
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 11, No. 4, December 2023, pp. 1051~1063

ISSN: 2089-3272, DOI: 10.52549/ijeei.v11i4.5014  1051

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

Design and Performance Analysis of

a Fast 4-Way Set Associative Cache Controller

 using Tree Pseudo Least Recently Used Algorithm

Mohamed Alfian Al-Zikry Hazlan1, Teddy Surya Gunawan2, Mashkuri Yaacob3,

Mira Kartiwi4, Fatchul Arifin5

1,2,3Department of Electrical and Computer Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia

4Department of Information Systems, International Islamic University Malaysia, Kuala Lumpur, Malaysia
5Department of Electronic and Informatics Engineering, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia

Article Info ABSTRACT

Article history:

Received Aug 11, 2023

Revised Dec 9, 2023

Accepted Dec 20, 2023

 In the realm of modern computing, cache memory serves as an essential

intermediary, mitigating the speed disparity between rapid processors and

slower main memory. Central to this study is the development of an innovative

cache controller for a 4-way set associative cache, meticulously crafted using

VHDL and structured as a Finite State Machine. This controller efficiently

oversees a cache of 256 bytes, with each block encompassing 128 bits or 16

bytes, organized into four sets containing four lines each. A key feature of this

design is the incorporation of the Tree Pseudo Least Recently Used (PLRU)

algorithm for cache replacement, a strategic choice aimed at optimizing cache

performance. The effectiveness of this controller was rigorously evaluated

using ModelSim, which generated a comprehensive timing diagram to validate

the design's functionality, especially when integrated with a segmented main

memory of four 1KB banks. The results from this evaluation were promising,

showcasing precise logic outputs within the timing diagram. Operational

efficiency was evidenced by the controller's swift processing speeds: read hits

were completed in a mere three cycles, read misses in five and a half cycles,

and both write hits and misses in three and a half cycles. These findings

highlight the controller's capability to enhance cache memory efficiency,

striking a balance between the complexities of set-associative mapping and the

need for optimized performance in contemporary computing systems. This

study not only demonstrates the potential of the proposed cache controller

design in bridging the processor-memory speed gap but also contributes

significantly to the field of cache memory management by offering a viable

solution to the challenges posed by traditional cache configurations.

Keywords:

Cache controller

VHDL-designed

Finite State Machine

4-way set associative cache

Tree PLRU algorithm

Copyright © 2023 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Teddy Surya Gunawan

Department of Electrical and Computer Engineering,

International Islamic University Malaysia, Malaysia.

Email: tsgunawan@iium.edu.my

1. INTRODUCTION

Cache memory is an integral component of modern computing systems, bridging the speed gap

between fast processors and slow main memory, especially given Moore's Law's exponential increase in

processing power. Even though the number of transistors doubles approximately every two years, main

memory speeds have not kept pace, resulting in potential performance bottlenecks [1, 2]. Cache memory

functions as a high-speed buffer to counteract this, enabling processors to retrieve data quickly. The cache

controller is essential for optimizing the performance of the cache memory. This vital component, directed by

the Finite State Machine (FSM), coordinates the data flow and operations between the processor, main memory,

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1052

and cache. A competent FSM is essential to determine the optimal cache operations and ensure peak

performance.

Moore's law graph demonstrates that processor speed has increased exponentially in recent years,

outpacing memory performance [3, 4]. In contrast to memory performance, CPU speed increases exponentially.

This disparity causes significant main memory access latency in modern processors, and this trend is likely to

persist. Cache memories are designed to reduce this latency. It is essential to improve cache memory systems

to match the rapid increase in processor performance, with the design of efficient cache controllers being one

effective strategy.

There are two essential terms in cache memory: hit and miss. A cache hit occurs when the CPU locates

the requested data in the cache memory, whereas a cache miss indicates that the required data is absent [5-7].

Understanding these concepts is crucial to mastering the core cache memory operations: read and write.

Delving deeper, we identify four distinct scenarios within these operations: read hit, read miss, write hit, and

write miss.

The dependency of cache memory on the "Principle of Locality" is highlighted in [8]. Essentially,

cache memory repeatedly and rapidly accesses a set of memory addresses. This behavior is consistent with the

observation that a processor frequently revisits and reuses nearby memory addresses rather than fetching new

data continuously [9]. The Principle of Locality has two components: temporal locality and spatial locality.

According to the temporal locality, recently accessed data will likely be required again soon, while spatial

locality asserts that data near a recently accessed address will also likely be accessed. Given the disparity

between cache lines and main memory blocks, an algorithm is required to address the mapping problem. The

architecture of cache memory is dependent on the mapping function selected. Address mapping schemes are

essential cache parameters [10, 11] that determine where higher-level memory entries are stored in the cache.

Set-associative, fully associative, and direct are the three predominant mapping techniques.

The design and assessment of a four-way set associative cache memory controller was investigated in

[3]. The controller, essential for streamlining data transfers between the CPU, cache, and main memory,

promises to reduce processor-memory delays significantly because processor data-handling capabilities are

advancing more rapidly than memory speeds. A finite state machine implements each of the four operations.

Using ISE Design Suite and Cadence compilers, the study analyzed the functionality of various modules,

including evaluating "hit" and "miss" conditions. In tests, there were 19 successes and 6 failures, with the

failures primarily attributable to specific instructions. Technical specifications for the controller included a

setup time of 1.66 ns, an output time of 0.77 ns, a clock frequency of 257.202 MHz, and a modest power

consumption of 5.53 mW.

The design of an efficient cache controller is investigated in [5] by comparing Direct mapped and 4-

way Set associative mapped cache mappings. The controller was created with VHDL and simulated with Ed

Playground. The architecture provided multiple input and output signals. Interacting with the CPU, reading,

and writing to main and cache memory, and delivering the requested block to the CPU are the core functions

of the cache controller. Test vectors covering Read and Write hits and misses were applied to both mappings

to validate the design. The 4-way set associative mapping uses the Tree PLRU algorithm, which improves the

fundamental LRU algorithms. According to comparative results, 4-way set associative mapping is more

effective than direct mapping. The direct-mapped controller requires 2 cycles for a successful read, 6 cycles

for a failed read, and 4 cycles for write operations. In contrast, the 4-way set associative controller requires

three cycles for a read success, seven cycles for a read failure, and five cycles for write operations.

A power-efficient FPGA-based cache memory system was developed in [12] to detect cache memory

miss rates. They highlighted the energy efficiency and performance benefits of FPGA-based computing. The

cache memory design includes a counter, a cache tag comparator, and a cache tag memory but omits the cache

data memory, as the emphasis is on cache miss detection. These components were created using the behavioral

modeling technique of VHDL and synthesized on the Xilinx platform. If the microprocessor's requested address

matches the one in the cache tag memory, a cache hit occurs; otherwise, a cache miss occurs. The study's

conclusion presented the FPGA-based cache memory design for cache miss detection, which could lay the

foundation for future FPGA-based set associative cache memory and controller projects.

Modern systems require higher CPU clock speeds, which increases power consumption and heat.

Thus, multicore processors are recommended over high-frequency single-core ones. Cache coherence is

highlighted in the cache controller architecture for multicore processors. Cache coherence was defined as core-

wide memory reads and writes. A unified memory view is maintained when one core writes to a memory

location and another reads from it. The three-core processor cache controller mediates between cache memory

and CPU cores using four bus types for write, read, data, and address signals. Scheduling allows each core to

access shared components like buses and memory in a pre-defined sequence to maintain cache coherence.

Simulations in [13] showed that scheduling ensures that each core fetches the correct data according to the

cache controller's timetable.

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1053

The performance of a cache memory system is highly dependent on the effectiveness of the cache

controller, which is primarily determined by its architectural design. The mapping function is the foundation

of this design. The simplest form of mapping, direct mapping, assigns a unique main memory block to a specific

cache line. However, when multiple memory blocks compete for the same cache space, this singular mapping

can result in a high cache miss rate. In contrast, fully associative mapping, which necessitates searching all

cache lines for the desired data, can be time-consuming and detrimental to performance. An intermediate

solution set associative mapping is not devoid of difficulties: excessive ways complicate replacement policies,

while insufficient ways increase the rate of misses. The existing research does not comprehensively understand

designing a VHDL 4-way set associative cache controller. Therefore, this research aims to design an FSM-

based 4-way set associative cache controller using VHDL, verify its behavior through Quartus Lite Edition's

timing diagram, and evaluate its performance via ModelSim simulation.

2. CACHE MEMORY PRINCIPLES

This section explores the fundamental principles of cache memory, including its complex mapping

functions, the nuances of replacement algorithms and writes policies, and the cache controller's central role in

the overall system.

2.1. Cache Mapping Functions

Mapping main memory blocks to cache lines is a complex task, necessitating specific algorithms,

especially given the limited cache lines compared to main memory blocks. The architecture of the cache is

influenced by the selected mapping function [14, 15]. Address mapping schemes were emphasized in [10] as

pivotal cache parameters for this allocation. Three primary mapping techniques are detailed: direct mapping,

fully associative, and set-associative. In direct mapping, each main memory block is mapped to only one

specific cache line, determined by the address of the block multiplied by its modulo. This method is

straightforward, as it doesn't require a replacement process; however, its rigidity may cause frequent block

swaps in the cache if a program accesses different blocks mapping to the same line, leading to "trashing." Fully

associative mapping is more versatile than direct mapping, allowing block data to be copied to any cache line.

When no lines are free, a replacement algorithm comes into play.

Figure 1. The k-way Set-Associative Cache Organization [16]

We have set associative mapping by combining the advantages of both the direct and associative

techniques while minimizing their cons. It involves dividing all cache lines into sets based on a predetermined

value k. While a specific block can be mapped to any line within a particular set, it's restricted to that set, as

shown in Figure 1. Cache replacement algorithms might also be employed here if no lines are available. This

method interprets a memory address via three fields: Tag, Set, and Word. The cache controller identifies the

set through the Set field, compares each line's tag within the set, and then uses the Word field for line-byte

selection. Notably, the set-associative approach can become direct mapping or fully associative based on the

number of sets and lines in each set. Two-line set-associative organizations are typically the most common,

with four-way set associative offering marginal improvements at a slightly added cost.

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1054

2.2. Replacement Algorithms and Write Policy

Cache memory design relies on the replacement algorithm [17]. This algorithm selects the cache line

to replace with the main memory block. LFU, FIFO, and LRU are popular algorithms in this area (LRU). LRU

stands out due to its intuitive nature and the underlying principle that recent memory accesses indicate near-

future accesses, potentially optimizing hit ratios. LRU is described as replacing the cache line least recently

accessed [18]. Several replacement algorithms will be discussed in this section.

First-In-First-Out (FIFO) is one of the simplest cache replacement algorithms. It operates on the

age principle, replacing the oldest item in the cache when a new item needs to be loaded. The algorithm assumes

that data brought into the cache earlier is less likely to be used again soon. Assuming a queue structure for the

cache with items 𝐶1, 𝐶2, … , 𝐶𝑛, where 𝐶1 is the oldest and 𝐶𝑛 is the most recent, FIFO algorithm can be defined

as:

 𝐹𝐼𝐹𝑂(𝐶) = min{𝑖𝑛_𝑡𝑖𝑚𝑒(𝐶𝑖)|𝑖 = 1 … 𝑛} (1)

where 𝑖𝑛_𝑡𝑖𝑚𝑒(𝐶𝑖) is the time when the item 𝐶𝑖 entered the cache.

Random Replacement does exactly as its name suggests: it replaces a randomly chosen item in the

cache when a new item is to be loaded. Due to its unpredictable nature, it might outperform more complex

algorithms in certain scenarios, especially when access patterns do not exhibit strong temporal locality. The

algorithm can be formulated as follows:

 𝑅𝑎𝑛𝑑𝑜𝑚(𝐶) = 𝑟𝑎𝑛𝑑() 𝑚𝑜𝑑 𝑛 (2)

where 𝑛 is the cache size.

The Optimal Replacement algorithm is theoretical and serves as a benchmark. It replaces the item

that won't be accessed for the longest duration in the future. While it's not feasible in practice (as it requires

knowledge of future requests), it sets an upper-performance limit. The algorithm can be formulated as follows:

 𝑂𝑝𝑡𝑖𝑚𝑎𝑙(𝐶) = max{𝑛𝑒𝑥𝑡_𝑢𝑠𝑒(𝐶𝑖)|𝑖 = 1 … 𝑛} (3)

where 𝑛𝑒𝑥𝑡_𝑢𝑠𝑒(𝐶𝑖) denotes the future time when the item 𝐶𝑖 will be accessed next.

Least Recently Used (LRU) is based on the principle that if an item has not been accessed recently,

it's less likely to be accessed shortly. It replaces the least recently accessed item when a new item is loaded. It

can be defined as follows:

 𝐿𝑅𝑈(𝐶) = min{𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠(𝐶𝑖)|𝑖 = 1 … 𝑛} (4)

where 𝑙𝑎𝑠𝑡_𝑎𝑐𝑐𝑒𝑠𝑠(𝐶𝑖) is the time when the item 𝐶𝑖 was last accessed.

Tree Pseudo-Least Recently Used (PLRU) approximates the LRU policy commonly used for set-

associative caches. Instead of perfectly keeping track of the exact LRU order, which can be hardware-intensive,

Tree PLRU uses a binary tree to guide replacement decisions [19, 20]. It makes it more efficient in terms of

hardware implementation for larger set-associative caches. Considering a cache with 2𝑚 lines, PLRU utilizes

a binary tree with 2𝑚 leaves representing cache lines. Cache accesses alter the state of the tree. An internal

node's state, set to '0' or '1', indicates which child node (or associated cache line) was accessed last. The

algorithm determines the least recently used line by following the path from the root according to these states.

When updating a cache-resident block, there are two possible outcomes. First, if the block is

unchanged, it can be overwritten in the cache without updating the main memory. Before introducing a new

block, the main memory must be updated if the existing block has undergone at least one write operation.

Diverse writing policies address these scenarios, each with its advantages and disadvantages. This dynamic

reveals two principal concerns. First, multiple devices, such as I/O modules, may access the main memory,

rendering cache-only modified words potentially invalid. This situation becomes more complex with multiple

CPUs on a shared bus, each with its cache. Changing a cached word can invalidate words in other caches.

The "write-through" technique is simple. It ensures that both the cache and the main memory are

updated simultaneously, preserving the integrity of the memory. Additionally, it enables other processor-cache

modules to monitor main memory traffic, ensuring cache consistency. In contrast, the "write-back" technique

uses additional flags in each cache line, such as Type (differentiating between data and instructions), Valid

(indicating valid cache line data), Lock (preventing line replacement when set), and Dirty (denoting data

written to cache but not main memory). As explained in [21], the write-back policy minimizes memory writes

by updating the main memory only when the dirty bit is active during block replacement. The write-back policy

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1055

struggles with error handling without an Error Correcting Code (ECC), and the write-through approach can

excessively congest traffic [8, 22].

2.2. Cache Controller

The cache controller is an essential piece of hardware that manages data transfers between the CPU,

main memory, and cache memory. Whenever the processor attempts to access a specific location in the main

memory, the cache controller first determines whether the data is present in the cache. If present, the data is

transmitted directly to the processor; otherwise, the data is retrieved from the main memory, thereby updating

the cache [3]. In addition, the cache controller is responsible for monitoring the cache's induced miss rate [12,

23].

The cache controller comprises a Finite State Machine (FSM), Tag cache, General Mux (GMux), and

the LRU controller unit. The FSM manages read and write operations for cache and main memory, directing

requests to GMux and the LRU controller unit for set associativity [18, 24]. The tag cache organizes data into

distinct fields within the controller, including tag bits, a valid bit, a dirty bit, and LRU bits for each data cache

line. The FSM generates signals such as "Dwith," making it easier for GMux to connect input and output data

buses. When set associative mode is enabled, the LRU controller identifies the path utilized the least recently

while the FSM manages read and write operations for each set.

3. PROPOSED FAST 4-WAY SET ASSOCIATIVE CACHE CONTROLLER

This research focuses on modeling the cache controller to validate its functionality and simulate its

performance. This modeling utilizes HDL because it can represent behavior at multiple abstraction levels.

Abstraction is a pillar of engineering; it facilitates the comprehension of system operations without delving

into complex internal processes [25]. In addition, omitting the specifics of the low-level implementation

ensures that the simulation can be executed within a reasonable timeframe. Our research uses the Register

Transfer Level, where HDL specifies the transfer and transformation of data across and within subsystems in

response to system inputs.

3.1. Cache Controller and Cache Memory Specifications

Before designing the cache controller, it is necessary to define its inputs and outputs, as shown in

Table 1. This project uses a 4-way set associative mapping for cache memory, which consists of 16 cache lines

of 256 bytes each. This memory is divided into four sets, each containing four cache lines. Write-Through for

write hits and Write-Around for write misses are the chosen write policies. Adopting the Tree Pseudo-LRU,

the research introduces improvements to the replacement policy (PLRU). In addition, the cache controller

includes a Tag Array for storing tags for comparison with the processor's provided address. Figure 2

demonstrates the complete RTL layout. Standard bus specifications include 32-bit data buses, a 32-bit address

bus (with only 10 bits addressable by memory), and a 128-bit read data block.

Table 1. I/O Ports for the Cache Controller
Signal Direction Width Description

Clock In 1 Global clock

Reset In 1 Async. Reset

Flush In 1 To flush all cache lines

Read In 1 To read words from the cache

Write In 1 To write words to cache

Index In Configurable Index of the requested address

Tag In Configurable Tag of the requested address

Ready In 1 The data-ready signal from the main memory

Refill Out 1 To refill the cache line from the main memory

Set offset Out 2 To select one of the four ways

Update Out 1 To update cache line using processor word, on write hit

Stall Out 1 To stall the processor on read/write miss, write hit

Read from memory Out 1 To fetch cache line from main memory, on read miss

Write to memory Out 1 To write processor word to main memory

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1056

Figure 2. RTL View of the Entire System

3.2. System Design Using Finite State Machine

After understanding the cache controller and memory specifications, the next step is to design the

Finite State Machine (FSM). FSMs are among the most powerful digital circuits due to their capacity to

represent and manage distinct system states. In the context of this study, the FSM allows us to precisely define

the behavior of the cache controller based on its inputs. The architecture of our cache controller is based on

prior research and consists of an FSM that performs four fundamental operations: retrieving addresses from

the processor, reading data from both cache and main memory, writing data to cache and main memory, and

finally returning the requested data to the processor. Figure 3 depicts a representative state diagram of the cache

controller.

Figure 3. Cache Controller State Diagram

3.3. Integrated System Design and Development

Using Quartus Lite software, the intended circuit is constructed textually, utilizing the fundamental

Finite State Machine (FSM) to streamline VHDL design into distinct procedural blocks for different circuits.

Quartus transforms VHDL code into a tangible circuit with logic elements, providing a schematic

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1057

representation and preparing it for FPGA implementation, upon compilation. A subsequent step entails the

creation of a Test Bench, which is specific to the module code, to direct the simulator, ModelSim, to evaluate

the operational efficiency of the circuit without delving into timing nuances. Timing remains crucial, with

clock stall metrics highlighting the model's performance; extensive clock stalls indicate potential processor

data retrieval delays. Due to Quartus' affiliation with Intel, those with the necessary hardware can implement

the model on an Intel FPGA device, with the final phase focusing on the programming required to finalize the

system's architecture.

3.3. Netlist View

We will investigate the complexities of our circuit's netlist. This netlist, which serves as a blueprint

for the interconnectedness of the system's components, is the result of successful code synthesis and

compilation. The system's architecture consists of three essential components: the cache controller, the cache

memory, and the main memory. Figure 4 vividly depicts the meticulous integration of individual entities to

form the overarching "top entity" in constructing such a system. Each entity has its own unique significance

and design considerations.

Figure 4. Top Entity of the System

Figure 5. Main Memory Entity

The primary memory is our first entity. It is intricately designed and comprises four distinct banks, as

shown in Figure 5. To address the reviewer's query, each memory bank is associated with a dedicated data_out

bus. Specifically, Memory_Bank_0 produces data_out[31:0], Memory_Bank_1 handles data_out[63:32],

Memory_Bank_2 is responsible for data_out[95:64], and Memory_Bank_3 manages data_out[127:96].

This configuration ensures efficient data handling and output across the different segments of the memory

system.

The focus then shifts to the second entity, the cache controller, which consists of two segments, as

depicted in Figure 6. The cache memory, a crucial component of our system, effectively interfaces with these

memory banks to optimize data retrieval and storage processes.

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1058

Figure 6. Cache Controller Entity

4. RESULTS AND DISCUSSION

This section explores the fundamental principles of cache memory, including its complex mapping

functions, the nuances of replacement algorithms and writes policies, and the cache controller's central role in

the overall system. In our examination of the performance of the 'Top entity,' we simulated the functions of a

non-pipelined processor using a Test Bench. This Test Bench generated Read/Write data requests to the

memory consistently, effectively simulating the "Load" and "Store" instructions inherent to all programs a

processor executes. Our tests revealed that the cache controller was operating at peak efficiency. During the

research, several notable observations were made. First, the Read/Write Miss and Hit signals were generated

with extraordinary accuracy. Second, all four routes for the Read/Write data operations were fully functional.

In addition, the pLRU algorithm demonstrated its proficiency by replacing cache lines as anticipated. Notably,

we did not encounter incoherent or inconsistent data during our research. To ensure a thorough evaluation, we

administered three sets of test vectors, one for each scenario: read hit, read miss, write hit, and write miss. The

subsequent section will comprehensively analyze these scenarios, spanning all three sets.

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1059

4.1. First Set of Test Vector Analysis

The initial set of test vectors mirrored those of a previously cited study to facilitate a direct comparison

with prior research. The overarching objective was to identify potential inconsistencies or flaws in this or the

other study. The results showed:

• Read Miss: For addresses not present in the cache, the data block is fetched from the main memory,

stalling the processor for 3 cycles and taking a total of 5.5 cycles for the read operation.

• Read Hit: If the address is in the cache, data is directly fetched, requiring 3 cycles.

• Write Hit: When the target address is in the cache, data is written and simultaneously copied to the main

memory, owing to the Write-Through policy. This operation takes 3.5 cycles, with a 2-cycle processor

stall.

Figure 7. Simulation result of test_addr(0)=00000201 for the read miss.

Figure 7 zeroes in on the specific instance of test_addr(0) <= x "00000201", marking a situation

where a read miss is registered. The processor's incoming address is mirrored in the tb_processor/addr signal.

Notably, the rd signal, set at '1', indicates a read operation that, intriguingly, consumes 3 cycles. The dilemma

arises, however, when the desired address is conspicuously absent from the cache. It triggers the transfer of an

entire data block from the main memory to the cache before sending it to the processor. While effective at

ensuring data integrity, this process introduces a delay: the cache controller temporarily holds the processor in

check for three additional cycles. This results in a total of 5.5 cycles for read operations should a miss occur.

It highlights the inherent impact of cache misses on system performance and the significance of optimizing

cache management to reduce their occurrence.

4.2. Second Set of Test Vector Analysis

This set introduced the 'Write Miss' operation, which was not covered in the previous set. The analysis

showed:

• Read Miss: Akin to the first set, data retrieval from the main memory resulted in a 3-cycle processor stall,

with the read operation consuming 4.5 cycles.

• Read Hit: Consistent with the first set, direct data retrieval from the cache took 3 cycles.

• Write Miss: Direct writing to the main memory occurred when the desired address wasn't in the cache.

This process took 3.5 cycles, stalling the processor for 2 cycles.

• Write Hit: Similar to the first set, a 3.5-cycle operation was observed with data being written in the cache

and copied to the main memory, resulting in a 2-cycle processor stall.

rd signals
takes 3 cycles

Read operations
done.

Stalls 3 cycles

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1060

Figure 8. Simulation result of test_addr (11) =00000207 for the write miss

Figure 8 elucidates a scenario involving a write miss, characterized by the specific instance test_addr

(11) <= x "00000207". The crux of this situation lies in the absence of the desired address within the cache

memory, directly categorizing the write request as a miss. Instead of leveraging the cache, data is

straightforwardly written to the main memory, denoted by test_data (11) <= "44444444". A critical

observation here revolves around the wr signal, set to '1'. This signal denotes a write operation, which requires

three cycles as deduced from the results. Despite being direct, this operational procedure introduces a latent

overhead: the processor is temporarily suspended for an additional 2 cycles. The cumulative effect of write

misses is an access time of 3.5 cycles. It elucidates the inherent overhead of write misses and highlights the

urgent need to optimize cache strategies to prevent such occurrences and boost overall system efficiency.

4.3. Third Set of Test Vector Analysis

The third set provided a concise overview of the cache controller's behavior, allowing observation of

specific scenarios like data updating on the same address. The analysis showed:

• Read Miss and Hit: Behaviors were consistent with previous sets.

• Write Miss and Hit: The cache controller responded correctly to write requests, showcasing its ability to

handle data updates on the same address.

The third set of test vectors provides a more constrained coverage than the preceding first and second

sets. The design's rationale is an essential factor to consider in this context. Although limited in scope, this set

is intricately designed to examine the behavior of the cache controller in four distinct scenarios: read miss, read

hit, write miss, and write hit, with the added complexity of data updates on identical addresses. This deliberate

limitation suggests a strong emphasis on depth rather than breadth. The value of such a strategy is evident: by

narrowing the scope, there is increased observational granularity. It allows for a more in-depth understanding

of the cache controller's operations in particular scenarios instead of a broader but potentially superficial

understanding.

Figure 9 provides additional visual distinction. Each scenario is color-coded distinctly: blue represents

read misses, red represents read hits, green represents write misses, and orange represents write hits. Although

this color coding is intuitive, one may question whether these choices effectively accommodate all potential

viewers, including those with color blindness.

wr signal takes 3 cycles

Data to be written

Stall 2 cycles

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1061

Figure 9. Simulation result for the third set of test vector

Reading hits are the most effective operations, requiring only three cycles and causing no processor

delays. In contrast, reading misses require data retrieval from the main memory, resulting in a 5.5-cycle

operation. Both write hits and misses presented similar difficulties, halting the processor for two cycles and

requiring three and a half cycles to gain access. The Write-Through policy of the design ensured data

consistency by writing to the main memory with each writing hit. In addition, the Write-around policy became

evident during writing misses, wherein data was written directly to the main memory without updating the

cache.

Table 2. Comparison with other works

Ref
Read Hit

(cycles)

Read Miss

(cycles)

Write Hit

(cycles)

Write Miss

(Cycles)

[3] 4 9 3 2

[5] 3 7 5 5

Proposed design 3 5.5 3.5 3.5

Table 2 compares our design with the other works, revealing that the cycle efficiency of cache

interactions has evolved. A relatively unbalanced cycle distribution is evident in [3], with read misses

dominating by a significant margin at 9 cycles, nearly double its nearest metric (read hits at 4 cycles). It could

indicate a system that, while robust, may encounter difficulties in scenarios involving frequent data access. In

contrast, a more balanced cycle distribution was displayed in [5], particularly between write operations. The

reduced cycle count for read misses compared to [3] (7 cycles) suggests read efficiency-enhancing

optimizations. However, it also features a significantly higher cycle count for write operations, which may

indicate a potential design trade-off.

The proposed design provides convincing evidence of a refined approach. With a consistent cycle

count for both read and write hits of 3 and 3.5 cycles, it establishes a balance between read and write operations,

thereby addressing potential inefficiencies in both. Moreover, the significantly reduced cycle count for read

misses to 5.5 cycles demonstrates a read mechanism that has been optimized, most likely utilizing innovative

techniques or algorithms. In essence, the proposed design appears to have integrated the lessons from the two

previous papers, combining their respective strengths to create a system that promises speed and balanced

performance across diverse cache interactions.

Beyond the comparative analysis outlined in Table 2, it is critical to contemplate the ramifications

that the implementation of FPGA would have on our proposed design. The present investigation is founded

upon ModelSim simulations; however, it is expected that the adoption of an FPGA platform, such as the

Cyclone V FPGA, will verify and potentially augment these findings. The utilization of FPGA implementation

provides a concrete setting in which the design can be evaluated under authentic circumstances, thereby

yielding significant knowledge regarding timing, power consumption, and system integration as a whole.

The efficacy of our simulation is demonstrated by the cycle efficiency outcomes, which indicate that

it accurately models the behavior of the cache controller in a variety of scenarios. By providing a controlled

wr signal takes 3
cycles for write miss

wr signal takes 3
cycles for write hit

rd signal takes 3
cycles for read
miss.

Stall 3 cycles
for read miss

Stall 2 cycles for
write miss

Stall 2 cycles for
write hit

rd signals
takes only 3
cycles for read
hit.

  ISSN: 2089-3272

 IJEEI, Vol. 11, No. 4, December 2023: 1051 – 1063

1062

environment in which to precisely manipulate each parameter, simulations guarantee a comprehensive

comprehension of the performance of the design. By employing this comprehensive simulation methodology,

a strong groundwork is established for subsequent FPGA implementation, during which the design's practical

viability will be further evaluated. Furthermore, it is anticipated that the shift from simulation to FPGA

implementation will provide further advantages. For example, testing on FPGAs can provide valuable

information regarding the scalability and adaptability of the design across various hardware configurations.

Additionally, it facilitates debugging and testing in real-time, which can result in more immediate and tangible

design enhancements. Hence, although the present investigation centers on performance analysis via

simulation, the potential implementation of our cache controller design on an FPGA is an essential subsequent

course of action. In addition to validating the results obtained from our simulations, it will furnish an all-

encompassing comprehension of the design's operational efficacy. By integrating comprehensive simulations

and rigorous hardware testing, our proposed design is characterized by its exceptional dependability and

groundbreaking nature.

5. CONCLUSIONS

The primary objective of this study was to develop and evaluate a cache controller that utilized a Tree

Pseudo Least Recently Used (PLRU) replacement policy and a 4-way set associative mapped cache. An

exhaustive literature review was conducted to identify effective cache controller design techniques; this led to

the selection of a four-way set for each cache set, which balanced complexity, performance, and cost while

optimizing latency. During the practical implementation phase, Quartus Prime 16.1 Lite Edition was utilized

to develop VHDL code for the cache controller, main memory system, and cache memory entities. The

conversion of abstract principles into a physical design during this critical stage was accomplished with the

assistance of compilation, synthesis, and ModelSim simulations for validation purposes. The timing diagrams

generated by these simulations served as the foundation for our performance evaluation. Through comparative

analysis with prior research, the effectiveness of our design was demonstrated, specifically in the reduction of

read miss latency to 5.5 cycles and the attainment of balanced latencies in write operations. It is important to

mention that the performance of the cache controller is affected by a multitude of factors, such as the

specifications of the device and the replacement and writing policies that are chosen. Our investigation was

limited to operation cycles; internal delay considerations were disregarded. In its entirety, this research makes

a substantial contribution to the field of cache controller design by showcasing the efficacy and feasibility of

the 4-way set associative mapped cache controller in conjunction with the Tree PLRU policy through

simulations. Subsequent research endeavors to incorporate and scrutinize this architecture on an FPGA

platform, thereby furnishing an exhaustive assessment of its practical efficacy. This stage is critical to verify

the feasibility and efficacy of the design in real-world situations, thereby connecting theoretical analysis with

practical implementation and contributing to the advancement of cache controller technology.

ACKNOWLEDGEMENTS

The authors are grateful to the International Islamic University Malaysia for its research facilities.

They also thank Universitas Negeri Yogyakarta for their generous funding and facilities for this research.

REFERENCES
[1] M. Gupta, L. Bhargava, and S. Indu, "Mapping techniques in multicore processors: current and future trends," The

Journal of Supercomputing, vol. 77, pp. 9308-9363, 2021.

[2] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić, "Make the most out of last level cache in intel processors,"

in Proceedings of the Fourteenth EuroSys Conference 2019, 2019, pp. 1-17.

[3] P. Chauan, G. Singh, and G. Singh, "Cache controller for 4-way set-associative cache memory," International Journal

of Computer Applications, vol. 129, no. 1, p. 8887, 2015.

[4] P. Visconti, R. Velazquez, C. D.-V. Soto, and R. De Fazio, "FPGA based technical solutions for high throughput data

processing and encryption for 5G communication: A review," TELKOMNIKA (Telecommunication Computing

Electronics and Control), vol. 19, no. 4, pp. 1291-1306, 2021.

[5] G. Kaur, R. Arora, and S. S. Panchal, "Implementation and Comparison of Direct mapped and 4-way Set Associative

mapped Cache Controller in VHDL," in 2021 8th International Conference on Signal Processing and Integrated

Networks (SPIN), 2021: IEEE, pp. 1018-1023.

[6] N. Beckmann, H. Chen, and A. Cidon, "{LHD}: Improving cache hit rate by maximizing hit density," in 15th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), 2018, pp. 389-403.

[7] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, "An imitation learning approach for cache

replacement," in International Conference on Machine Learning, 2020: PMLR, pp. 6237-6247.

[8] I. Lokegaonkar, D. Nair, and V. Kulkarni, "Enhancement of cache memory performance," in 2021 3rd International

Conference on Advances in Computing, Communication Control and Networking (ICAC3N), 2021: IEEE, pp. 1490-

1492.

IJEEI ISSN: 2089-3272 

A Convolutional Neural Network Approach For Detection And Classification… (Arselan Ashraf et al)

1063

[9] C. Griner, S. Schmid, and C. Avin, "CacheNet: Leveraging the principle of locality in reconfigurable network design,"

Computer Networks, vol. 204, p. 108648, 2022.

[10] M. Jhamb, R. Sharma, and A. Gupta, "A high level implementation and performance evaluation of level-I

asynchronous cache on FPGA," Journal of King Saud University-Computer and Information Sciences, vol. 29, no.

3, pp. 410-425, 2017.

[11] M. R. Khalil, L. A. Mohammed, and O. N. Yousif, "Customer application protocol for data transfer between

embedded processor and microcontroller systems," TELKOMNIKA (Telecommunication Computing Electronics and

Control), vol. 19, no. 3, pp. 801-808, 2021.

[12] Y. S. Watile and A. Khobragade, "FPGA Implementation of cache memory," International Journal of Engineering

Research and Applications (IJERA), vol. 3, no. 3, pp. 283-286, 2013.

[13] V. S. Bhure and P. R. Chakole, "Design of cache controller for multicore processor system," International Journal

of Electronics and Computer Science Engineering, 2012.

[14] S. Kumar and P. Singh, "An overview of modern cache memory and performance analysis of replacement policies,"

in 2016 IEEE International Conference on Engineering and Technology (ICETECH), 2016: IEEE, pp. 210-214.

[15] A. Alsharef, P. Jain, M. Arora, S. R. Zahra, and G. Gupta, "Cache memory: an analysis on performance issues," in

2021 8th international conference on computing for sustainable global development (INDIACom), 2021: IEEE, pp.

184-188.

[16] W. Stallings, Computer Organization and Architecture: Designing for Performance. Pearson, 2018.

[17] M. T. Banday and M. Khan, "A study of recent advances in cache memories," in 2014 International Conference on

Contemporary Computing and Informatics (IC3I), 2014: IEEE, pp. 398-403.

[18] S. S. Omran and I. A. Amory, "Design of two dimensional reconfigurable cache memory using FPGA," in 2016 5th

International Conference on Electronic Devices, Systems and Applications (ICEDSA), 2016: IEEE, pp. 1-8.

[19] D. Grund and J. Reineke, "Toward precise PLRU cache analysis," in 10th International Workshop on Worst-Case

Execution Time Analysis (WCET 2010), 2010: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[20] B. U. I. Khan, R. F. Olanrewaju, R. N. Mir, A. R. Khan, and S. Yusoff, "A Computationally Efficient P-LRU based

Optimal Cache Heap Object Replacement Policy," International Journal of Advanced Computer Science and

Applications, vol. 8, no. 1, 2017.

[21] H. S. Mahmood and S. S. Omran, "Pipelined MIPS processor with cache controller using VHDL implementation for

educational purposes," in 2013 International Conference on Electrical Communication, Computer, Power, and

Control Engineering (ICECCPCE), 2013: IEEE, pp. 82-87.

[22] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu, "Adaptive cache management for energy-

efficient GPU computing," in 2014 47th Annual IEEE/ACM international symposium on microarchitecture, 2014:

IEEE, pp. 343-355.

[23] S. Srivastava and P. Singh, "HCIP: Hybrid Short Long History Table-based Cache Instruction Prefetcher,"

International Journal of Next-Generation Computing, vol. 13, no. 3, 2022.

[24] B. Kumar, A. K. Bhosale, M. Fujita, and V. Singh, "Validating multi-processor cache coherence mechanisms under

diminished observability," in 2019 IEEE 28th Asian Test Symposium (ATS), 2019: IEEE, pp. 99-995.

[25] B. J. LaMeres, Quick Start Guide to Verilog. Springer, 2019.

