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This paper compares the performance of hardware implementation for linear 

detection in a massive MIMO system. The study focuses on Gram matrix 

inversion solved using two approaches: direct and indirect matrix inversion. 

Direct matrix inversion is represented by Cholesky Decomposition, while 

indirect matrix inversion is represented by the Neumann series (NS) and the 

Gauss-Seidel (GS) method. Based on software implementation using Matlab 

done previously, it is clear that the Cholesky algorithm has better performance 

in terms of bit error rate (BER) compared to NS and GS algorithms. However, 

the hardware performance of the algorithms is yet to be evaluated to consider 

architectural trade-offs to meet application requirements. The algorithm for 

inversions, embedded in a C-based function, is virtually implemented on the 

FPGA using the Xilinx Vivado HLS tool. The synthesis report generated form 

the simulation categorizes the performance from the FPGA implementation 

into three parts: timing (ns), cycle latency, and resource utilization. With the 

same targeted time limit, indirect matrix inversion, such as the Neumann 

series, seems to be the fastest algorithm compared to the direct method due to 

the matrix-matrix multiplication approach. In terms of latency, NS requires 

more clock cycles to obtain the output compared to others.  Based on the 

results, the direct inversion method exhibits higher complexity, particularly in 

timing for clock frequency and resource utilization needed to complete the 

inversion.  
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1. INTRODUCTION  

Matrix inversion is widely used in various fields, particularly in electrical and electronic engineering, 

including power systems [1], networking [2], control systems [3][4], signal processing [5] and so on. In wireless 

communication system [6], matrix inversion is applied in the massive MIMO system, specifically in detection 

and precoding techniques. In the uplink channel, linear detection techniques, such as Zero Forcing (ZF), can 

perform very well and nearly optimal. As the number of base station antennas (M) and the number of users (K) 

within the cell increase, the size of the Gram matrix inversion (𝐙−𝟏), in the ZF detector becomes significantly 

larger. Thus, it grows the complexity of the massive MIMO system. Conventional direct matrix inversion 

methods like Cholesky Decomposition and QR Decomposition become more intricate to do the inversion. Both 

methods depend mainly on the decomposition process, where the inverted matrix will be decomposed into a 

product of simple matrices. QR method is introduced due to its stability, and it is applicable for any type of 
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matrices, while Cholesky Decomposition is basically applied for positive definite and non-singular 

𝐾 × 𝐾 matrices. Unfortunately, the computational complexity of these methods is still high 𝑂(𝐾3) and difficult 

for hardware implementation.  

The indirect inversion method based on approximate inversion is more popular among the large-scale 

integrated (VLSI) community. It is an effective tool to compute matrix inversion which is based on matrix 

multiplications and additions. This technique is generally less complex, and it can be more accurate especially 

when it is implemented on parallel machines. One way to calculate  𝐙−1 is by computing the solution of the 

linear system of the equations 𝐙𝐱 = 𝐛. There are two types of indirect inversion methods; series expansion 

method such as Neumann series expansion (NS) [7] and Taylor expansion while iterative methods such as 

Gauss-Seidel (GS) [8] and Jacobi [9] method. The performance of these inversion approaches in software 

implementation in terms of bit error rate (BER) has been investigated in [10], [11]. The simulation findings 

demonstrate that the indirect matrix inversion methods achieve comparable performance to the direct inversion 

approach, using fewer iterations and having a lower computational complexity.  

Implementation of the matrix inversion algorithm onto the hardware should go through the design 

process. The conventional hardware design process is divided into two primary stages. Firstly, the algorithm's 

functional description, written in a high-level language, must be manually converted into the Register Transfer 

Level (RTL). This conversion provides a detailed representation of the algorithm's behaviour during each clock 

cycle. Logic synthesis is an automated method that transforms the RTL abstraction into a physical hardware 

design. Transforming the algorithm into RTL is a time-consuming, expensive, and error-prone process. With 

advanced technology in designing FPGA, High-Level Synthesis (HLS) tools are introduced as a low-time 

consumption method that can overcome the constraints of the conventional design process. HLS tools are used 

to systematically transform a specification at a high abstraction level, e.g., algorithmic description into an 

application-specific architecture, usually implemented as a digital system that is supported by RTL [12]. Xilinx 

Vivado HLS tool is a commercial compiler developed by Xilinx Vivado HLS tools provide services which 

support all steps taken in FPGA design, beginning with design entry, simulation, synthesizing, place and route, 

generating bitstream, debugging, verification, and software development onto targeted FPGA family.  

The main contribution of this work is to examine the efficiency of hardware implementation in 

inverting the Gram matrix. The implementation prioritizes the usage of Cholesky Decomposition for the direct 

inversion approach, while employing the Neumann series and Gauss-Seidel for the indirect inversion method. 
Xilinx Vivado HLS tool is used to generate an RTL design of the inversion algorithm that is written in a 

programming language in C++. The targeted FPGA device for this study is the Kintex-7, Xilinx 7 series FPGA 

family. This device provides low power consumption, which is one of the primary elements that is of concern 

to most designers.  Having a low-power system, can reduce the cost, improve the reliability of the device, and 

consequently improve the performance of the system[13]. Once the source code is analysed, Vivado HLS 

provides a synthesis report that classifies the hardware performance into three parts: timing (ns), cycle latency, 

and estimation of resource utilization. The performance is then compared between the three algorithms of the 

matrix inversion as mentioned above.  

The rest of this paper is organized as follows: Section 2 discusses the system model of linear detection 

in the uplink in a massive MIMO. Section 3 presents the matrix inversion solved by direct and indirect methods. 

It also explains the implementation of the matrix inversion on the FPGA using the Xilinx Vivado HLS tool. 

The performance of the hardware implementation for both approaches has been compared in Section 4. Section 

5 concludes the entire paper.  

 

2. System Model 

  This section discusses the system model of the uplink channel of the massive MIMO system. 

 

2.1. System model of the uplink channel 

 In this study, a massive MIMO system with M number of antennas at the base station (BS) and K 

single-antenna users is considered, where  𝑀 ≫ 𝐾 > 1 as illustrated in Figure 1. For the uplink channel, the 

K users are simultaneously transmitting bit streams to the BS. Bit-streams from individual users will be encoded 

separately by the channel encoder. Subsequently, these encoded streams will be mapped into symbols from an 

energy-normalized modulation constellation, denoted as Ω. Vector 𝒔 = [𝑠1, … , 𝑠𝐾]𝑇 represents the transmit 

symbols for all users. K. The transmit vector is then transmitted over the wireless channel model written as 

𝒚 = 𝐇𝐬 + 𝐧,      (1) 

 

where 𝑦 = [𝑦1 , … , 𝑠𝐾]𝑇 is the received vector at the BS,  𝐇 ∈ 𝐶𝑀×𝐾 denotes the matrix of Rayleigh Fading 

channel coefficients between the BS antenna array and the K users.  𝐧 ∈  𝐶𝑀 denotes an additive white 

Gaussian noise (AWGN) vector with independent and identical distribution (i.i.d), zero mean, unit variance 
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complex Gaussian random variables. The transmitted signals are assumed to be i.i.d Gaussian distribution and 

it satisfies 𝐸{|𝑠𝑖|2} = 𝐸𝑠 , for 1 ≤ 𝑖 ≤ 𝐾. 
 

 
Figure 1. Massive MIMO system model 

 

2.2.  Linear Detection for massive MIMO 

In massive MIMO systems, the transmitted symbol vector 𝐬 is determined by the symbol detector 

from the received signal vector 𝐲.  Nonlinear detectors are not very hardware-friendly. For instance, expectation 

propagation detection (EPD) [14]faces difficulties with parallelism. Other nonlinear detection methods, such 

as successive interference cancellation (SIC) and lattice reduction aid (LRA) [15], suffer from incredibly high 

complexity. Therefore, linear detection methods such as Linear Minimum Mean-Square Error (MMSE) 

Equalization and Zero Forcing (ZF) are commonly applied in massive MIMO as these methods are easier to 

implement due to less complexity and simpler structure.  

 

For the MMSE detection, the effect of noise is considered. Thus, the transmitted vector can be computed as  

 

�̃�𝑴𝑴𝑺𝑬 = (𝐇𝐻𝐇 + 𝛔𝟐𝐈𝑲)−1𝐇𝐻𝐲 =  (𝐙)−1𝐇𝐻𝐲,               (2) 

 

where 𝐈𝑲 denoted as the 𝐾 × 𝐾 identity matrix. The Gram matrix is modified with a regularization by noise 

variance and it is expressed as  𝒁𝑴𝑴𝑺𝑬 =  𝐇𝐻𝐇 + 𝛔𝟐𝐈𝑲.  

Assume that the effect of noise is ignored and the transmitted vector can be computed by ZF from the 

observed received signal vector 𝐲 as  

 

�̃�𝒁𝑭 = 𝐇+𝐲 =  (𝐇𝐻𝐇)−1𝐇𝐻𝐲 =  (𝐙)−1𝐇𝐻𝐲,                          (3) 

 

where 𝐇𝐻 is the transpose and conjugate operation on the channel matrix 𝐇. The ZF detector is required to 

perform Gram matrix inversion where 𝒁𝒁𝑭
−𝟏 =  (𝐇𝐻𝐇)−𝟏. The multiuser interference is completely 

eliminated by multiplying the received signal vector, y, with the pseudo-inverse channel matrix as written in 

equation (3). Figure 2 illustrates the block diagram of the Linear ZF detection.  

 

 
 

Figure 2. Block diagram of ZF Detector 
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3. RESEARCH METHOD  

This section is divided into two parts. The first part is about the algorithm of the inversion method, 

which can be classified into direct inversion methods and indirect inversion methods. The second part is about 

the implementation of matrix inversion on the FPGA using the Vivado HLS tool.  

3.1. Matrix inversion Method 

3.1.1.  Direct Matrix Inversion Method 

Several direct inversion methods can be applied to solve Gram matrix inversion, 𝒁−1 which have 

been discussed in [16] and [17]. Cholesky Decomposition [18] is one of the direct inversion methods other 

than QR Decomposition and Gauss Elimination. It is a useful technique for efficient arithmetic operations and 

numerical solutions of a linear equation. Besides, Cholesky Decomposition is a low complex direct inversion 

method which can be applied in Very-large-scale-integration (VLSI). This approach is unique for Hermitian 

Positive Definite Matrix (HPDM) such as matrix Z given in equation (3). This method applied a 𝐾 ×  𝐾 lower 

triangular matrix, L to decompose a Gram matrix 𝐙 as 𝐙 = 𝐋𝐋𝐻. Below is the pseudocode for the Cholesky 

Decomposition.  

 

Algorithm  Cholesky Decomposition 

Input:  

• Gram matrix, 𝐙 = 𝐇𝐻𝐇 

• Decompose Z into lower (L) and upper (𝐋𝐻) triangular 

matrix 

for j=1:K do 

• Calculate diagonal elements of L, 

𝑙𝑗,𝑗 = √𝑧𝑗,𝑗 − ∑ 𝑙𝑗,𝑘𝑙𝑗,𝑘
𝐻

𝑗−1

𝑘=1

 

          for i=1:j-1 do 

• Calculate the off-diagonal elements of L, 

𝑙𝑖,𝑗 =
1

𝑙𝑗,𝑗
(𝑧𝑖,𝑗 − ∑ 𝑙𝑖,𝑘𝑙𝑗,𝑘

𝐻𝑗−1
𝑘=1 )  for 𝑖 > 𝑗 

end for 

end for 

• Obtain the lower triangular matrix, L 

• Calculate 𝐋−1 based on 𝐋𝐋−1 = 𝐈 

• Obtain (𝐋−1)𝐻 

Output: 𝐙−1 = (𝐋−1)𝐻𝐋−1 

 
3.1.2.  Indirect Matrix Inversion Method 

The inversion of 𝐙 can also be addressed using indirect methods. In the study of massive MIMO 

detection, two types of approximate matrix inversion methods are commonly employed today: i) Series 

Expansion Methods such as Neumann series expansion and Taylor expansion, and ii) iterative methods like 

Gauss-Seidel and Jacobi methods.  

 

i) Neumann series expansion method 

Gram matrix inversion can be solved using the Neumann series by replacing matrix inversion with 

matrix multiplication as written below 

 

 

where 𝐗−1 is an arbitrary matrix that holds the convergence condition of 𝑙𝑖𝑚𝑛→∞(𝐈𝐊  −  𝜃−1𝐙)𝑛 = 0𝐾 .  

 

ii) Gauss-Seidel method 

In Gauss-Seidel method, the Gram matrix is decomposed into three main components; diagonal (D), 

𝐙−1 =  ∑(𝐈𝐊 – 𝜃−1𝐙)𝑛𝐗−1

𝑁−1

𝑛=0

 
 

(4) 
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strictly upper triangular matrix (U), and strictly lower triangular matrix (L) represented as 𝐙 =  𝐔 +  𝐃 +  𝐋 . 
By applying linear equation, the estimated transmitted signal vector can be computed as 

 

 

iii) Jacobi method 

By using Jacobi method, the estimated transmitted signal vector is expressed as 

 

𝒙(𝒊+𝟏) =  𝐃−𝟏(𝒙 −  𝐑�̃�𝒊),                    (6) 

   𝑖 = 0,1,2, …. 
where D denotes a diagonal matrix while R is an off-diagonal matrix given as 𝐑 = 𝐙 − 𝐃. �̃�𝒊 is the solution 

vector at the i-th iteration.  

 

3.2. Hardware Implementation using Vivado HLS Tool 

In this part, the inversion of the Gram matrix Z using direct and indirect methods is implemented on 

the virtual FPGA board using a Xilinx tool known as Vivado HLS. With advanced technology in designing 

FPGA, High-Level Synthesis (HLS) tools are introduced as a low-time consumption method. HLS tools are 

used to systematically transform a specification at a high abstraction level, e.g., algorithmic description into an 

application-specific architecture, usually implemented as a digital system that is supported by RTL [12]. FPGA 

implementation using high-level descriptions is more compact, and it has fewer errors. HLS is used to compile 

the C function of the matrix inversion algorithm into the RTL description. Figure 3 demonstrates the flowchart 

on how the Xilinx Vivado HLS tool converts from the C++ function of the inversion method into the hardware 

description.  

 

 
 

Figure 3. Process to convert from C-function into hardware description using Vivado HLS tool 

 

𝒙(𝒊+𝟏) =  (𝐃 + 𝐋)−𝟏(𝒙 −  𝑼�̃�𝒊),     

 
 𝑖 = 0,1,2, … .. 

(5) 

END 

START 

The 𝐾 × 𝐾  the Gram matrix, Z, is extracted from the 

MATLAB file into a text file and saved as z.txt. 

 

The z.txt is applied as the input data of the matrix inversion 

algorithm  

 

Develop matrix inversion algorithm (Cholesky/Neumann 
series/ Gauss-Seidel) in C++ language  

Synthesize the C-algorithm into RTL Implementation 

Simulate and verify the algorithm in C-Simulation 

Generate synthesis report and analyse the hardware 
performance 
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In Xilinx Vivado HLS, the C-based algorithm is separated into the Testbench File and Source File. 

The transformation in HLS begins with the testbench files, which consist of a testbench function, the 𝐾 × 𝐾 

Gram matrix, Z, and gold data. The Gram matrix is generated from the random Rayleigh Fading Channel in a 

massive MIMO system using MATLAB software. It is saved as a text file and transformed into a testbench file 

so that it can be the input of the C-based algorithm.  

In addition, the Source file consists of a header function and a top-level function. The header function 

is used to define the variables such as the number of rows and columns, the value of the normalization factor 

which is needed in the Neumann series algorithm, and the number of maximum iterations for the Neumann 

Series and Gauss-Seidel algorithms. The top-level function that implies all the operations used to obtain 𝐙−1 

is then compiled and executed in the C-Simulation.  The simulation result is verified with the gold data in the 

test bench file to ensure that all the functions in the top-level function can be synthesized without error.  

Vivado HLS then synthesize the C-algorithm into an RTL implementation that meets the specified 

timing, performance, and also resource requirements. Vivado generates a comprehensive synthesis report 

consisting of information related to performance metrics such as area, latency, initiation interval (II), loop 

iteration latency, loop initiation interval, and loop latency. The report analyses whether the design meets the 

specified requirements or not. Then, the performance of the Cholesky Decomposition algorithm is compared 

with indirect matrix inversion algorithms such as Neumann series and Gauss-Seidel. 

 

4. RESULTS AND DISCUSSION  

This section compares the results of the direct and indirect matrix inversion algorithms that are 

implemented on the Xilinx Kintex-7 xc7k70t-fbv676-1.  

 

4.1. Synthesis report  
The synthesis report shows the general information about the project, such as the version of the 

software that is used in the project, the name of the project, the name of the solution, and the technology details, 

including the product family of Xilinx FPGA and also the targeted device of the selected product. Besides that, 

the report also produces performance estimates consisting of Timing, Latency, and Utilization Estimates. 

Timing shows the target clock frequency and clock uncertainty, and it also estimates the fastest 

achievable clock frequency. Latency describes the number of cycles that the design needs to produce the output 

while the interval shows the number of clock cycles before the new inputs can be applied. The latency required 

to execute all the iterations of the loop for the algorithm is indicated by the max and min latencies. The synthesis 

report also provides the estimated resources used to implement the design, including look-up-table (LUTS), 

Flip-Flops, BRAM-18K, and DSP48s. Below is the summary of the synthesis report for three matrix inversion 

algorithms: Cholesky Decomposition as a direct matrix inversion, Neumann series and Gauss-Seidel as an 

indirect matrix inversion algorithm.  

 

4.1.1. Timing  

Table 1 illustrates the estimated time (nsec) required by the three inversion methods for 8 × 8 ,  

16 × 16 and 32 × 32 size of the Gram matrix to do inversion. By default, the estimated timing in Vivado HLS 

is set to be 10 nsec. Among the three methods, Cholesky Decomposition requires more clock frequency to 

process the inversion compared to the Gauss-Seidel and Neumann series expansion method. This is due to a 

higher processing requirement by the direct inversion method. This algorithm needs more data to be processed 

within the same time constraints.  

On the other hand, the Neumann series needs the lowest clock frequency because this algorithm is 

less complex as it requires only multiplications and additions to do the inversion.  

 

Table 1. Estimated Time (ns) 
Antenna 

Configuration 

𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔  32 x 32 

Inversion 

Algorithm 

Cholesky NS GS Cholesky NS GS Cholesky NS GS 

Estimated Time 

(nsec) 

9.93 8.39 9.01 9.83 8.37 9.00 9.84 8.25 8.46 

 
 

4.1.2. Latency 

Table 2 illustrates the number of cycles each algorithm required to produce the result of the 

inversion.   Latency is the number of clock cycles that are required to compute all output values from a given 

set of inputs. Based on the reading, the Neumann series requires more cycles to obtain the result of inversion 
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compared to the Cholesky Decomposition and Gauss-Seidel.  For 8 × 8 antenna configuration, NS requires 
5 times higher than GS, and 6 times higher than Cholesky, while for 16 × 16 antenna configuration, NS 
requires 8 times higher than GS and 15 times higher than Cholesky. When the matrix size increases to 
32 × 32, NS remains the highest while Cholesky needs the minimum number of clock cycles to do 
inversion.   

 

Table 2. Latency (cycle) 
Antenna 

Configuration 

𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 32 x 32 

Inversion 

Algorithm 

Cholesky NS GS Cholesky NS GS Cholesky NS GS 

Latency(cycle) 5148 34961 6723 25765 396823 45187 50917 5636012 135318 

 

4.1.3.  Utilization Estimates 

Table 3 illustrates the resource utilization required by these three methods. There is notable saving in 

logic slices, DSP48 and also BRAM. Based on the resources provided for the targeted device as listed in the 

first column, the resources utilized by each inversion method are sufficient. For the size of 8 × 8, within 5 

number of iterations, the Neumann series requires very little resource utilization with 0% for BRAM_18K, 7% 

for DSP48E and LUT and only 1% for FF while Cholesky requires very high resources utilization; 4% for 

BRAM_18K, 31% for DSP48E, 12% for FF and 24% for LUT.  The reading of Gauss-Seidel is in between 

these two algorithms. The pattern of performance for each method remains the same even though the size of 

the Gram matrix increased.  According to the author in [19], the hardware implementation for the Neumann 

series and Gauss-Seidel methods is evaluated for 8 users using Xilinx Virtex-7 XC7VX690T FPGA. The result 

shows that the Neumann series requires 148797 LUTs, 161934 FFs, and 1016 DSP48s while Gauss-Seidel 

requires 18976 LUTs, 15864 FFs, and 232 DSP48s. The architecture is able to reach different application 

requirements by adjusting the number of iterations as required. This implementation shows its advantages in 

hardware efficiency and flexibility.  

 

Table 3. Resources utilization 
Antenna 

Configuration 

𝟖 × 𝟖 𝟏𝟔 × 𝟏𝟔 32 x 32 

Inversion 

algorithm 

Cholesky NS GS Cholesky NS GS Cholesky NS GS 

BRAM_18K 

(270) 

12 

(4%) 

0 

(0%) 

0 

(0%) 

16 

(6%) 

0 

(0%) 

0 

(0%) 

75 

(28%) 

0 

(0%) 

0 

(0%) 

DSP48E 

(240) 

75 
(31%) 

16 
(7%) 

24 
(10%) 

75 
(31%) 

16 
(7%) 

24 
(10%) 

75 
(31%) 

16 
(7%) 

24 
(10%) 

FF 

(82000) 

10052 

(12%) 

2030 

(1%) 

3214 

(3%) 

10013 

(12%) 

2225 

(3%) 

3962 

(5%) 

9844 

(12%) 

2216 

(3%) 

3466 

(4%) 
LUT 

(41000) 

10092 

(25%) 

2681 

(7%) 

5012 

(12%) 

10190 

(25%) 

2745 

(7%) 

5117 

(13%) 

10230 

(25%) 

2752 

(7%) 

5077 

(12%) 

 

 

5. CONCLUSION  

 In conclusion, the performance of ZF-based massive MIMO detection in a hardware 

implementation has been compared. The comparison is based on the Gram matrix inversion using Cholesky 

Decomposition as a direct inversion method and Neumann series and Gauss-Seidel as an indirect inversion 

method for 8 × 8,  16 × 16 and 32 × 32 antenna configurations. Indirect methods improve both estimated 

time and hardware usage. In terms of resource utilization, indirect methods are significantly reduced, especially 

BRAM and also DSP resources. However, the Neumann series requires a clock frequency five times higher 

than the Cholesky and Gauss-Seidel methods. It is clear from the results that although Cholesky has better 

performance in software implementation, GS and NS algorithms show better performance in hardware 

implementation. The direct inversion method exhibits higher complexity, particularly in timing for clock 

frequency and resource utilization that are needed to complete the inversion. An experimental setup to 

investigate and compare the hardware performance of the inversion matrix with the RTL or other methods is 

suggested as a future work.  
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