity 

gradient produced by the fluid's continual deformation. Furthermore, it is produced by the fluid as a result of 

energy dissipation as fluid molecules cross each other. The fluid resistance to deformation may be described 

using velocity 𝜇, defined by the ratio of the shear stress to the velocity gradient 𝛾, namely: 

 

𝜇 =
𝜏

𝛾
 (1) 
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The Newtonian fluid principle is represented by Equation (1). For Newtonian fluids, the differential 

equation is used to assume the connection between shear strain rate and shear stress. The fluid in which the 

local strain rate, or the rate of change of the fluid's deformation over time, at each place, is directly 

proportional to the viscous stresses produced by the fluid’s flow. The stress is determined by how quickly the 

fluid’s velocity vector changes. If a fluid's strain rate and viscous stress tensors are related by a tensor of 

constant viscosity that is unaffected by the stress state or velocity of the flow, the fluid is said to be 

Newtonian. If the fluid is also isotropic, the viscosity tensor is reduced to two real coefficients that 

characterize the fluid's resistance to shear deformation and resistance to compression or expansion (having 

the same mechanical properties in all directions). The most fundamental mathematical fluid models that take 

viscosity into account are Newtonian fluids. No real fluid exactly fits the definition, although many common 

liquids and gases, like water and air, can be regarded as Newtonian for calculations that need to be done 

under normal circumstances. On the other hand, non-Newtonian fluids are relatively common and include 

non-drip paint and oobleck, both of which stiffen when violently sheared. Several molten polymers, polymer 

solutions (which exhibit the Weissenberg effect), various solid suspensions, blood, and the majority of very 

viscous fluids are further examples. 

Viscosity has units that are measured in Pa.s or P (Poise) whereas blood fluid flow can be treated as 

a Newtonian flow. However, in a special case, the blood shows the effect of non-Newtonian flow on the low 

shear and viscosity values in Equation (1) as a function of the value 𝛾. Moreover, a concentrated suspension 

of blood cells does not behave as a continuous narrow cylindrical tube like a constant capillary tube. 

Therefore, the nature of flow is neither Newtonian nor continuous. 

Blood fluids have a strong resistance to volume changes as a result of variations in hydrostatic 

pressure and can thus be termed incompressible from a hemodynamic standpoint. When 𝑣(𝑥, 𝑡) =
(𝑣1, 𝑣2, 𝑣3), this indicates the vector function's velocity with regard to place 𝑥 = (𝑥1, 𝑥2, 𝑥3) and time 𝑡. 

Furthermore, the condition for time-free incompressibility and the continuity equation has been simplified 

may be written as follows: 

 
𝜕𝑣1

𝜕𝑥1
+

𝜕𝑣2

𝜕𝑥2
+

𝜕𝑣3

𝜕𝑥3
= 0 (2) 

 

All of the flow field's properties influence the incompressible fluid's hydrostatic pressure 𝑝, not 

simply the local conditions at a given spot. In contrast, the pressure at any place in the compressible flow 

state can be characterized as a consequence of the density of the nearby fluid. The non-isotropic stress 

component in Newtonian fluids is proportional to the local velocity gradient. Meanwhile, the stress tensor 

components in the following equation describes an incompressible Newtonian fluid: 

 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑗
) (3) 

 

where 𝛿𝑖𝑗 denotes the Kronecker delta, which is 1 when 𝑖 = 𝑗 and 0 when 𝑖 ≠ 𝑗. 

The equation for blood fluid flow is used to solve the motion phenomenon, in which Equation (3) is 

paired with the following motion equation: 

 

∑
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗

3
𝑗=1  (4) 

 

the inexhaustible Equation of Navier-Stokes is found when 𝜕𝜎𝑖𝑗/𝜕𝑥𝑗 is the partial derivative of 𝜎𝑖𝑗 for 𝑥𝑗: 

 

𝜌 (
𝜕𝑣𝑖

𝜕𝑡
+ ∑ 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗

3
𝑗=1 ) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜇 (∑

𝜕2𝑣𝑖

𝜕𝑥𝑗
2

3
𝑗=1 ) + 𝐹𝑖 (5) 

 

In general, the unknown variables p and v solve Equation (5) to forecast fluid motion under given 

conditions. In solid boundary circumstances, when the fluid velocity near the solid surface should be the 

same as the velocity of the surface, the no-slip condition is utilized. 

In many cases of fluid behavior, it is possible to assume the use of the Navier-Stokes Equation, 

which depends on the flow domain's size and form, parameter values, and boundary conditions used. The 

complexity of the flow behavior can be increased when the resulting equation is non-linear in velocity as a 

result of the term 𝑣𝑗(𝜕𝑣𝑖/𝜕𝑥𝑗) which describes a fluid's acceleration as it moves through a homogeneous 

flow field. This nonlinearity makes the solution more difficult of the problem using mathematical and 

computer approaches. In some situations, one or more terms of Equation (5) can be omitted to a simplified 
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form. For example, the inner term of Equation (5) on the left can be neglected when the fluid is very slow or 

high. Meanwhile, when the velocity is high and the viscosity effects are small, the term 𝜇(𝜕2𝑣𝑖/𝜕𝑥𝑗
2) can be 

ignored in some circumstances. Consider the Reynolds number to gain a knowledge of the physical 

implications of the Navier-Stokes equation and various flow events. 

Reynolds number determines fluid flow, and when the value increases above 2000, turbulence 

effects will appear even in straight and smooth blood vessels. This can also occur in large arteries since there 

is almost always a slight turbulent flow in some. This can be found at the end of the aorta and in the branches 

of the main arteries [36]. The Reynolds number is calculated as follows: 

 

𝑅𝑒 =
𝑣.𝑑
𝜂

𝜌

 (6) 

 

𝑅𝑒is a measure of the tendency for turbulence to occur and the velocity of blood flow (cm/s), 𝑑 is 

the diameter (cm), 𝜂 is the viscosity (Pa.s), and 𝜌 is the density (g/cm3) [37]. 

Blood exhibit a laminar flow at a steady rate through long, smooth blood vessels with each layer 

remaining equidistant from the walls. Similarly, the central portion is in the center of the vessel, and this flow 

is opposite to turbulent, where blood flowing in all directions is continuously mixed [38, 39]. Blood flow can 

be treated in identical arteries when a fluid moves laminar in a small tube. The total force interacts with the 

blood and the inner walls of the arteries to prevent direct contact with the arterial walls, which is illustrated in 

Figure 1. 

 

 

 
 

Figure 1. Variations in velocity through the arterial diameter are accompanied by large variations pressing the 

blood cells towards the center of the artery [40] 

 

At the boundary plane in the arterial wall, the velocity of blood flow is equal to zero, and the blood 

flow is faster in the center. The pattern of blood flow velocity is determined by a function of the distance 𝑟 

from the center of the tube. When it is assumed that the radius in 𝑎 and length 𝑙 with the difference in 

velocity 𝑃1 − 𝑃2 and the viscosity of the fluid can be written as: 

 

𝑣 =
1

4𝜂𝑙
(𝑃1 − 𝑃2)(𝑎

2 − 𝑟2) (7) 

 

2.2. Laminar flow in a uniform tube 

This aids in determining the connection between the average flow 𝑄 and the carrier pressure P in a 

tube of length 𝐿, diameter 𝐷, and the carrier pressure 𝑃. From the experiment, the relationship between flow 

and diameter is obtained using the formula: 

 

𝑄 =
𝐾∆𝑃𝐷4

𝐿
 (8) 

 

The K factor depends on the type or types and the temperature of the fluid or liquid. Theoretically, it 

can be stated: 

 

𝑄 =
𝜋

128

∆𝑃𝐷4

𝐿𝜇
 (9) 

 

where, 𝜇 is viscosity and 𝑄 is known as Poiseuille's law. 

Poiseuille's law is based on the premise that the cylinder is a rigid circle. Furthermore, the fluid 

includes Newtonian with a stable flow and constant time. The flow is laminar and does not experience 
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turbulence, and the path is not affected by the entry of the non-uniform flow medium into a vessel. However, 

this condition violates the circulatory system and can be used in hemodynamics. From Equation (9), the 

speed of blood flow is a function of the cylindrical radius of the vessel media. Meanwhile, when the radius is 

doubled in size, the velocity of blood fluid flow increases 16 times from the original (in addition to the 

temperature and blood pressure factors). A decrease in the radius of blood vessels can occur due to the 

thickening of the walls by external factors such as lipids or other cellular structures. 

Blood flow in arteries has several characteristics, including: (1). Have a very strong pulse, as a result 

of alternating between the discharge and filling phases of the cardiac cycle, (2). Elastic artery walls cause 

pressure fluctuations during the cardiac cycle, resulting in a change in arterial diameter, (3). The combination 

of pulsing flow and vessels causes the heart rate to spread as traveling waves along the arteries, (4). 

Curvature, branching, and other local changes in diameter characterize the forms of arteries. These geometric 

characteristics can be altered in pathological conditions such as during an aneurysm or the development of 

stenosis, (5). Reynolds number of high arterial flow, in the 100-1000s range. Furthermore, the area can be 

complex and sensitive to geometric disturbances with the possibility of unstable and chaotic flow in this 

range. The key to arterial blood flow lies in its physical properties and the aspects experienced. 

The Navier-Stokes Equation is a differential variant of Newton's second fluid motion equation, may 

be used to explain the phenomena of blood fluid flow. The change in momentum of fluid particles is 

expressed by this equation as a function of internal and external pressure as well as viscous force [41]. The 

general Navier-Stokes equation for incompressible fluid flow is stated in Equation (5) as: 

 
𝜕𝑝

𝜕𝑡
+ ∇ ∙ (𝜌𝑢) = 0 (10) 

 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢 ∙ ∇)𝑢 = ∇ ∙ [−𝑝𝐼 + 𝜇(∇𝑢 + (∇𝑢)𝑇)] + 𝐹 (11) 

 

Equation (11) should be solved for the unknown velocity field 𝑢 and pressure 𝑝. In this equation, 𝜌 

represents the fluid density and 𝑢 dynamic viscosity, and 𝐹 is the body force acting on the fluid, 𝑇 is the 

shear stress or tangential stress and 𝐼 is the 3 × 3 identity matrix. 

To solve Equation (11) the finite element method is used to derive the partial differential equation 

approach. The basic solution approach is to eliminate the steady-state problem differential equations 

numerically [42]. Furthermore, a displacement function is associated with each finite element [43]. This 

method divides a complex problem (domain) into small parts or elements (discrete) to obtain a simpler 

solution by the interpolation function. Also, the method helps to derive matrix and vector elements through a 

global system of equations. 

The equation in the finite element method can be of the form: 

 

[𝐾]Ф⃗⃗⃗ = �⃗�  (12) 

 

where [𝐾] is the set of stiffness matrix, Ф⃗⃗⃗  is the nodal displacement vector and �⃗�  is the nodal force vector for 

the complete structure [44]. 

 

 

3. RESEARCH METHODOLOGY 

The Navier-Stokes Equation (11) is stated as follows when blood flow is incompressible and 

laminar: 

 

𝜌(𝑢 + (𝑢 ∙ ∇)𝑢) = −∇𝑝 + ∇ ∙ (𝜇(∇𝑢 + ∇𝑢𝑇)) + 𝐹 (13) 

 

where ∇ ∙ 𝑢 = 0 Using the following boundary constraints for walls (𝑢) and (𝑝): 

 

𝑢 = 𝑢0 = 0 (14) 

 

𝑝 = 𝑝0[𝜇(∇𝑢 + (∇𝑢)𝑇)]𝑛 = 0 (15) 

 

Before running Equation (13), two-dimensional (2D) pipe model to mimic arterial blood flow, A 

little fluid (blood) is used in a two-dimensional (2D) plane. The parameters and materials contained in Tables 

1 and 2, were used to obtain the appropriate model [45]. 
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Table 1. Pipe geometry parameters 
Name Value Explanation 

D 2.6 mm Arterial diameter 

L 10 mm Arterial length 

 

Table 2. The properties of blood 
Property Value 

Density 1060 kg/m3 

Viscosity 4.0 × 10-3 Pa.s 

 

The simulation of blood flow in the circulatory system begins with the heart and proceeds via the 

arteries to the small blood vessels (microcirculation) before returning to the heart and the veins. Meanwhile, 

the Navier-Stokes Equation of momentum and continuity The following are time-independent equations for 

an incompressible fluid: 

 
𝜕𝑈

𝜕𝑥
+

𝜕𝑉

𝜕𝑦
+

𝜕𝑊

𝜕𝑧
= 0 (16) 

 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
+ 𝑊

𝜕𝑈

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+ 𝜌𝑔𝑥 + 𝜇 (

𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑦2 +
𝜕2𝑈

𝜕𝑧2) (17) 

 

𝜌 (
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
+ 𝑊

𝜕𝑉

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑦
+ 𝜌𝑔𝑦 + 𝜇 (

𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 +
𝜕2𝑉

𝜕𝑧2) (18) 

 

𝜌 (
𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑥
+ 𝑉

𝜕𝑊

𝜕𝑦
+ 𝑊

𝜕𝑊

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇 (

𝜕2𝑊

𝜕𝑥2 +
𝜕2𝑊

𝜕𝑦2 +
𝜕2𝑊

𝜕𝑧2 ) (19) 

 

where 𝑈, 𝑉, and 𝑊 represent the blood fluid's velocity in the 𝑥, 𝑦, and 𝑧-axes. 𝑃 denotes pressure, 𝜌 denotes 

fluid density, and 𝜇 denotes viscosity. 

 

 
 

Figure 2. Model of the blood flow media in the heart is a network of triangular elements (left) and a mesh 

view of the irregular domain for branching blood vessels (right) 

 

Experimentally, the blood flow is physically complicated due to various parameters cannot be controlled 

readily either geometry or time function, as a result, this model is simplified into a two-dimensional flow that 

includes the heart, arteries, veins, and microvessels. A tissue of components is constructed in this model's 

finite element, as seen in Figure 2. The arteries vary from input to outflow using triangular mesh components. 

To analyze irregular domain fluid flow, it consists of three stages, namely displaying the domain, displaying 

the network or mesh and displaying modeling. Figure 2 is an irregular domain for the heart (left) and 

branching blood vessels (right). This domain is created in the direction of the positive 𝑥 and 𝑦 axes. This 

domain consists of a straight channel and several branches. The next stage is the formation of a mesh or 

network. This stage is carried out to obtain interpolation from each domain point. 

The heart's mechanical wave motion, which is driven by blood flowing through the veins, becomes 

incredibly complex. Flow in a homogeneous cylindrical tube, this can be clarified and stated by emphasizing 

the angular frequency and the pressure gradient, with the change in vessel geometry not being taken into 

account during the pump cycle. To calculate the wave functions exponential and complex, apply the 

following mathematical formula: 

𝑒𝑖𝑤𝑡 = cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡) (20) 

with a predetermined pressure gradient, the following may be expressed: 
𝑑𝑝

𝑑𝑥
= −𝑝′ cos(𝑤𝑡) = 𝑅𝑒⌈𝑝′𝑒𝑖𝑤𝑡⌉ (21) 
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𝑅𝑒 denotes a complex number. 

Bessel function solves Equation (5), and blood flow velocity is given by: 

 

𝑣(𝑟, 𝑡) = 𝑅𝑒[𝑣′𝑒𝑖𝑤𝑡] (22) 

 

𝑣′ =
𝑝′𝑎2

𝑖𝜇𝛼2 [1 −
𝐽𝑜(𝛼𝑖3/2𝑟/𝑎)

𝐽𝑜(𝛼𝑖3/2)
] (23) 

 

The variation of flow velocity, radius, and pressure is computed using Equation (23). The pressure 

function of the flow velocity changes with position and flowing medium. To avoid the emergence of 

imaginary elements in the solution, the equation is restricted to stiff and inelastic vessels, as well as isotropic 

and homogenous blood types. 

 

4. RESULTS AND DISCUSSION 

Figure 3 depicts a simulation model of blood flow in the heart (left) and branching blood vessels 

(right), which specifies the pattern as well as the pressure contour. The velocity at which blood leaves the 

heart in comparison is used in this simulation, and the blood flow via the arteries accelerates to 1.22 cm/s 

from that of blood exiting the heart. The velocity of blood reduces to 0.5 cm/s when it is disseminated 

through fine vessels (microcirculation). Furthermore, when more fine arteries are involved, the velocity 

decrease will be considerably greater. This is due to the fact that as the number of channels increases, so does 

the distance between the vessels and the veins' venous return to the blood's source. 

 

 
Figure 3. Potential modeling view of blood flow in the heart (left) and branching vessels (right) 

 

The potential value shown in the flow of blood in branching blood vessels changes in the right 

positive x-axis direction starting from 0.142009 m2/s and changes increasingly until the potential value is 

2.63728 m2/s. The viscosity of blood fluid in the human body can change owing to meals and the amount of 

fluid or drink eaten. The measure of viscosity can be determined from the viscosity coefficient value, the 

higher the viscosity, the greater the viscosity coefficient number. As a result, simulations with varied 

viscosity coefficients are required. 

The viscosity of blood fluids in the human body can change as a result of meals and the quantity of 

liquids or beverages consumed. The coefficient's value, which rises with increasing viscosity, indicates the 

measure. As a result, simulations with varied viscosity coefficients are required, as shown in Figure 4. 

 

 
 

Figure 4. The velocity of blood flow as a function of location, arterial cross-section cm/s 



IJEEI ISSN: 2089-3272  

 

Simplified Kinetic Model of Pressure for Human Dynamical Blood Flow (Saktioto et al) 

877 

Blood viscosity fluctuations of 1.5× 10-3, 1.75 × 10-3, and 2 × 10-3 Pa.s were simulated by this 

model. Blood flow velocity in an arterial cross-section is shown in Figure 4 for clarity. Additionally, because 

blood is viscous, the flow velocity is zero in artery walls and maximum in the middle. The flow velocity is 

lowest in thicker blood fluid and increases towards the core of the arterial wall. The blood's greatest velocity, 

measured as the rate at which it leaves the heart, is 1.22 cm/s with a viscosity of 1.5 × 10-3 Pa.s. Blood 

leaving the heart at its fastest rate has a viscosity of 1.75 × 10-3 Pa.s and a viscosity of 2 × 10-3 Pa.s, 

respectively, and moves out at 1.15 cm/s and 1.08 cm/s correspondingly. 

The cylindrical vessel's center has the highest laminar velocity when X = 0.5, and its edge has the 

lowest. Furthermore, considering that the heart exerts pressure to pump blood throughout the body, the 

velocity ratio is extremely low. Equation (23), which applies the velocity function technique to pressure 

calculations using the Bessel function, has been used to numerically demonstrate this. To compile 

comparisons and guarantee the accuracy of numerical experiments and analytical computations, experimental 

comparisons were nevertheless still performed. 

The solution to Equation (23), as shown in Figure 5, includes half-cycle oscillations for some values 

and the rate of blood flow at a certain point along the vessel width. When 𝛼 = 20.1 both the time variation 

and pressure gradient are out of phase, and the velocity picture is not even close to parabolic. This situation 

almost results in quasi-steady, which is roughly equivalent to the steady flow achieved with a constant 

pressure gradient. The phase of a gradient in pressure and the slope of the velocity near the wall both affect 

the shear wall pressure. Now, more fluid flux can go toward the vessel wall along the tip. 

The performance of the flow velocity in the tube is likewise dimmed as the 𝛼 (pink and green) 

lowers, and the flow velocity fluctuates significantly in amplitude and phase approach the wall. The flow 

accelerates as it approaches the cylinder's center. As blood viscosity increases, this speed increases. 

Additionally, the pressure gradient is increasingly influencing the shear stress and velocity changes in the 

central region. When is big, there is an angle 𝜋/2 difference between the pressure gradient and the internal 

velocity. The shear wall pressure is 𝜋/4 times greater than the pressure gradient. As a result, when is small, 

interior velocity and shear wall pressure are in phase with the pressure gradient. The pressure gradient is 

dragged or sucked in by the heart when the velocity values are negative (black and blue), unlike when the 

velocity is positive. This demonstrates that the heart's blood pumping action is larger than the suction or 

withdrawal action. 

The heart's pressure on the aorta is more or less regular, but it has much more complex variation 

with time than an elementary sinusoidal function. This means that the pressure wave may be represented in 

Fourier analysis by the average of the fixed components, sinusoidal at the fundamental frequency and 

harmonic waves at higher frequencies. Furthermore, by analyzing the isolated components, the result of flow 

in a uniform or comparable tube may be estimated by superimposing it on top of the gradient image formed 

by Poiseuille flow for the fixed component. 

 

 
 

Figure 5. The forward speed of wave movement in blood vessels with varying 𝛼 value 

 

Figure 5 (red line) depicts aorta arteries with a diameter of 2.7 cm, a heart rate of 60 beats per 

minute, a blood viscosity of 3 cP, and a blood density of 1.06 g/cm3, where 𝛼 = 𝑎(2𝜋𝑛/𝜇)1/2. Under the 

same conditions, this analytical estimate is somewhat higher than the numerical computation. Meanwhile, the 

fundamental component's angular frequency is: 

𝛼 = 1,35 (2𝜋
1,06

0,03
)

1

2
= 20,1 (24)  

 

The effect of inertia is predominant and the pressure gradient drives the velocity of the blood. 

Furthermore, with a tiny coating on the wall, the description of velocity is essentially equivalent to the tube's 
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width. Higher-order harmonic elements of related waveforms with higher outcomes will be treated in the 

same way. For predicting Poiseuille flow, the two spatial and flow fluctuations over time are extremely 

different, as is the same velocity description, with no radial velocity variation. 

The flow velocity is proportional to the pressure gradient and can be positive or negative. At the 

same pressure value, the flow velocity is lower in the negative gradient condition than in the positive gradient 

condition. When the 𝛼 value is twice (𝛼 = 40) for 𝛼 = 20.1, the viscosity increases and the pressure 

approaching the tube wall falls, but remains zero at the wall. As a result, high viscosity causes a pressure 

gradient that is virtually identical in the center to the tube's boundary. When the arteries are considered tiny 

with 𝛼 = 5, The flow trend will be quasi-steady and may potentially go below 5. The flow near the heart 

increases vascular velocity while decreasing viscosity. Similarly, in modulus, the negative velocity gradient 

is smaller than the positive velocity gradient. The pulse wave flow effect on artery velocity images varies 

greatly depending on the vessel diameter of the arterial system. From Figure 5 the heart pump cycle describes 

positive pressure representing the blood is pumped and negative pressure representing the blood is sucked 

while the angular frequencies are varied from 5 until 40 from the center to the edge of vessel radii. Therefore, 

the negative velocity of blood flow is lower than the positive one. This heart pumping is not symmetric 

where heart requires rest time during cyle. 

 

5. CONCLUSION 

The simulation findings reveal that high blood pressure from the heart is used to circulate blood 

throughout the arteries, which agrees with the analytical estimate. However, the pressure of the returning 

blood is lower in the same parameters and scattered vessels. The high flow velocity occurs in the middle of a 

laminar blood artery and is controlled by the low viscosity factor. Furthermore, when the viscosity is high, 

the flow will approach the vessel wall with almost the same extreme magnitude, velocity gradient, and 

radius, except that the wall is zero. These incompressible flow shows that in the vessel at certain limits such 

as velovity and blood density at the wall has the potential for flow slowdown and particle deposition carried 

by the fluid, so that the heart oscillation cycle is no longer normal. 
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