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 Schizophrenia symptom severity estimation provides quantitative information 

that is useful at both the detection and treatment stages of the mental disorder, 

as the information helps in decision-making and improves the management of 

the illness. Very limited studies have been recorded for estimating the 

symptom severity as a regression task with machine learning, especially from 

speech recordings, which is the aim of this study coupled with detection. 

Acoustic features, which comprise frequency-domain and time-domain 

features, were extracted from 60 schizophrenia subjects and 59 healthy 

controls enrolled in this research. The acoustic features were used to train 

GridSearchCV-optimized XGBoost as a classifier. Three Multi-Layer 

Perceptron (MLP) networks, hyper-parameter-tuned by Bayesian Optimizer, 

were trained to predict the sub-type symptom severity from acoustic extracted 

features from the schizophrenia groups. The XGBoost classification model 

that discriminates between schizophrenia and healthy groups achieved a 

classification accuracy of 98.6%. The three MLP regression models yielded 

Mean Absolute Errors of 1.975, 2.856, and 1.555, as well as correlation 

coefficients of 0.888, 0.806, and 0.786 for predicting positive, negative, and 

cognitive symptom scores, respectively.  Solution architecture for the 

deployment of the models for practical was suggested. 
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1. INTRODUCTION 

Schizophrenia is one of several mental illnesses with complex disturbances relating to perception, 

thinking, and social behavior [1] [2]. Roughly 21 million people in the world suffer from schizophrenia [3]. 

Schizophrenia assessment falls into two categories: classification and regression tasks. The classification is 

concerned with distinguishing schizophrenia from a healthy group, while the regression is concerned with 

estimating schizophrenia symptom severity. Unstructured data such as magnetic resonance imaging (MRI), 

electroencephalography (EEG), and voice recordings have been used with several machine learning algorithms 

for the classification task, and remarkable results were obtained in terms of classification accuracy [4], [5], [6]. 

The classification task involves feature extraction, which could be done manually (handcrafting) or 

automatically with a convolutional neural network (CNN) or auto-encoder  [7], [8]. Sometimes, a feature 

selection stage is incorporated to improve the model's classification performance [9], [10]. 
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The aspect of the use of machine learning for automated estimating or predicting schizophrenia 

symptom severity (regression task) has not experienced significant research effort, as seen in the case of the 

classification task. The recorded efforts are restricted to MRI and EEG, though [9] , and [11] are documented 

studies. It is important to note that voice recordings have not been used for severity estimation as a regression 

task. The best efforts are still limited to classification, which distinguishes between high- and low-severity 

symptom classes. The main purpose of this study is to use acoustic features extracted from recorded speech to 

distinguish between schizophrenia and healthy groups and also to estimate schizophrenia severity across the 

three subtypes: positive, negative, and cognitive symptoms with the incorporation of voice activity detection 

function to remove silent regions of the speech at the pre-processing stage. 

Clinicians have used speech to assess the mental health of patients with schizophrenia disorder 

because speech offers a plethora of information that may be used to assess the speaker's mental state  [12]. 

From several peer-reviewed publications, acoustic features taken from voice recordings have been effectively 

utilized to diagnose schizophrenia. The review literature is segmented into categories from speech or acoustic 

features, (1) Segregating between schizophrenia and healthy groups and (2) Classifying schizophrenia severity 

into two categories as low and high severity.  

Standard dynamic volume value (SDVV), symmetric spectral difference level (SSDL), and 

quantization error and vector angle (QEVA) were extracted from speech recordings of 28 schizophrenia and 

28 healthy controls while reading angry and afraid emotion text. A decision tree was used to discriminate 

between the two groups, which yielded a classification accuracy of 98.2%  [13].With the extraction of acoustic 

features such as pitch, speech quality, length of voiced and unvoiced segments, number of voiced segments, 

variation in spectral slope, and loudness from speech recordings of 86 schizophrenia patients and 77 healthy 

controls and the use of SVM as a classifier to discriminate between the two groups, a classification accuracy 

of 82.8% was achieved  [14].[6] employed sch-net deep learning for both automatic feature extraction and 

discrimination between schizophrenia and healthy speech samples, which recorded a classification accuracy of 

97.68% but a better performance of 99.5% when applied to the LANNA speech database. 

Speech recordings were obtained from 52 schizophrenia subjects(SZ) and 26 healthy controls(HC) 

who were enrolled in a study by Chakraborty [15]. 26 Low-level features which include MFCC (12), zero-

crossing rate, pitch, and intensity among several others were obtained from speech signals, and the delta of 

these features was also computed. The final acoustic features which are 988 per subject were derived by 

statistical operations such as skewness, kurtosis, and standard deviation on the features above. The combination 

of χ2 and Adaboosted Decision Tree as feature selection and classifying algorithms respectively yielded the 

best classification accuracy of 84.62% for low and high negative symptom severity classes, while the 

combination of PCA and SVM yielded a correct classification of 79.49% between SZ and HC groups. 

Speech recordings were obtained from 21 healthy controls and 21 schizophrenia participants then and 

transcribed. Each transcription was represented as a word trajectory graph from which connectedness attributes 

were extracted. All these variables were converted Disorganization Index by their weighted combination with 

respect to the correlation of positive and negative symptom scales. Naïve Bayes was used as the classifier for 

discriminating (1) between HCs and SCs and (2) mild and severe negative symptoms. The first classifier for 

discriminating between schizophrenia disorder and healthy control groups achieved an accuracy of 97%. The 

classifier based on the disorganized index for distinguishing between mild and severe negative symptoms 

achieved 100%  accuracy[16].Speech recordings were obtained from both the control and schizophrenia 

groups. Voice activity is carried out manually to eliminate silent segments with a visual inspection. With 

discriminant analysis, extracted acoustic variables were used (1) to discriminate between healthy and 

schizophrenia subjects, and (2) to classify positive, negative, and depressive symptomatology into low and 

high severity. Discriminating between schizophrenia and healthy controls with 12 variables yielded an 

accuracy of 95.2%. Distinguishing between low and high severity across positive, negative, and depressive 

symptomatology with 8, 10, and 10 features, respectively, produced accuracies of 71.9%, 75.9%, and 79.4% 

[17]. 

Prosody formant, source, and spectral acoustic features were obtained from a voice corpus of 26 

healthy and schizophrenia subjects with the corresponding NSA-16 ratings. The relationship between the 

features and NSA scores was examined with statistical analysis and inter-group classification for schizophrenia 

into observable and non-observable was done with a machine learning classifier. Discrimination between 

schizophrenia and healthy controls was also conducted. The best discriminating accuracy between observable 

and non-observables is 79.6% while discriminating accuracy for healthy controls and schizophrenia was 81.3% 

using multilayer perceptron. Few of the acoustic features for the prediction of negative symptoms of 

schizophrenia from emotion have correlation coefficients >0.3 for some of the NSA criteria [18]. Speech 

recordings were obtained from both schizophrenia subjects (acute and chronic) and healthy control subjects 

based on the reading of emotionally neutral text. In addition, AMDP, SANS, PANSS, etc. ratings were also 

obtained from schizophrenia subjects. Non-verbal speech features such as mean pause duration, number of 
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pause durations, silence proportion, mean energy, F0 amplitude, and F0 dB bandwidth, etc were extracted. 

ANOVA/MANOVA identified 12 acoustic features with significant variance between the control and 

schizophrenia subjects, and, with the aid of discriminant function, a classification accuracy of 85.6% was 

achieved. In discriminating between low and high severity using the discriminant function, a classification 

accuracy of 78.6% with the aid of the following six acoustic features, which include total recording time, total 

length of utterance, and F0 contour was obtained [19] 

Most of the reviewed studies focused on detecting schizophrenia from speech recordings, the best 

attempt at severity is still classification which classifies severity into high and low as seen in  [19]. The research 

conducted by [20] and [9], SMRI and EEG have been used as regression tasks to estimate the severity of 

schizophrenia symptoms, with mean absolute errors of 2.71 and 1.44 and correlation coefficients of 0.811 and 

-0.625, respectively. 

The main objective of the study was to use acoustic features or speech signals to estimate symptom 

severity as a regression task or continuous outcomes 

 

 

2. MATERIALS AND METHODS  

The methodologies comprise one method for the classification task and the second method for the 

regression task. The classification task is to distinguish between schizophrenia and healthy control, a binary 

task based on the input acoustic features. The focus of the second method are to build three regression models 

that estimate positive, negative, and cognitive schizophrenia symptom severity and their respective predictions 

in the ranges of 0-42, 0-42, and 0-96, respectively, based on the PANSS rating scale. 

 

The classification task method consists of the following stages: 

1. Data Acquisition 

2. Voice Activity Detection and Feature Extraction 

3. Feature Selection 

4. Classifier Training and Model Optimization with GridSearchCV 

5. Validation of the optimized classifier model 

The regression ask method has the under-listed stages: 

1. Data Acquisition 

2. Voice Activity Detection and Feature Extraction 

3. Data Augmentation 

4. Training and Optimization of Regression Models with Bayesian Optimizer 

5. Validation of Optimized Models 

The same data acquisition, voice activity detection, and feature extraction procedures are employed 

for both classification and regression tasks, as shown in Figures 1 and 2, though presented separately to simplify 

the architecture. 

 

 
      

Figure 1. Classification Task Method 
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Figure 2. Regression Task Method 

 

2.1     Data Acquisition 

Sixty (60) schizophrenia subjects were enrolled from the Federal Neuro-Psychiatric Hospital, Yaba, 

Lagos, Nigeria while fifty (59) healthy controls were obtained from Babcock University Psychiatric Center, 

Ilisan, Ogun state, Nigeria. Participants with significant physical ailments or other underlying medical 

conditions were excluded from the sample group. The statistics of the participants are presented in Table 1 and 

Table 2 shows the severity scores of some of the research participants. 

Each participant in each group was asked to describe themselves, and the conversation was recorded 

on audio, and additional information (age, years of education) was also collated. A Windows 10 laptop running 

the Audacity software and a headset microphone were used to record the speech using 16-bit linear PCM at a 

44 kHz sampling rate. 

 For the schizophrenia group, two psychiatrists estimated the positive, negative, and cognitive 

symptom severity for each of them using the Positive Negative Syndrome Scale (PANSS) rating scale. 

Table 1. The statistics of the participants 

Categories  Gender  Count  Age Distribution (�̅� ± 𝜎) Years of Education (�̅�  ±  𝜎) 

Control 

Female 28 26.28 ± 9.27  16.428 ± 2.45 

Male 31 29.61 ± 9.17    18.1 ± 2.41 

Schizophrenic 

Female 28 41.67 ± 11.16  13.75 + 2.99 

Male 32 39 ± 11  15.09 ± 3.12 

Table 2. Sample of Schizophrenia Symptom Severity Scores of Some of the Participants  

SN Gender Age 
Years of 

Education 

Positive 

Scores 

Negative 

Scores 

Cognitive 

Scores 

PANSS Total 

Score 

1 F 29 17 10 8 21 39 

2 F 57 12 18 23 22 63 

3 F 55 6 8 16 22 46 

4 F 27 14 20 17 22 59 

5 F 54 12 23 16 28 67 

6 M 25 17 8 31 22 61 

7 F 30 17 33 40 46 119 

8 M 19 12 12 25 28 65 

9 M 43 12 11 19 27 57 

10 F 22 9 13 43 37 93 

11 M 23 15 9 28 20 57 

12 F 30 17 21 8 28 57 

13 M 18 12 26 29 22 77 

14 M 33 17 24 43 30 97 
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2.2     Voice Activity Detection and Feature Extraction   

The output of the stage is utilized for both classification and regression tasks. 

 

2.2.1     Voice Activity Detection and Feature Extraction   

Many speech applications incorporate voice activity detection to remove silence and noise from 

speech to improve the performance outcome of such systems. The voice activity detection is realized in two 

stages, as depicted in Figure 3. 

 

Figure 3. The voice activity detection process Voice Activity Detection Process 

 

2.2.1.1 Noise Removal  

Frequency band limiting and spectral subtraction were combined for noise removal. The human 

speech frequency ranges between 80 and 8,000 Hz[21], and an 8-node Butterworth Bandpass filter that allows 

the specified frequency components of the recorded speech to pass through while rejecting frequency 

components outside the band. The Bandpass filter was implemented with the Python Scipy library. 

Spectral subtraction removes noise within the allowed frequency band. The output of the pass band 

filter is converted into a frequency domain using the Fast Fourier Transform (FFT). An estimate of the noise 

is obtained (the mean value of the total absolute mean of each frame's spectral level) and then subtracted from 

the signal. At any point in the signal where the noise estimated is greater, the value is set to zero. The signal is 

then converted back to the time domain by inverse Fast Fourier Transform (IFFT). 

 

2.2.1.2 Silent Segment Removal   

The designed approach utilized for silent frame/segment removal from each participant's speech is 

presented in Figure 4.  

   

 
 

Figure 4. Silent Segments Removal Functionality Design Diagram 

 

Each speech signal was broken into frames of 2048 samples, with Short Time Fourier Transform 

(STFT), each frame was converted to the frequency domain, and minimum spectral power was computed for 

each of the frames. A K-means thresholding (an extension of the k-means clustering algorithm introduced in 

this study) was employed to classify frames as either silent frames or voiced frames with each frame’s spectral 

power as input. The K-Mean Thresholding Algorithm details are provided below. 

 

 

 

 



                ISSN: 2089-3272 

IJEEI, Vol. 13, No. 1, March 2025:  1 – 17 

6 

 

Algorithm 1: K-Means (Weighted) Thresholding algorithm 

(1) Randomly Select 2 points or centroids  𝜐1 and 𝜐2 from the input dataset (list voice frame minimum spectral 
power)  

(2) Assign each frame of the frame spectra’s mean to the closest centroid, to form 2 clusters 
(3) Compute mean the means of each cluster to form new centroids  𝜐1 and 𝜐2 

While (the number of iterations is less than the predefined times) do     Repeat steps 2 and 3. 

    End 

(4) Obtain the number of data points 𝑁1and 𝑁2 assigned to centroids 𝜐1 𝑎𝑛𝑑 𝜐2  respectively, and compute the 
weighted average as expressed in equation (1). 

 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐾𝑚𝑒𝑎𝑛𝑠𝑊𝑇ℎ) =   
    𝑁1 ∗𝑣1 + 𝑁2 ∗𝑣2   

 𝑁1 +  𝑁1 
       () 

Frames with a minimum spectral power equal to or higher than the threshold were regarded as 

belonging to the speech regions of the voice recordings, whereas frames with a minimum spectral power lower 

than the k-means-weighted threshold were labeled as "silent frames" (without voice content) and were 

eliminated. Only the voiced frames were used to reconstruct the speech signals. 

 

2.2.2     Feature Extraction 

Each participant's reconstructed speech signals (silent segment removed) were split into 8 segments, 

and features were extracted from each segment. This translates to 472 and 480 data sizes for the healthy controls 

(59 subjects) and schizophrenia group (with 60 subjects, respectively). Time and frequency domain features 

were extracted from each of the voice segments. 

Mel-frequency Cepstral coefficients (MFCC) and their first and second-order derivatives, MFCC-

delta and MFCC-delta-delta, are the features of the frequency domain. The MFCC was calculated by applying 

Mel-Filter Banks on the power spectrum of each speech frame, taking the output logarithm, and then applying 

the Discrete Cosine Transform (DCT). 

A stack of four 13 MFCC, four 1st order derivatives of 13 MFCC, and four 2nd order derivatives of 

13 MFCC are obtained per voice segment. The extraction of MFCC and its derivative was done using the 

librosa library in Python. 

For time domain features, a total of 18 pitch-related features were extracted using the Parselmouth 

library in Python and the features are meanF0, stdevF0, f1-mean, f2-mean, and f3-mean, f4-mean, 

hnr(harmonic-to-noise ratio), localJitter, localabsoluteJitter, rapJitter, ppq5Jitter, ddpJitter, localShimmer, 

localdbShimmer, apq3Shimmer, aqpq5Shimmer, apq11Shimmer, and ddaShimmer.  

Statistical features, six (6) in total were also computed:  skewness, standard deviation, kurtosis, zero-

crossing, the ratio of duration of voice segments to overall voice duration, and average mean power of the voice 

segment. Phonatory intensity variation diversity (PIVD) was also computed which brings the total of time 

domain features to twenty-five (25).  

Equations (2) to (7) show how some of the time-domain acoustic features were computed. 

 

𝑗𝑖𝑡𝑡𝑎 =  
1

𝑁−1
 ∑ |𝑇𝑖 − 𝑇𝑖−1|𝑁−1

𝑖=1                                             () 

 

𝑗𝑖𝑡𝑡𝑒𝑟(𝑙𝑜𝑐𝑎𝑙) =  
𝑗𝑖𝑡𝑡𝑎

     
1

𝑁
 ∑ 𝑇𝑖

𝑁
𝑖=1      

× 100%                                    () 

 

𝑆ℎ𝑖𝑚𝑚𝑒𝑟(𝑙𝑜𝑐𝑎𝑙) =   
1

𝑁−1
 ∑ |𝐴𝑖−𝐴𝑖+1|𝑁−1

𝑖=1
1

𝑁
 ∑ 𝐴𝑖

𝑁
𝑖=1

 × 100%                 () 

 

𝑆ℎ𝑖𝑚𝑚𝑒𝑟(𝑙𝑜𝑐𝑎𝑙, 𝑑𝐵) =  
1

𝑁−1
 ∑ |20 × 𝑙𝑜𝑔 (

𝐴𝑖+1

𝐴𝑖
)|𝑁−1

𝑖=1          () 

 

𝑆ℎ𝑖𝑚𝑚𝑒𝑟(𝑎𝑝𝑞3) =
1

𝑁−1
 ∑ |𝐴𝑖−(

1

3
∑ 𝐴𝑛)𝑖+1

𝑛=𝑖−1 |𝑁−1
𝑖=1

1

𝑁
 ∑ 𝐴𝑖

𝑁
𝑖=1

× 100%       () 
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𝑆ℎ𝑖𝑚𝑚𝑒𝑟(𝑎𝑝𝑞5) =
1

𝑁−1
 ∑ |𝐴𝑖−(

1

5
∑ 𝐴𝑛)𝑖+2

𝑛=𝑖−2 |𝑁−1
𝑖=1

1

𝑁
 ∑ 𝐴𝑖

𝑁
𝑖=1

× 100%       () 

 
There are 156 MFCC-related features in the frequency domain per segment, which includes 52 MFCC, 

52 MFCC-delta, and 52 MFCC-delta-delta features. 156 features is a high dimension, which was reduced to 

15 Independent Components (ICs) using Independent Components Analysis (ICA), with 5 ICs for the MFCC 

and each of its derivatives.3. 

 

2.3     Feature  Selection, Classifier Training, and Optimisation and Validation 

This section focused on the downstream stages of the classification task which are discussed 

sequentially in detail. 

 

2.3.1  Feature Selection 

The features extracted comprise (1) 15 MFCC-based features after the application of ICA, (2) 18 

pitch-related features (time domain), (3) 6 statistical features, (4) 1 intensity variation feature, Phonatory 

Intensity Variation diversity (PIVD), and (5) 3 demographic features (age, gender, and years of education). 

This brings the total number of features to 43. 

For the classification task, segregating between schizophrenia and healthy groups, feature selection 

operations are performed to optimize classification performances.  

Recursive Feature Elimination (RFE) and XGBoost were independently used in the selection of 

features that optimize segregation between schizophrenia and the healthy control group. XGBoost has an innate 

capacity to identify the significance of features throughout the training phase, optimize memory usage, and 

significantly reduce computation time. It has been used as a feature selection in several classification tasks and 

has helped improve classification outcomes in several studies [22][23][24][25]. Recursive Feature Elimination 

(RFE) is a widely used and effective relevant feature selection algorithm and is considered a good choice for 

this study[26]. 

For each feature selection algorithm, the number of features to be selected was varied, and the 

corresponding set of features that produced the best and most reliable results was obtained. The output features 

from each algorithm were combined, and their overall performance was validated by the XGBoost algorithm. 

 

2.3.2 Classifier Training, Optimisation, and Validation  

XGBoost is the choice of the classifier that was adopted because of its high performance. The features 

selected by RFE and XGBoost were combined to train the classifier. The dataset was divided into training and 

test datasets in a ratio of 70 to 30 respectively. This translates to training set 666 and the test set 286 (952 in 

total with the control group being 472 and schizophrenia group being 480). 

The GridSearchCV was applied to optimize(tune hyperparameters) the classification performance of 

the XGBoost classifier by selecting the best hyperparameters. The search space for the hyper-parameters is 

listed below. 

  
'n_estimator'  = {100,200,300,400}  

'max_depth' = {3,4,5,6}  

'min_child_weight ' = {1,3,5} 3 

'subsample '= {0.4,0.6,0.8,0.9,1.0}  

colsample_bytree' = {0.8, 0.9, 1.0} 

  

The evaluation metrics used for the classifier are accuracy, F1-score, precision, and recall. 

 

2.4     Data Augmentation, Training, and  Optimisation of Regression Models and Validation 

This section describes the data augmentation process, the training and optimization of the three 

regression models for estimating schizophrenia symptom severity, and the validation process. 

 

2.4.1  Data Augmentation 

Eight feature sets per participant with schizophrenia make up the 480-person dataset from the 

schizophrenia group. Large datasets are necessary for deep learning to discover intricate correlations between 

dependent variables and input data. Data augmentation was used to double the size of the dataset applied 

[27][28] and it has been applied in many regression tasks to improve performance [29][28][30][31]. 

The jittering augmentation technique is adopted, by adding random noise to the original dataset to 

generate synthetic data [32] as expressed in equation 8. The random number 𝑁𝑟𝑎𝑛𝑑𝑜𝑚 ranges from 0 to 10% of 

the feature standard deviation (𝜎). 
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𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 =  𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑁𝑟𝑎𝑛𝑑𝑜𝑚        (8) 

 

2.4.2 Training, and  Optimisation of Regression Models and Validation 

 The regression models to predict positive, negative, and cognitive symptom severity scores were 

realized using three Multilayer Perceptron Networks (MLP). All 43 features were employed in the training and 

evaluation of MLPs, the dataset is split up into training and test sets at a ratio of 80% to 20%. Since accurate 

predictions are prioritized in regression tasks, a model's accuracy is enhanced by having 80% more training 

data and being less susceptible to overfitting. The optimum hyper-parameters for each of the three MLP 

regressors are chosen using Bayesian optimization, and the parameter search space is the same for all three, as 

shown below: 

 
{'num_layers': (1, 15), 

 'units_per_layer': (5, 64), 

 'learning_rate': (0.001, 0.1)} 

 

The evaluation metrics for the regression models are correlation coefficients and Mean Absolute Error 

(MAE) expressed with equations 9 and 10 respectively. 

 

𝜌 = 1 −  
6 ∑ 𝑑𝑖

2

  𝑛(𝑛2 −1)           
          (9) 

 

The difference between the rankings of the two observations is denoted by 𝑑𝑖 , while the number of 

observations is represented by 𝑛. 

 

Mean Absolute Error (MAE) =
∑  |Yi − Y∗

i | N
i

N
    (10) 

 

3. RESULTS AND FINDINGS 

Voice files totaling 90 minutes and 43 seconds of voice speech were recorded from 59 healthy controls 

(from 102 participants) at Babcock University; likewise, 83 minutes and 32 seconds of voice recordings were 

taken from an interview conducted with 60 schizophrenia subjects (4 patients declined participation in this 

research). 

The results and findings section is divided into four sub-sections: voice activity detection, extracted 

features, training, and validation of models. 

 

3.1 Voice Activity Detection 

Figure 5 displays a sample voice signal with a duration of 41.32 seconds before applying the suggested 

voice activity detection method. The output of the speech activity detection technique is shown in Figures 6 

and 7. The first shows the expected reconstructed voice signal without silent portions, which lasts for 25.68 

seconds, while the second shows the silent section, which lasts for 15.62 seconds. 

 

 

 
Figure 5. Original Signal 
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 Figure 6. Voiced Segment 

 

 
 

Figure 7. Silent Segment 

 

 

By visual analysis of Figure 7, the amplitudes of all points are zero, the silent segment of the original 

speech signal. In like manner, the voiced speech segment is similar to the original voice signal by pattern except 

for the absence of the silent segment. With visual analysis, the implemented voice activity detection algorithm 

effectively removes silent frames or silent segments. 

 

3.2 Extracted Acoustic Features 

Samples of extracted pitch-related features, meanF0, stdevF0, hnr (harmonic-to-noise ratio), 

localJitter, localabsoluteJitter, rapJitter, ppq5Jitter, ddpJitter, localShimmer, localdbShimmer, apq3Shimmer, 

aqpq5Shimmer, apq11Shimmer, and ddaShimmer (a total of 14 features) are presented in Table 3. There is 

also a field for the class label, where class label 0 is the healthy control group and class label 1 is the 

schizophrenic group. 

Table 4 shows samples of additional pitch-related features, F1-mean, F2-mean, F3-mean, and F4-

mean, computed using the Parselmouth library. Statistically related features that speak to asymmetry and 

tailedness (outlier occurrence) of the data, such as skewness, kurtosis, and standard deviation, plus PIVD 

(Phonatory intensity variation diversity), and zero-crossing, are presented in Table 5. 

Table 3. Pitch Related Features for the two groups 

Cl
as

s 

me
anF

0 

stde

vF0 
hnr 

local

Jitter 

localabs
oluteJitte

r 

rapJ

itter 

ppq5

Jitter 

ddpJ

itter 

localS
himme

r 

localdb
Shimme

r 

apq3S
himme

r 

apq5S
himme

r 

apq11S
himme

r 

ddaSh
imme

r 

1 
193

.3 

13.

95 

24.

76 

0.01

1 
5.68E-05 

0.0

037 

0.00

46 

0.01

12 
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Table 4.  F1 to F4 Mean and Mean Power of the two groups 

Class F1-mean F2-mean F3-mean F4-mean Mean-Power 

1 391.0461 1231.85 2453.248 3486.896 0.01689937 

1 352.4319 1188.287 2269.945 3382.033 0.02061915 

1 399.7812 1181.064 2243.737 3299.759 0.02220404 

1 378.6293 1221.089 2217.192 3345.546 0.01780628 

0 425.7124 1232.06 2295.109 3280.029 0.00791787 

0 515.3805 1220.959 2287.378 3164.986 0.00641012 

0 412.5769 1195.906 2263.175 3178.462 0.00654464 

0 404.3075 1081.632 1936.848 3247.719 0.00780092 

Table 5. Statistical -Related Features of the two groups 

Class Zero-crossing Stdev Skewness Kurtosis PIVD 

1 0.032 0.125 -0.196 0.716 0.026 

1 0.026 0.112 -0.226 2.303 0.019 

1 0.028 0.149 -0.299 0.363 0.033 

1 0.024 0.133 -0.242 0.555 0.031 

1 0.032 0.145 -0.185 0.335 0.028 

0 0.074 0.088 -1.482 6.475 0.028 

0 0.061 0.074 -1.609 6.719 0.013 

0 0.078 0.088 -1.359 5.334 0.014 

0 0.093 0.080 -1.545 7.315 0.012 

 

3.3 Feature Selection, Classifier Training, Optimisation and Validation 

This section discussed the outcomes of feature selection, binary classifier training, its optimization, and its 

validation. 

 

3.3.1 Feature Selection 

Fifteen MFCC-based features were obtained per speech recording after ICA was utilized for 

dimension reduction. Eighteen pitch-related features and six statistical features were also computed; in addition 

to that, one intensity variation (PIVD) feature was also included. Three demographics (age, gender, and years 

of education) were also added, which brings the total number of features to 43. 

Figure 8 is the graph of accuracy versus the number of features selected by XGBoost feature selection, 

and it is observed that the best classification result was produced with the selection of five (5) features. 

 

XGBoost Selected Features (5 features): The features are kurtosis, active-ratio, localShimmer, F1mean, and 

skewness. 

 
Figure 8. Number of selected features by XGBoost against Accuracy 
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For RFE feature selection, Figure 9 is the graph of accuracy versus the number of selected features. 

A reliable best classification accuracy was obtained when six (6) features were selected. From observation, 

better performances were obtained when one and two features were selected, respectively, but they were 

discarded due to the likely consequences of the feature's outlier effect.  

 

RFE-selected features (6 features): The features are the 3rd and 4th IC (Independent Component) of mfcc, 

ddpJitter, active-ratio, skewness, and mean-power. 

 

 
 Figure 9. Number of selected features by RFE against Accuracy 

 

The features selected by RFE and the XGBoost feature selector were combined and presented to 

XGBoost as selected features (9 unique features, as there were overlaps) to validate performance. The 

performance output was better compared to the set of features selected by each of the feature selection 

algorithms as presented in Figure 10. The combined features produce a slightly better classification accuracy 

of 94.76%. 

  

 
 

Figure 10. Performance of the Various selected sets of features 

 

 

Combination of XgBoost and RFE-selected features (9 features): The combined features are: kurtosis, active-

ratio, localShimmer, 3rd and 4th IC (Independent Component) of mfcc, ddpJitter, skewness, mean-power and 

f1mean.The features common RFE and XGBoost feature selectors are active-ratio and skewness. 

 

3.3.2 Classifier Training, and Optimisation and Validation 

The nine combined features were used to train the XGBoost classifier, whose hyperparameters were 

optimized by GridSearchCV.The confusion matrix in Figure 11 is the outcome of the performance of the 

classifier against the test dataset with a true positive of 143 and a true negative of 139. The misclassified data 

points out of 286 validation/test sets are 4, with 3 reported as false positives and 1 against false negatives. 
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Figure 11. XGBoost Classifier Confusion Matrix 

 

From the confusion matrix of Figure 11, the computation of precision, recall, f1-score, and accuracy 

yielded results of 97.89%, 99.29%, 98.58%, and 98.6%, respectively presented in Figure 12. 

 

 

 

Figure 12. XgBoost Performance Metrics on the Optimal Selected Hyper-parameters. 

 

3.4 Training, Optimisation, and Validation of Regression Models 

With Bayesian optimization, the optimally selected architectures for the positive, negative, and 

general psychological MLP models have learning rates of 0.001, 0.0967, and 0.1, and the numbers of their 

respective hidden layers are 8, 10, and 15. 

After the training and validation with the test dataset, the positive, negative, and general 

psychopathology MLP regressors reported a correlation coefficient of 0.888, 0.806, and 0.786 in that order 

(see Figure 13). The MAE for MLP positive, negative, and cognitive or general psychopathology severity 

regressors are 1.975, 2.856, and 1.555, respectively as presented in Figure 14. The average 0.827 correlation 

coefficient of the MLP models' predictions indicates a strong connection with the actual values. 

 

 
Figure 13. Correlation Coefficients of the Regression Models 
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Figure 14. MAE for Regression Models 

 

Figures 15 to 17 are the graphs of the predicted and actual values for the three symptom categories, 

which show similar trends, that reinforce the correlation coefficients.  

 

 
Figure 15. Predicted Positive Symptom Severity Scores vs the Actual as rated by Psychiatrist 

 

 
Figure 16.  Predicted Negative Symptom Severity Scores vs the Actual as rated by Psychiatrist  
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Figure 17. General Psychological Scores vs the Actual as rated by the Psychiatrist 

 

4. DISCUSSIONS 

The extended k-means algorithm, which functions as a thresholding algorithm in discriminating 

between voice and silence frames (voice activity detection) in speech recording, proves to be effective in 

segregating silent segments from voice segments of the recorded speeches. 

RFE and XGBoost feature selectors identified nine features that optimize discrimination between 

schizophrenia and healthy groups, and they are kurtosis, active-ratio, localShimmer, 3rd and 4th IC 

(Independent Component) of mfcc, ddpJitter, skewness, mean-power, and f1mean. The features common to 

both RFE and XGBoost feature selectors are active-ratio and skewness. 

An XGBoost whose hyper-parameters were tuned by GridSearchCV was trained with the selected 

features and achieved precision, recall, F1-score, and accuracy of 97.89%, 99.29%, 98.58%, and 98.6%, 

respectively on the test dataset.  

Table 6 shows the current result and that of previous studies that achieved classification accuracy that 

is above 90%. 
Table 6 Comparison with Related Studies with Classification Accuracy Above 80% 

Authors Data source 

Type 

No speech 

transcription 

Classifier Performance 

Result 

[13]. 

 He et al. 2021 

Voice 

Recording 

No Voice 

Transcription 

Decision Tree Accuracy=98.2%  

[33] 

Espinola et al. 
2021 

Voice 

Recording 

No speech 

transcription 

SVM with the 

Pearson VII 
universal kernel 

Accuracy=91.76% 

[34]  

Huang et al. 
2022 

Voice 

Recording 

No Voice 

Transcription 

Linear 

discriminant 
analysis (LDA) 

Accuracy=89% 

[17].  
Stassen et al. 

1995. 

Voice 
Recording 

Transcribed 
voice 

recordings 

Linear 
discriminant 

analysis (LDA) 

Accuracy=95.2% 

[35] 
Zhang et al. 

2022 

Video and 
speech 

No Voice 
Transcription 

RandomForest Accuracy=96.60% 

[16]. 

Mota et al. 

2017. 

Voice 

Recording 

Transcribed 

voice 

recordings 

Naïve Bayes Accuracy=97% 

Current study Voice 

Recording 

No 

Transcription 

XGBoost Accuracy=98.6% 
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An existing gap was addressed by this study with the development of regression models that estimate 

schizophrenia symptom severity from acoustic features which will serve as a framework to guide related studies 

in the future. All the acoustic features were used to train three MLP regression models for estimating 

schizophrenia's positive, negative, and cognitive symptom severity scores. The models achieved correlation 

coefficients of 0.888, 0.806, and 0.786 and Mean Absolute Errors of 1.975, 2.856, and 1.555 respectively for 

positive, negative, and cognitive or general psychopathology severity regressors. 

Closely related works that implemented schizophrenia symptom severity as regression tasks using 

EEG and SMRI are presented in Table 7 with their respective results for comparison with this study. 

 

Table 7 Closely Related Studies on Schizophrenia Symptom Severity 

 
SN Authors Unstructured Source Data Algorithm Result 

1 Kim et at  

[20] 

Electroencephalography (EEG) General linear 

model (GLM) 

The correlation coefficient 

ranges from -0.6 to -0.702. 

Average Mean Absolute 
Error=2.71 

2 Alimi et al  

[9] 

Structural Magnetic Resonance 

Imaging (SMRI) 

MLP Correlation coefficient=0.811 

Mean Absolute Error=1.44 
3 Current study Speech MLPs The average correlation 

coefficient=0.827 
The average Mean Absolute 

Error=2.129  

 

 

 
Figure 18. Solution Architecture for Practical Implementation 

 

With the capability to detect and estimate schizophrenia severity, medical practitioners are armed with 

both qualitative and quantitative information that will make them more effective in schizophrenia treatment. 

With symptom severity estimation, the level of attention will be determined, as well as help with decision-

making on the concentration of the anti-psychotic medication or its frequency of administration. The estimation 

capability will also help to monitor which serves as a feedback mechanism to determine the effectiveness of 

administered treatment. Above all, with voice recording as input to the detection and severity estimation 

assessment tool, the cost of data acquisition will drop significantly compared with MRI and EEG; it is also 

non-invasive and has a short cycle time for data acquisition. Schizophrenia diagnostic tests may be performed 

as often as needed with ease, and the cycle time is anticipated to be just a few minutes. 

For practical utilization of the research outcome for clinical benefits, the solution architecture in 

Figure 18 was suggested. The subject's voice file, age, and gender information will be submitted to the proposed 
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diagnosis system. The necessary preprocessing and feature extraction operations will be executed. The 

classifier will then determine if the subject is schizophrenic or not based on the acoustic features extracted. In 

a situation where schizophrenia is not detected, the process ends, if schizophrenia is detected, a set of features 

is passed to the regression models to determine positive, negative, general psychopathology, and total PANSS 

severity scores. 

 

5. CONCLUSION 

In contrast to other research that classified severity into bands, such as low and high severity levels, 

based on voice or speech recordings, this study used acoustic features to estimate the severity of schizophrenia 

symptoms as continuous numerical scores. With Bayesian-optimized deep neural network architectures, state-

of-the-art regression performance indicators were achieved. A high-performance schizophrenia detector 

classifier was also built using a subset of the acoustic features that maximize segregation between healthy and 

schizophrenia groups. 

These cutting-edge models for detecting schizophrenia and estimating its severity will function as an 

expert system that will provide physicians with qualitative and quantitative data on the disorder's current status. 

These insights will significantly enhance physicians' decision-making and result in more economical and 

successful treatment of schizophrenia. 

The number of participants in this study is small: fifty-nine (59) healthy controls and sixty (60) 

schizophrenia subjects. Though oversampling and data augmentation were applied, it is encouraged that similar 

research should be conducted with a reasonable number of participants to improve the generalization of the 

models.  
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