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Induction motors in modern industry are becoming more and more 

functional and complex. Unfortunately, these machines are not free from 

damages what make their fault diagnosis the most critical aspect of system 

monitoring and maintenance.  Vibrational signal data yields relevant 

information about the state of the entire system, as well as specifically about 

one of its components that makes its analysis quite interesting. For this 

effect, the current paper aims to propose an automatic diagnosis and 

monitoring method for detecting and locating bearing faults in an induction 

motor based on vibration signal processing. The suggested method 

combines the discrete wavelet transform (DWT) with the envelope spectrum 

(ENV) as advanced signal processing, incorporating a machine learning 

algorithm based on random forest classifier. The discrete wavelet transforms 

(DWT), using the Haar wavelet, decomposes the vibrational signal to 

provide both approximations and details. Each detail is then reconstructed 

to avoid any missing of information. To precisely select the reconstructed 

detail (𝑅𝑒𝑐𝑑𝑘) that provides pertinent information about bearing faults, a 

statistical study is conducted. This study involves calculating four indicators 

(Root mean square (RMS), correlation coefficient (CC), energy coefficient 

(EC) and peak to peak (P2P) factor) is performed for each (𝑅𝑒𝑐𝑑𝑘). These 

indicators are compared with threshold indicators, and this criterion is met 

by the reconstructed details 1 and 3. The obtained reconstructed details are 

then subjected to the spectral envelope analysis to detect the fault 

frequencies, which are considered as new features entering the random 

forest classifier model. This combination of approaches allows better feature 

extraction and structuring of the dataset, leading to improved accuracy of 

the random forest classifier, achieving a higher classification rate of more 

than 99,53 %. The proposed DWT-ENV-RF method indicates well its 

efficiency when compared to other recent works, and the attained results are 

all confirmed by the experimental tests conducted in the CWRU laboratory. 
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1. INTRODUCTION  

With the rapid development of technology and production fields, induction motors have played a 

crucial role in industrial sectors, due to their countless advantages. Notably, those that stem from their high 

reliability, low cost, reduced time of maintenance and dynamic performance. However, owing to an 

unfavorable operational environment, such as abrasion, unbalanced loads or overload, these motors are not 

impervious from damages that can affect the stator, the rotor and the bearings. Usually, bearings are unable to 
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sustain heavy loads due to which they represent, according to statistics, more than 41% of all other fault's 

occurrences [1]. This supports the significance of bearing faults diagnosis in the condition monitoring of 

rotating machines.  

Eventually, for fault diagnosis three basic approaches are considered corrective, preventive and 

predictive maintenance. If a defect has already occurred, corrective procedures are implemented, resulting in 

high replacement costs of components, sudden downtime, and, obviously, a substantial cost associated with 

production shutdown. Preventive procedures aim to plan and manage periodic industrial maintenance 

interventions before any breakdown or dysfunction occurs. However, this approach involves various resources 

compared to low efficiency outcomes. In the other hand, the predictive procedure is developed based on 

accurate monitoring that can dramatically reduce maintenance cost and machines failure [2]. 

To monitor failure symptoms, various physical quantities can be measured, including stator current, 

lubrification analysis, noise, temperature and vibration analysis [3, 4, 5 and 6]. Among these, vibration analysis 

is the most often used as a diagnostic signal of bearing fault [7]. 

Furthermore, bearing faults prediction at an early stage can be succussed by identifying dynamic 

characteristics and performing appropriate signal processing. Thus, this process seems like difficult for the 

redundant failures and the big-collected data, with which automatic diagnosis is required.   

Raw data alone cannot reveal any information about the state of the bearing element that makes its 

identification neither classification impossible. Among various signal processing techniques, DWT and 

envelope analysis (ENV) are well-known and utilized for identifying faults, particularly in non-stationary 

signals [8]. The DWT serves to decompose the original signal, providing approximations and details rich in 

fault information, while the ENV analysis permits to get only the necessary information corresponding to the 

fault existence in terms of frequency series. 

Pertinent fault identification leads to better feature extraction, which leads eventually to improve 

system classification performance and reliability [9]. Several machine learning classifiers are used for fault 

diagnosis automation, among which naïve-bays, extreme gradient boosting (XGBoost), K- nearest neighbors 

(KNN), and Random forests (RF) are the most robust algorithms in terms of highest accuracy and performance. 

According to this, the efficiency and the accuracy of the random forest classifier have been proven by many 

researchers [10]. The built of the random forest has mainly based on an ensemble of decision trees that refers 

to the name “forest”. The term “random” belongs to the fact that these trees are then trained arbitrarily based 

on a training dataset.  

In the realm of bearing element fault diagnosis, scientific literature has seen known several research 

endeavors that support many procedures and approaches, enriching the automatic diagnosis of bearing faults. 

In [11], authors have developed a novel feature extraction method for bearing fault detection, in which the 

inputs features are the vibration signals entering the convolutional neural network (CNN), getting a varying 

accuracy from 88% to 99%. Experimentally results in [8] show the effectiveness of the proposed method when 

using DWT for feature extraction and ensemble machine learning classifiers for bearing fault classification. A 

comparative study between the random forest algorithm and the XGBoost classifier is performed that give a 

highest accuracy of 99,14 % and 99,30 %, respectively, for the RF and the XGBoost classifiers. In more recent 

research [12], both of deep learning and machine learning classifiers are used to monitor bearing faults based 

on vibration signals provided by the CWRU. Among three ensemble classifiers, such as artificial neural 

network, random forests, and a deep learner autoencoder, the autoencoder excels the other classifiers with a 

high classification rate of 91%. However, using raw data without any previous signal analysis is impractical in 

term of big data and obvious loss of fault information, in how a dimensionality reduction is required without 

any losing of information.      

In the current paper, two signal processing approaches are investigated, the DWT and the envelope 

analysis. The DWT is used to decompose a bearing vibrational signal into a set of sub-signals forming different 

approximations and details that they will be reconstructed again to keep the necessary fault information. Based 

of statistical study applied for every single reconstructed detail, a selection of reconstructed details is done. 

The envelope analysis is then performed to the selected reconstructed detail that provides frequency features 

set. The core idea here is to circle only the band zone of the fault components and reduce the dimensionality 

of the feature matrix. Finally, the random forest classifier is trained through the obtained frequency features to 

evaluate the performances and attain a robust automatic model for bearing fault diagnosis. It is to mention that 

this proposed process is validated by a hole experiment test of the CWRU laboratory that includes vibrational 

signals of four bearing conditions: healthy bearing, defective bearing with the outer race fault, defective bearing 

with the ball fault and defective bearing with the inner race fault. 

The next parts of this paper are reserved for: a constitution of the bearing and specification of defect 

frequencies are presented in section 2. The third section presents the different approaches followed for the 

bearing fault detection and localization. The experimental test rig and the flowchart considered in this work 
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are described in section 4. Section 5 is about the application of the DWT and fault features extraction. The next 

section, is reserved for the results discussion and a brief evaluation of the effectiveness of our results work. 

The seventh last section ends the paper with a conclusion.      

2. CONSTRUCTION OF THE BEARING AND SPECIFICATION OF DEFECT FREQUENCIES 

In this section, a brief description of the bearing used in this research and the frequencies associated   

with their component faults are presented.   

2.1.  Rolling bearing construction 

Rolling bearings consist of two main parts called the outer race and the inner race, both constructed 

essentially from steel. Between them there is a cage used to separate the rolling elements at specific distances 

as shown in Figure 1. 

 
                 Figure 1. Construction and geometric characteristic of a rolling bearing. 

 

2.2.  Frequencies characterizing the bearing defects   

 

When a localized defect appears at a point in one of the components of the bearing, this leads the 

assembly to vibrate which allows the appearance of vibratory signature of a fault, affecting each one of these 

components. To calculate the characteristic frequencies, it is necessary to find the rotational frequency rf , of 

the motor shaft: 

                                                                            𝑓𝑟 =
𝑛

60
                                                                                       (1) 

 

Where: n represents the rotation speed of the motor shaft. 

Then, the characteristic harmonic frequencies for failures of individual bearing elements can be determined 

based on the Eq. (2)- (5) below [13]:  

                                                                       𝑓𝑜𝑟 =
𝑛𝑏

2
𝑓𝑟(1 −

𝑑

𝐷
𝑐𝑜𝑠 α)                                                                (2) 

                                                                     𝑓𝑐 =
1

2
𝑓𝑟(1 ±

𝑑

𝐷
𝑐𝑜𝑠 α)                                                                      (3) 

                                                                   𝑓𝑟𝑒 =
𝐷

𝑑
𝑓𝑟 [(1 − (

𝑑

𝐷
𝑐𝑜𝑠 α)2]                                                           (4) 

                                                                  𝑓𝑖𝑟 =
𝑛𝑏

2
𝑓𝑟(1 +

𝑑

𝐷
𝑐𝑜𝑠 α)                                                               (5) 

 

Where: 𝑛𝑏 represents the number of rolling elements (balls); d: is the rolling element’s diameter; D: 

is the bearing pitch diameter;𝛼: is the bearing working angle (0° for rolling bearing);𝑓𝑜𝑟 , 𝑓𝑐 , 𝑓𝑟𝑒, 𝑓𝑖𝑟: belong to 

the specific frequencies for the given failures, respectively: outer race, bearing cage, rolling element (ball) and 

inner race. 

 

3. BEARING FAULT DETECTION AND LOCATION METHOD 

As shown in the following subsections, this strategy is devided into two parts: the first covers bearing 

fault identification techniques, and the second part focuses on fault classification methods. 

3.1.  Bearing fault identification based on Discrete Wavelet Transform (DWT) 

The Wavelet, as its name indicates, contains small oscillating waves with time and amplitude bounds. 

The wavelet transform decomposes the input signal into a series of wavelet functions, denoted as ( ), ta b

[14], which are descended from a mother function called ( )t provided by dilatation and translation 
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operations [15]. The wavelet coefficients ,Ca b , resulting from this transformation, reveal information about 

the analyzed signal ( )x t  at different scales and are given by:          

                                                      𝐶𝑎,𝑏 = ∫ 𝑥(𝑡)Ψ𝑎,𝑏(𝑡)𝑑𝑡
+∞

−∞
                                                                  (6) 

 

Where: , ( )a b t is a wavelet function, which can be defined as:  

                                                    Ψ𝑎,𝑏(𝑡) =
1

√𝑎
ψ (

𝑡−𝑏

𝑎
)                                                                        (7) 

 

With:  a is the translation parameter and b is the scale (frequency) parameter.  

The wavelet transform can be categorized into three types: Continuous Wavelet Transform, Discrete 

Wavelet Transform, and Wavelet Packet Transform.  In this paper, Discrete Wavelet Transform (DWT) is the 

selected tool, which involves decomposing the temporal signal into other signals by means of two 

complementary filters: a low-pass filter (L) and a high-pass filter (H), as shown in Figure 2. subsequently, two 

vectors Ak and Dk , are obtained, defined by the following relations:  

                                                         𝐴𝑘−1 = 𝐴𝑘 + 𝐷𝑘                                                                            (8) 

                                                        𝑋 = 𝐴𝑘 + Σ𝑖≤𝑘𝐷𝑘                                                                           (9) 

Ak , Dk represent, respectively, the approximations corresponding to the lowest frequencies and the 

details corresponding to the highest frequencies [14]. From the obtained approximations and details, it is 

possible to reconstruct the original temporal signal without missing any components. This reverse procedure 

is often named the inverse wavelet transform or signal reconstruction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of three-level DWT decomposition. 

 

However, two criteria are taken into account before beginning this process: the selection of the mother 

wavelet and the calculation of the number of decomposition level 

3.1.1 Selection of the mother wavelet type 

Following the development of numerous tests demonstrates that multiple types of wavelet families 

can produce the satisfactory results [16]. In our case, the mother wavelet selected for the DWT analysis is the 

Haar wavelet.  

Haar wavelet: is a very fast transform, which was first introduced by Alfred Haar in 1909, who 

developed a basics that is considered today as the foundation of wavelet theories. The Haar wavelet is expressed 

by the function ( )t  defined in the equation (10), as shown below[17]: 

                                             ℎ(𝑡) = {

1 𝑝𝑜𝑢𝑟         0 ≤ 𝑡 ≤
1

2

−1 𝑝𝑜𝑢𝑟     
1

2
  ≤ 𝑡 ≤ 1              

0                  𝐸𝑙𝑒𝑠𝑒𝑤ℎ𝑒𝑟𝑒

                                                           (10) 

 

3.1.2 Calculation of the number of decomposition levels 

The procedure of this decomposition is repeated N times, where N is the maximum number of levels. 

The number of DWT decomposition levels implemented for vibration signal analysis is determined by the 

following relation:  
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                                                         𝑁 = 2 ∗ 𝑙𝑜𝑔 (
𝑓𝑠

4
)                                                                              (11)                 

   Where 𝑓𝑠: is sampling frequency.  

 

3.2.  Statistical Study Based On RMS, Correlation Coefficient, Energy Coefficient and Peak-to-Peak 

factor 

In this section, a statistical analysis based on RMS, CC, EC and Peak-to-Peak factor is applied for each 

reconstructed detail Re kcd in order to select the appropriate detail including the necessary information about 

the state of the bearing. 

• Root Mean Square (RMS)  

RMS is used to monitor the condition of the machine, as it is associated with vibration energy. 

Consequently, it aids in detecting abnormally high energy dissipation that occurs concurrentely with the 

birth of a defect. This indicator is given by the following formula [18]: 

                                              𝑅𝑀𝑆𝑘 = √
∑ (𝑅𝑒 𝑐𝑑𝑘(𝑡))2𝑁

𝑖=1

𝑁
                                                                     (12) 

 

• Correlation Coefficient (CC)  

The correlation coefficient is an influential indicator used to figure out the linear relationship 

between the raw signal x(t) and the reconstructed details obtained by the DWT. This indicator is 

determined by the equation below[19]: 

                             𝐶𝐶𝑘 = ∑
𝑥(𝑡) 𝑅𝑒 𝑐𝑑𝑘(𝑡)

(√∑ 𝑥2𝑁
𝑖=1 (𝑡)√∑ 𝑅𝑒 𝑐𝑑𝑘

2(𝑡)𝑁
𝑖=1 )

𝑁
𝑖=1                                                           (13) 

• Energy Coefficient (EC) 

The variation of the signal energy serves as a crucial indicator for detecting bearing faults. The 

energy coefficient of each reconstructed detail is expressed by the following relation [20]:  

                                                   𝐸𝑘 =
1

𝑁
∑ (𝑅𝑒 𝑐 𝑑𝑘(𝑡))2𝑁

𝑖=1                                                                       (14) 

 

Where: N is the total number of samples of the reconstructed detail, and k is the number 

corresponding to the reconstructed detail. 

• Peak-to-Peak factor (P2P) 

This factor is more adapted to represent a signal introduced by impulsive forces, like bearing 

defects, allowing for early detection of these faults, and it is given by the following expression: 

                                  𝑃2𝑃𝑘 = 𝑚𝑎𝑥|𝑅𝑒 𝑐 𝑑𝑘(𝑡)| − 𝑚𝑖𝑛|𝑅𝑒 𝑐 𝑑𝑘(𝑡)|                                                        (15) 

3.3.  Envelope spectrum analysis 

Envelope analysis is a widely used technique for diagnosing rotating machines by early detection of 

defects of the shock type. For the temporal signal, the envelope represents the instantaneous amplitude of a 

time-varying signal. Generally, to obtain the envelope of a time-domain signal, the expression of an analytic 

signal ( )ax t  is first derived. Then, it will be composed of a real part, ( )x t ,which represents the original 

signal, and an imaginary part, ( )hx t , which is calculated based on the Hilbert transform, eliminating negative 

frequency components [17]. Mathematically, the analytic signal is defined as:       

                                                       𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝑥ℎ(𝑡)                                                                              (16) 

 

The formula of the Hilbert transforms of a signal ( )x t , is given by:                                                                             

                               𝑥ℎ(𝑡) = 𝐻𝑇{𝑥(𝑡)} =
1

𝜋
∫

𝑥(𝑡)

(𝑡−τ)
𝑑τ

+∞

−∞
                                                  (17) 

 

To generate the envelope, expressed by E, the modulus of the analytic signal is calculated as 

follows:  

                                                       𝐸 = √𝑥(𝑡)2 + 𝑥ℎ(𝑡)2                                                                        (18) 

 

3.4.  Bearing elements faults locating by means of random forest (RF) algorithm 

In our research, the fault classification of IM was explored using the Random Forest (RF) model. The 

RF classification algorithm is formed by a collection of decision tree, where the decision of the output depends 

of the main rules obtained from the results of these trees. The random forest is affected by significant 
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parameters such as the number of trees, number of sample leaves, number of features in each split and the 

maximum depth. The RF algorithm is summarized by the following steps [21]: 

Step (1): Create a sample feature set with a total of N samples, each of which has L feature attributes, by 

collecting the training sample set and then extracting features for each sample;   

Step (2): Execute independent repeated sampling using the sample feature set S; choose n samples as 1 sample 

set; repeat K times; and collect K sample sets; 

Step (3): Obtain K sample sets with l feature attributes by selecting randomly l from all L feature attributes in 

each sample set; 

Step (4): Use 1 feature attribute as the decision tree's input such that K sample sets can produce K decision 

trees to create a RF; 

Step (5): Diagnose the test samples using the created decision trees, and then use integrated voting to determine 

the diagnosis and recognition of the RF based on the outcomes of all decision trees' recognition.   

 

3.4.1. Random forest model evaluation  

Better features extraction process enhanced the performance and the efficiency of the classification 

model. here in, among various evaluation parameters, the accuracy, sensitivity, specificity, precision, g-mean, 

and F1-Score are taken as the performance criterion in this study. The considered evaluation metrics are 

calculated through of the equations listed in Table 1 [22].  

 

Table 1. Model evaluation metrics. 
Parameters definition                                                       Equations 

 

Accuracy: represents the proportion of correctly 
classified events. 

 
Sensitivity: is the capacity to achieve a positive outcome 

when a defect exists.   

 
Specificity: is the possibility to achieve a negative 

outcome once the defect is absent. 
 

Precision: is the proportion of expected positive events 
that actually are positive. 

 

G-mean: represents the geometric mean of sensitivity 
and precision. 

 

F1-Score: summarises the precision and recall values in 
a single metric and can be simplified and expressed 

directly from the components of the confusion matrix. 

T Tp N
Acc

T T F Fp N p N

+
=

+ + +

           (19) 

T p
Sens

T Fp N
=

+

                             (20) 

TNSpec
T FN p

=
+

                             (21) 

 Pr
T p

ec
T Fp p

=
+

                              (22) 

 

 PrG mean Sens ec− = +                 (23) 

 

  
1

1
( )

2

T p
F score

T F Fp p N

− =

+ +

      (24) 

 

Where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 represents respectively, true positive, true negative, false positive, and false 

negative.  

 

4. EXPERIMENTAL TEST RIG AND FLOWCHART DESCRIPTION  

4.1.  Experimental test rig description  

In order to apply the proposed methods, vibration signals (acceleration) are collected using the test 

bench of the Case Western Reserve University (CWRU, bearing data center) [22]. The schematic diagram of 

rotor-bearing system, illustrated in Figure 3, consists of an electric motor, a torque transducer and encoder, and 

a dynamometer. Vibration signals were measured using accelerometers attached to the motor with magnetic 

bases, placed in the vertical direction on the bearing housing of the drive end in the motor. The faulty bearings 

are re-installed in the motor, and the sampling frequency was set at 12 kHz. Thus, the measured vibrational 

signals were carried out with four different loads (0 Nm, 1 Nm, 2 Nm and 3 Nm), at four motor speeds 

corresponding to 1797, 1772, 1750 and 1730 RPM, respectively. 

The data set of the measured vibrations in the drive end bearing contains about 64 signals, divided 

into normal and damaged states of bearings. four cases among them belong to the normal bearings, while the 

remaining cases represent the faulty bearings with defects in the outer race, the rolling element and the inner 

race. The faults in the rolling bearings are artificially created separately at the outer race, the rolling element 

and the inner race using Electro-Discharge Machining (EDM), a method of treating hard metals or mechanical 

components that cannot be penetrated with conventional methods. In this case, the defects are related to a 

central hole, and it is determined by their diameter. The defect diameters discussed herein correspond to 0,007'', 
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0,014'', 0,021'' and 0,028'' fault diameter for the three bearing elements: outer race, rolling element and inner 

race. The ball bearings utilized in the experiment are of type 6205-2 RS JEM SKF, and their dimensions are 

listed in Table 2. 

 

 
Figure 3. CWRU experimental test-bed [23]. 

Table 2. Parameters of the bearing 6205-2 RSJEM SKF. 
Bearing characteristics Dimensions 

Inside diameter 

Outside diameter 
Intermediate diameter 

Thickness 

Ball diameter 
Rolling element number 

Contact angle 

25mm 

52mm 
39mm 

15mm 

8mm 
9 

0 rad 

  

 

4.2.  Flowchart presentation of bearing faults diagnosis 

Figure 4 presents the strategy followed in this paper for bearing fault detection and location. The 

algorithm for this bearing fault diagnosis uses the raw vibrational signals for analyzing and   processing based 

on DWT. 

 

 
Figure 4. Flowchart of the bearing elements faults detection and classification. 

The goal of this process is to extract the features of the signal through several transform methods as 

structured in sections bellow. 

5. VIBRATION SIGNAL TIME DOMAIN ANALYSIS   

Figure 5 (a-d) shows, respectively, the temporal vibrational signals of the following cases:  undamaged 

bearing, a defective bearing with the outer race, a defective bearing with the ball, and a defective bearing with 

the inner race. These signals correspond to the motor with a rotational speed of 1797 RMP under a fault 

diameter of 0,007''. 
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(a)  

 
(b) 

 
(c) 

 
(d) 

Figure 5 (a-d). Temporal vibrational signals. (a): Undamaged bearing. (b): A defective bearing (outer race). 

c): A defective bearing (ball). (d): A defective bearing (inner race). 

5.1.  Discrete wavelet transform application  

The raw vibrational signals collected are decomposed into seven details by using the Eq. 11, with the 

“Haar wavelet” selected as the mother wavelet. Then, they are reconstructed from their wavelet coefficients 

at each level of decomposition to avoid any missing of the signal information. In our application, the 

sampling frequency 𝑓𝑠 is in the order of 12000 Hz, allowing for a number of decomposition levels equal to:         

                          𝑁 = 2 ∗ 𝑙𝑜𝑔 (
12000

4
) → 𝑁 = 7                                                                (25) 

Figure 6 (a-d) depicts the first three reconstructed details obtained by the DWT transform for the four 

cases of bearing: healthy bearing, faulty bearing withouter race, faulty bearing with ball, and faulty bearing 

with inner race.  

 
 

 
(a) 

 

  
(b) 

 

  
(c) 

 

  
(d) 

 

Figure 6 (a-d). The first three reconstructed details for (a): Undamaged bearing. (b): A defective bearing 

(outer race). c): A defective bearing (ball). (d): A defective bearing (inner race). 
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5.2.  Statistical factors calculation 

Four statistical factors are calculated for the four cases performed in this study: the healthy case, the 

outer race fault, the ball fault, and the outer race fault. The results are listed in Table 3. 

 

Table 3. The calculated factors for each reconstructed detail corresponding to each case. 
Reconstructed details  

Case  Factor  𝑅𝑑1 𝑅𝑑2 𝑅𝑑3 𝑅𝑑4 𝑅𝑑5 𝑅𝑑6 𝑅𝑑7 𝐹𝑇𝑟𝑒𝑠ℎ 

Healthy 

bearing 

RMS 0.0186 0.0327 0.0447 0.0255 0.0227 0.0205 0.0141 0.0255 
CC 0.2523 0.4437 0.6060 0.3454 0.3075 0.2784 0.1908 0.3463 

EC   -20.9155   -51.5885   -46.8578   -42.7702   -42.9384   -40.8366   -39.6561 -40.7947 

P2P 0.0659     0.1123     0.1484     0.0876     0.0971     0.0762     0.0636 0.0930 

Outer 

race fault  

RMS     0.5034     0.4287     0.0584     0.0686     0.0437     0.0192     0.0097 0.1617 

CC     0.7519     0.6403     0.0872     0.1024     0.0653     0.0286     0.0144 0.2415 

EC -19.5856    -21.2528     -22.4372     -21.4824    -23.1869    -24.0380    -25.9149 -22.5568 

P2P 2.5791     2.2956     0.3350     0.3516     0.2033     0.0815     0.0310 0.8396 

Ball fault 

RMS     0.0989     0.0891     0.0252     0.0236     0.0150     0.0088     0.0032 0.0377 

CC 0.7102     0.6399     0.1807     0.1698     0.1076     0.0629     0.0231 0.2706 

EC   -20.7499   -21.0820   -23.6602   -24.2737   -25.8788   -27.2031   -25.0408 -23.9841 

P2P     0.4101     0.3589     0.1010     0.0985     0.0485     0.0280     0.0256 0.1529 

Inner 

race fault  

RMS 0.1936     0.1877     0.0887     0.0561     0.0270     0.0086 0.0061 0.0823 

CC 0.6642         0.6438     0.3042     0.1926     0.0924         0.0587     0.0209 0.2824 

EC   -19.4820   -20.5816   -20.5920   -22.2446   -22.4666   -23.1741   -28.0650 -22.3723 
P2P     1.0975     0.9523     0.4030     0.1757     0.1098     0.0821     0.0236 0.4063 

 

 

Figure 7 (a-d) shows clearly the variation of different factors calculated for each detail. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 (a-d). Statistical coefficients for each detail corresponding to the healthy case and the other faulty 

cases. 

 

To select the relevant reconstructed detail ( Recdk ) containing the necessary information about the 

fault frequencies and their harmonics, the following condition must be released, the RMS value, the CC value, 

the EC value and the P2P value of the reconstructed detail Recdk  have to be the greatest values comparing 

them, respectively, with the average value of the RMS, the CC, the EC and the P2P factor. A pertinent analysis 
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of the results yielded from each calculated factor (Table 3 and Figure 7 (a-d)) shows that for the healthy bearing 

case the Re 3cd fulfill well at the condition and for the other cases, the outer race fault, the ball fault and the 

inner race fault we find that the Re 1cd  is well suitable to the given condition.  

The time view of the measured signal and the reconstructed details cannot allow extracting any 

signature indicating the state of the bearing elements. For this reason, the application of envelope spectrum 

analysis has taken place.  

5.3.  Fault features extraction based on envelope spectrum analysis  

The fault frequencies theoretically calculated using the equations (1)-(5) listed above are summarizing 

in Table 4 (for the rotational speed: 1797 RPM). 

 

Table 4. Theoretical calculated bearing faults frequencies. 
Rotation 

frequency 

Inner race 

frequency 

Outer race 

frequency 

Rolling 

element 

frequency 

Bearing cage 

frequency 

29.95 162.40 107.12 139.86 11.90-18.04 

 

The results obtained from the application of the envelope spectrum clearly demonstrate the 

effectiveness of the reconstructed details selection done above. The different fault frequencies and their 

harmonics are illustrated in Figure 8 (a-d) below.  

 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

Figure 8 (a-d). Envelope spectrum of the reconstructed details. (a): undamaged bearing. (b): defective bearing 

with the outer race. (c): defective bearing with the ball. (d): defective bearing with the inner race. 

 

Observing the spectrum of the reconstructed details shows clearly a good agreement between the 

observed results and the theoretically expected results for bearings with a motor speed of 1797 RPM under a 

fault diameter of 0.007 ''. Figure 8 (a) displays the spectrum of the reconstructed detail 3 for the healthy bearing 

case, the rotation frequency 𝑓𝑟=29.95 Hz and its multiplicity 2𝑓𝑟=59,9 Hz. These values are similar to those 

calculated theoretically, and there is no frequency of fault, confirming well the normal state of the bearing. 

Figure 8 (b) shows the spectrum of the reconstructed detail 1 for the outer race fault, containing the following 

frequencies: 𝑓𝑜𝑟=107 Hz, 2𝑓𝑜𝑟 =214 Hz, 3𝑓𝑜𝑟 = 322 Hz, 4𝑓𝑜𝑟 =428 Hz. These frequencies belong to the outer 

race fault frequency and their harmonics, which demonstrates well the presence of a defect in the bearing’s 

outer race. The spectrum of the reconstructed detail 1 corresponding to ball fault shown in the Figure 8 (c) 

includes the mentioned frequencies: 𝑓𝑟𝑒=139.50 Hz, 2𝑓𝑟𝑒 − 4𝑓𝑟=160 Hz, 2𝑓𝑟𝑒 − 2𝑓𝑟=220 Hz, 𝑓𝑟𝑒 + 4𝑓𝑟= 

259.70 Hz, 3𝑓𝑟𝑒=419.70 Hz.  

These results closely align with the theoretical findings, clearly defining the abnormal state of the 

bearing’s ball element. For the last one, Figure 8 (d) depicts the spectrum of the reconstructed detail 1 
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corresponding to the inner race fault and containing the following frequencies: 𝑓𝑖𝑟=162 Hz, 𝑓𝑖𝑟 − 2𝑓𝑟= 101 Hz, 

𝑓𝑖𝑟 + 2𝑓𝑟=222.50 Hz, 𝑓𝑖𝑟 + 3𝑓𝑟= 253 Hz, 2𝑓𝑖𝑟= 325 Hz and 3𝑓𝑖𝑟=487.50 Hz. These frequencies are closely the 

same to those calculated above, definitively confirming the presence of a defect in the inner race of the bearing.  

5.4. Random forest training model 

In our application, the automation of bearing fault monitoring involves extracting features that 

characterize the bearing’s fault. Consequently, the process carried out in the preceding sections was replicated 

while altering the motor load torque from 0 load to 1, 2, 3 loads. These loads correspond, respectively, to motor 

speeds of 1797 RPM, 1772 RPM, 1750 RPM, and 1730 RPM, with fault diameters of 0.007'', 0.014'', 0.021'', 

and 0.028''. The analysis of the obtained results indicates that the features extracted in each repeated operation 

are as follows: 𝑓𝑟, 2𝑓𝑟, 𝑓𝑜𝑟, 2𝑓𝑜𝑟, 3𝑓𝑜𝑟, 4𝑓𝑜𝑟, 𝑓𝑟𝑒, 2𝑓𝑟𝑒, 𝑓𝑟𝑒 + 4 𝑓𝑟,𝑓𝑖𝑟, 2𝑓𝑖𝑟  and 3𝑓𝑖𝑟 . These features are chosen 

carefully and are also used as new features to train a machine learning model based on the random forest 

algorithm. Furthermore, the dataset utilized to train the RF algorithm forms a matrix of (64x12), where 64 

represents the total number of signals that include the healthy bearing, the bearing with the outer race fault, the 

bearing with the ball fault, and the bearing with the inner race fault. The number 12 signifies the features 

exctracted for each signal. 

This data is then divided following a split ratio of 80:20, as determined by the findings obtained in 

[21].  The subdivision results in a training set holding 80% (51 signals) of the total data and a test set holding 

20% (13 signals) of the data. This ratio seems like more appropriate for developing and proving the 

classification algorithms' capacity for fault diagnosis, especially in the classification of bearing defects [8]. 

The structure of the random forest corresponding to the features selected is illustrated in the Figure 9 

below: 

 

 
Figure 9. The schematic structure of the Random Forest 

6. RESULTS AND DISCUSSION 

Figure 10 shows the accuracy as a function of the trees number. 

 

 
Figure 10. Accuracy as a function of trees number. 

 

Although the database is limited, the sensitivity shows a very high rate of 97.70%. This indicates a 

very high capacity to obtain a true positive result when the bearing is faulty. In addition, the specificity tends 

towards a very high rate of 94.66%, meaning the probability of obtaining a negative result when the bearing is 
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healthy is very high. Moreover, the classifier is highly precise with a rate of 97.82%, indicating a high ability 

to predict a true positive result from all cases predicted positive by the classifier. Another evaluation metric 

that combines the precision and recall scores of a model is the F1-score, yielding a rate of 99.23%. 

Otherwise, the G-Mean rate is an indication of good or bad performance in the classification of the 

positive cases, even if the negative cases are correctly classified as such. Herein, the G-mean value has a high 

rate of 98.01%, denoting well-classified positive cases. Finally, the accuracy or the rate of correctly classified 

cases equal is 99.53%. 

Figure 11 shows the related confusion matrix. According to the confusion matrix, the classifier is quite 

successful in categorizing the errors, since the false positive and false negative values are low. 

 
Figure 11. Confusion matrix of the built Random Forest model. 

6.1. A brief comparison with some recent works   

In table 5, we list some recent works to facilitate a comparison between them and our proposed 

method.   

 
References Method Accuracy 

[24] Multi-domain-entropy-random forest 93,75% 
[25] Convolutional Neural Network-Support 

Vector Machine 

98,75% 

[26] Cross-domain- deep generative neural 
networks (DGNN) 

97,81% 
 

[8] DWT- RF/XGBoost 99,14 % /99,30 % 

[12] Random Forest, ANN, and Autoencoder 91% 
Proposed method DWT-ENV-Random Forest 99,53% 

 

As evident from the results, the proposed method consistently achieves higher diagnostic accuracy 

compared to the other recent works. The findings underscore the superiority of RF over the default classifier. 

This affirms that the proposed model effectively addresses the challenge of extracting in-depth features from 

diverse data using DWT-ENV signal analysis methods and successfully meets the demanding sample 

requirements for RF training, showcasing remarkable stability. 

7. CONCLUSION 

In this research, a novel strategy based on a new feature set extracted using a bearing vibration signal 

analyzed by a combined technique DWT-ENV spectral and random forest algorithm, was particularly 

illustrated for an automatic IM's bearing faults diagnosis. In the first stage, raw vibrational signals of bearing 

conditions such as healthy, outer race, ball, and inner race were decomposed by the DWT to obtain a certain 

number of approximations and details using the Haar wavelet function. The DWT assures both of the 

decomposition while the denoising of the signal, which necessitates the reconstruction of the provided details 

to avoid any missing of information. Then, only relevant reconstructed details were selected based on the 

following statistical factors (RMS, CC, EC and P2P factor) to reduce de dimensionality of the original structure 

of the vibration signal.  

The presence of the bearing faults frequencies of the outer race, the ball, and the inner race was proved 

by appliying ENV spectral analysis that allows to extract a new frequency-feature set. These features were then 

used as inputs for training the random forest classifier, achieving an accuracy of over 99.53%. This underscores 

the quality of the feature structure, as well as the efficiency and robustness of the proposed strategy for both 

the detection and localization of bearing defects. Moreover, this automatic bearing fault diagnosis supports an 

optimal level of predictive maintenance by ensuring early detection of defects, potentially reducing 
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redundancy. Finally, the effectiveness of the obtained results was compared with some recent works using the 

same dataset.  The proposed DWT-ENV-RF method emerged as a valuable model for bearing fault localization, 

attaining higher accuracy while requiring a simpler architecture and less computational complexity compared 

to other methods.      
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