
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 12, No. 3, September 2024, pp. 575~582

ISSN: 2089-3272, DOI: 10.52549/ijeei.v12i3.5545  575

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

Enhancing Accuracy for Classification Using the CNN Model

and Hyperparameter Optimization Algorithm

Dai Nguyen Quoc1, Ngoc Tran Thanh2
1,2Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Vietnam

Article Info ABSTRACT

Article history:

Received Apr 21, 2024

Revised Sep 4, 2024

Accepted Sep 11, 2024

 The Convolutional Neural Network (CNN) is a widely employed deep learning

model, particularly effective for image recognition and classification tasks.

The performance of a CNN is influenced not only by its architecture but also

critically by its hyperparameters. Consequently, optimizing hyperparameters

is essential for improving CNN model performance. In this study, the authors

propose leveraging optimization algorithms such as Random Search, Bayesian

Optimization with Gaussian Processes, and Bayesian Optimization with Tree-

structured Parzen Estimators to fine-tune the hyperparameters of the CNN

model. The performance of the optimized CNN is compared with traditional

machine learning models, including Random Forest (RF), Support Vector

Classification (SVC), and K-Nearest Neighbors (KNN). Both the MNIST and

Olivetti Faces datasets are utilized in this research. In the training procedure,

on the MNIST dataset, the CNN model achieved a minimum accuracy of

97.85%, surpassing traditional models, which had a maximum accuracy of

97.50% across all optimization techniques. Similarly, on the Olivetti Faces

dataset, the CNN achieved a minimum accuracy of 94.96%, while traditional

models achieved a maximum accuracy of 94.00%. In the training-testing

procedure, the CNN demonstrated impressive results, achieving accuracy rates

exceeding 99.31% on the MNIST dataset and over 98.63% on the Olivetti

Faces dataset, significantly outperforming traditional models, whose

maximum values were 98.69% and 97.50%, respectively. Furthermore, the

study compares the performance of the CNN model with three optimization

algorithms. The results show that integrating CNN with these optimization

techniques significantly improves prediction accuracy compared to traditional

models.

Keywords:

CNN

RS

BO-GP

BO-TPE

Copyright © 2024 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Tran Thanh Ngoc

Faculty of Electrical Engineering Technology

Industrial University of Ho Chi Minh City

12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam

Email: tranthanhngoc@iuh.edu.vn

1. INTRODUCTION

Machine learning, a subset of Artificial Intelligence, gives computers the ability to learn and improve

on their own from experience, without needing explicit programming. This field focuses on creating computer

programs that can extract knowledge from data and use this information to make better decisions in the future.

Machine learning has a wide range of applications, impacting areas like computer vision and image recognition,

natural language processing, recommendation systems, and fraud detection [1–4].

Deep learning, an advanced technique within machine learning, extends this concept by utilizing

artificial neural networks with multiple layers to learn complex patterns in large amounts of data. One of the

most widely used architectures within deep learning is Convolutional Neural Network (CNN), which are

especially effective in computer vision tasks such as image recognition and classification [5–6]. CNN consist

of multiple layers, including convolutional, pooling, and fully connected layers. Convolutional layers use filters

  ISSN: 2089-3272

IJEEI, Vol. 12, No. 3, September 2024: 575 – 582

576

to process input data and extract relevant features, while pooling layers reduce the spatial dimensions of the

data. Fully connected layers then utilize these features to make predictions or classifications. Through the

hierarchical structure of CNN, they automatically learn hierarchical representations of data, beginning with

simple features and progressively advancing to more complex and abstract features. This capability makes

CNN highly effective in tasks like object detection, facial recognition, and medical image analysis [7–10].

The performance of CNN models is significantly influenced by hyperparameters, which are set before

training and are not learned during the process. Hyperparameters in CNNs are divided into two categories:

architecture-related parameters (e.g., number of layers, filter size, pooling size) and training-related parameters

(e.g., learning rate, number of epochs, batch size) [11–12]. Optimizing these hyperparameters is crucial for

maximizing CNN performance. Optimization algorithms enhance machine learning and deep learning models

by fine-tuning hyperparameters and model parameters [13]. These algorithms are typically classified into three

categories: unstructured (e.g., Grid Search (GS) and Random Search (RS)) [14–15], structured (e.g., Bayesian

Optimization with Gaussian Processes (BO-GP) and Tree-structured Parzen Estimators (BO-TPE)) [16–17],

and metaheuristic approaches (e.g., Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Grey

Wolf Optimizer (GWO)) [18–19]. Each category offers distinct advantages in addressing complex, high-

dimensional optimization problems.

In this study, the authors propose using optimization techniques, including Random Search, Bayesian

Optimization with Gaussian Processes, and Tree-structured Parzen Estimators, to fine-tune the

hyperparameters of CNN models. Although these techniques are relatively straightforward, they are highly

effective for optimizing the hyperparameters of neural networks. The performance of the optimized CNN

model will be compared with traditional machine learning models, such as Random Forest (RF), Support

Vector Classification (SVC), and K-Nearest Neighbors (KNN). To ensure the reliability of the findings, this

study will use two datasets: MNIST and Olivetti Faces.

The structure of the paper is organized as follows: Section 2 introduces CNN model and the research

method. Section 3 presents the results and discussion. Finally, Section 4 concludes the paper.

2. RESEARCH METHOD

2.1. Convolutional neural network

The CNN is one of the most widely used deep learning models in computer vision, particularly in

image recognition and classification tasks. A typical structure of a basic CNN model, consisting of three layers:

convolutional, pooling, and fully connected, is illustrated in Figure 1 below. The convolutional layer, the core

building block of a CNN, applies a set of filters to the input data to create a feature map. Pooling layers then

summarize the data, reducing its size and consequently the number of parameters and the computational

complexity of the model. Finally, the fully connected layers perform high-level reasoning tasks [6], [20].

...

Input Convolution layer

Pooling layer

Fully connected

layer

Output

Figure 1. The configuration of a basic CNN model

Similar to other machine learning models, hyperparameters play a crucial role in optimizing the

performance of CNN. Hyperparameters are parameters that are set before the training process begins and

remain constant throughout. They tune the model's architecture and behavior, affecting its accuracy, efficiency,

and generalization ability. The basic hyperparameters of the CNN model used in this study are [12], [21–22]:

IJEEI ISSN: 2089-3272 

Enhancing Accuracy for Classification Using the CNN Model and.... (Dai Nguyen Quoc et al)

577

Filters: The number of filters is a crucial parameter in CNN, dictating the number of feature maps

learned by the convolutional layers. This parameter determines the number of output channels produced by the

convolution operation. Typical values for setting the number of filters in a CNN are 32, 64, 128, and so on.

Batch size: The batch size is a hyperparameter of gradient descent that determines the number of

training samples used to update the model's internal parameters. It also plays a role in optimizing memory

usage and influencing training speed.

Epochs: The number of epochs is a crucial hyperparameter in CNN training that controls how many

times the entire training dataset is passed through the network. This parameter significantly impacts the model's

ability to learn and generalize well.

Optimizer: Optimizers are techniques or methods for adjusting the characteristics of a neural network,

such as weights and learning rates, to decrease losses. They are employed to solve optimization problems by

minimizing the loss function. Some commonly used optimization algorithms include SGD (Stochastic Gradient

Descent), RMSProp (Root Mean Square Propagation), Adam, and Adamax.

Activation: The activation function in neural networks determines how the weighted sum of inputs is

transformed into output from a single node or multiple nodes in a layer of the network. It is responsible for

introducing non-linearity into the network and enabling it to model complex patterns and relationships in the

data. Commonly used activation functions include ReLU, Tanh, Softmax, Linear, and others.

2.2. Hyperparameter optimization techniques

There are many hyperparameter optimization algorithms applicable to machine learning models,

which can be categorized into classes such as: Model-free Algorithms, including Grid Search and Random

Search; Bayesian Optimization, including Bayesian Optimization with the Gaussian process and Bayesian

Optimization with the Tree-structured Parzen estimator; Multi-fidelity Optimization Algorithms, including

Successive Halving, Hyperband, and Genetic Algorithms; Metaheuristic Algorithms, including Genetic

Algorithm and Particle Swarm Optimization [13], [18], [23–24].

In this study, the authors propose using Hyperparameter Optimization Algorithms (HPO), including

Random Search, Bayesian Optimization with the Gaussian process, and Bayesian Optimization with the Tree-

structured Parzen estimator, to optimize the hyperparameters of the CNN model.

Random Search:

Random Search (RS) is a widely used optimization algorithm in machine learning for tuning

hyperparameters, classified under the category of unstructured optimization methods. Unlike Grid Search,

which exhaustively evaluates all possible combinations of predefined hyperparameter values, RS randomly

samples values from a defined range for each hyperparameter. This approach significantly reduces runtime,

making it more efficient for large datasets or problems with numerous hyperparameters. However, because the

selection of hyperparameter combinations is random, RS may not always find the absolute optimal value [23].

Additionally, Random Search does not utilize information from previous results to guide future searches.

Instead, it performs searches in a relatively arbitrary manner, which can be less efficient when navigating large

search spaces. As a result, RS is typically employed for optimization tasks within smaller, more manageable

ranges [15], [25].

Bayesian Optimization:

Bayesian Optimization (BO) has gained significant popularity in recent years due to its effectiveness

in handling functions that are expensive to evaluate, which are common in machine learning. BO iteratively

builds a probabilistic model of the objective function and intelligently selects points for evaluation, aiming to

find the global minimum (or maximum) with minimal evaluations. Bayesian optimization consists of two main

components: surrogate models for modeling the objective function and an acquisition function that measures

the potential value from evaluating the objective function at a new point [26-27].

Bayesian optimization models come in different flavors, including Bayesian Optimization with the

Gaussian process (BO-GP) and Bayesian Optimization with the Tree-structured Parzen estimator (BO-TPE).

In BO-GP algorithms, Gaussian processes (GP) have become the standard surrogate for modeling the objective

function in Bayesian optimization. BO-GP mainly supports continuous and discrete hyperparameters (by

rounding them) but does not support conditional hyperparameters [17, 28]. Meanwhile, BO-TPE does not

define a predictive distribution over the objective function but creates two density functions that act as

generative models for all domain variables. BO-TPE can handle categorical, discrete, continuous, and

conditional hyperparameters [23, 29-31].

2.3. Method proposed

In this study, which aims to enhance the accuracy of deep learning models in solving classification

problems, the authors propose the application of Hyperparameter Optimization (HPO) for the CNN network,

as depicted in Figure 2 below. According to this flowchart, the entire dataset (X and y) are used during the

  ISSN: 2089-3272

IJEEI, Vol. 12, No. 3, September 2024: 575 – 582

578

HPO training process. The structure of the CNN model and the search space for hyperparameters are defined,

serving as inputs to the training process. The output of this process is the optimized model (modelopt), which

corresponds to the optimized hyperparameters, and the accuracy associated with this optimized model. To

evaluate the model’s effectiveness, this study employs the accuracy metric, which is determined using Formula

(1) below [32]. Comparing and analyzing the accuracy values of the CNN model with other traditional models

such as RF, SVC, and KNN allows us to assess their performance.

1

1
ˆ ˆ(,) 1()

n

i i

i

Accuracy y y y y
n =

= =
 (1)

where ŷ is the predicted value of the ith sample and y is the corresponding true value, and n is the

number of samples.

Input data

Hyperparameter

Optimization Techniques

(RS, BO-GP, BO-TPE)

CNN model model

Hyperparameter

space

modelopt

Accuracy (%)

(X,y)

(Filters, Batch size, Epochs,

Optimizer, Activation)

Training process

Figure 2. The training procedure

The distinctive feature of the training procedure described above is that it utilizes the entire dataset X

and y during the training process, and the accuracy of the optimized models is determined based on this

procedure. To enhance confidence in evaluating the model’s performance, the authors also propose applying a

training-testing procedure as depicted in the flowchart in Figure 3 below. According to this flowchart, the

dataset is split into training data and testing data. The training data (Xtrain, ytrain) is used for the training process,

while the testing data (Xtest, ytest) is used for the testing process, highlighting the key difference between the

training procedure and the training-testing procedure. In the training process, the input is the training data, and

the output is the optimized model (modelopt), which also serves as the input to the testing process. Another

input for the testing process is the testing data. In this phase, the predicted values ypredict are determined based

on the optimized model and Xtest. The accuracy of the testing process is determined by comparing the true

values ytest with ypredict. Thus, the outputs of the training-testing procedure are the accuracy rates of both the

training and testing processes. It's worth noting that the testing dataset in this training-testing procedure is

independent of the training dataset mentioned earlier; hence, its prediction results will help increase confidence

in evaluating the performance of the CNN model as well as the HPO.

Predict

Training data

Hyperparameter Optimization

Techniques

(RS, BO-GP, BO-TPE)

CNN model model

Hyperparameter space

model opt

Accuracy (%)

Input data

(X,y)

Testing data

Training process

(Xtest,ytest)

(Xtrain,ytrain)

(Filters, Batch size, Epochs, Optimizer,

Activation)

Testing process

Accuracy (%)

Figure 3. The training-testing procedure

IJEEI ISSN: 2089-3272 

Enhancing Accuracy for Classification Using the CNN Model and.... (Dai Nguyen Quoc et al)

579

3. RESULTS AND DISCUSSION

3.1. Experimental setup

In this study, the authors concurrently utilize two datasets: the MNIST dataset, which is a collection

of handwritten digit images [23], and the Olivetti Faces dataset, which consists of facial images [33]. These

datasets are widely used in machine learning research for recognition and classification tasks and are readily

available in the sklearn.datasets library. Figure 4 presents some samples from the MNIST dataset (a) and the

Olivetti Faces dataset (b). As depicted in Figure 2, the entire dataset (X, y) is used for the HPO algorithm in

the training procedure. As shown in Figure 3, the dataset (X, y) is divided into two parts: training data (X train,

ytrain) and testing data (Xtest, ytest), with a ratio of 80% and 20% for each part, respectively. One of the inputs to

the HPO is the Hyperparameter space, which defines the boundaries of the hyperparameters being searched. In

this study, the Hyperparameter space is defined consistently for both the training procedure in Figure 2 and the

training-testing procedure in Figure 3. The Hyperparameter space for the MNIST dataset is presented in Table

1, and for the Olivetti Faces dataset in Table 2. The HPO techniques in this paper (RS, BO-GP, and BO-TPE)

are also set up based on a cross-validation procedure with cv=3 to enhance the reliability of the results [23].

(a)

(b)

Figure 4. Some samples: (a) MNIST dataset, (b) Faces dataset

Table 1. Hyperparameter space: Mnist dataset
Mode

l
Hyperparameter Type

Optimal algorithms

RS BO-GP BO-TPE

RF

n_estimators
Intege

r
(10, 100) (10, 100) (10, 100)

max_features
Intege

r
(1, 64) (1, 64) (1, 64)

max_depth
Intege

r
(5, 50) (5, 50) (5, 50)

min_samples_spli

t

Intege

r
(2, 11) (2, 11) (2, 11)

min_samples_leaf
Intege

r
(1, 11) (1, 11) (1, 11)

criterion String ['gini', 'entropy'] ['gini', 'entropy'] ['gini', 'entropy']

SVC
C Float (0, 50) (0.01, 50) (0, 50)

kernel String
['linear', 'poly', 'rbf',

'sigmoid']

['linear', 'poly', 'rbf',

'sigmoid']

['linear', 'poly', 'rbf',

'sigmoid']

KNN n_neigHPOrs
Intege

r
(1, 20) (1, 20) (1, 20)

CNN

optimizer String
['adam', 'rmsprop', 'sgd',

'Adamax']

['adam', 'rmsprop', 'sgd',

'Adamax']

['adam', 'sgd', 'rmsprop',

'Adamax']

activation String
['relu', 'tanh', 'softmax',

'linear']

['relu', 'tanh' , 'softmax',

'linear']

['relu', 'tanh', 'sigmoid',

'linear']

batch_size
Intege

r
(16, 128) (16, 128) (16, 128)

filters
Intege

r
(10, 300) (10, 300) (10, 300)

epochs
Intege

r
(200, 800) (200, 800) (200, 800)

  ISSN: 2089-3272

IJEEI, Vol. 12, No. 3, September 2024: 575 – 582

580

Table 2. Hyperparameter space: Olivetti Faces dataset

Model Hyperparameter Type
Optimal algorithms

RS BO-GP BO-TPE

RF

n_estimators Integer (10, 200) (10, 200) (10, 200)

max_features Integer (1, 128) (1, 128) (1, 128)

max_depth Integer (5, 100) (5, 100) (5, 100)

min_samples_split Integer (2, 11) (2, 11) (2, 11)

min_samples_leaf Integer (1, 11) (1, 11) (1, 11)

criterion String ['gini', 'entropy'] ['gini', 'entropy'] ['gini', 'entropy']

SVC

C Float (0, 100) (0.01, 100) (0, 100)

kernel String
['linear', 'poly', 'rbf',

'sigmoid']

['linear', 'poly', 'rbf',

'sigmoid']

['linear', 'poly', 'rbf',

'sigmoid']
KNN n_neigHPOrs Integer (1, 15) (1, 15) (1, 15)

CNN

filters Integer (16, 64) (16, 64) (16, 64)

optimizer String
['adam', 'rmsprop', 'sgd',

'Adamax']
['adam', 'rmsprop', 'sgd',

'Adamax']
['adam', 'rmsprop', 'sgd',

'Adamax']

activation String
['relu', 'tanh', 'softmax',

'linear']

['relu', 'tanh', 'softmax',

'linear']

['relu', 'tanh', 'softmax',

'linear']
epochs Integer (60, 120) (60, 120) (60, 120)

batch_size Integer (8, 32) (8, 32) (8, 32)

3.2. Experimental results

Table 3 presents the experimental results of the training procedure as shown in Figure 2, depicting the

accuracy of the RS, BO-GP, and BO-TPE algorithms. These results correspond to the RF, SVC, KNN, and

CNN models for the MNIST and Olivetti Faces datasets. It is worth noting that the accuracy values for the

traditional machine learning models (RF, SVC, and KNN) for the MNIST dataset are reference values from

the literature [23], as given in Table 3.

Table 3. Experimental results of training procedure

Optimal

algorithm

Mnist dataset Olivetti Faces dataset

RF SVC
KN

N
CNN RF SVC

KN

N
CNN

RS
93.3

8
97.3

5
96.3

3
97.8

5
91.2

5
94.0

0
90.2

6
94.9

6

BO-GP
93.3

8

97.5

0

96.8

3

97.8

9

92.2

5

94.0

0

90.2

6

95.0

4

BO-TPE
93.8

8

97.4

4

96.8

3

97.8

9

90.7

5

94.0

0

90.2

6

94.9

6

The analysis of results in Table 3 demonstrates that the accuracy of the CNN deep learning model

surpasses that of traditional models. Specifically, for the MNIST dataset using the RS optimization algorithm,

the accuracy values for the traditional models are as follows: Random Forest (RF) = 93.38%, Support Vector

Classification (SVC) = 97.35%, and K-Nearest Neighbors (KNN) = 96.33%. All of these are lower than the

CNN model's accuracy of 97.85. Moreover, when comparing the CNN model combined with the BO-GP and

BO-TPE algorithms, the performance is superior to that achieved with RS. The accuracy values for BO-TPE

(97.89%) and BO-GP (97.89%) are both higher than that for RS (97.85%). Similar results are obtained for the

BO-GP and BO-TPE algorithms, including the Olivetti Faces dataset.

Table 4 presents the experimental results of the training-testing procedure, as shown in Figure 3 for

the MNIST dataset. It illustrates the accuracy scores the RS, BO-GP, and BO-TPE algorithms achieved. These

scores correspond to the RF, SVC, KNN, and CNN models for the training and testing processes. Similarly,

Table 5 showcases analogous results for the Olivetti Faces dataset.

Table 4. Experimental results of training-testing procedure: Mnist dataset

Optimal

algorithm

Training process Testing process

RF SVC
KN

N
CNN RF SVC

KN

N
CNN

RS
96.0

2
98.8

2
98.4

0
99.1

8
97.1

7
98.6

4
98.3

3
99.3

1

BO-GP
96.2

1

98.8

0

98.4

3

99.1

4

97.3

6

98.6

9

98.1

7

99.3

9

BO-TPE
95.8

0

98.8

2

98.3

5

99.2

0

97.3

3

98.6

4

98.1

9

99.3

1

IJEEI ISSN: 2089-3272 

Enhancing Accuracy for Classification Using the CNN Model and.... (Dai Nguyen Quoc et al)

581

Table 5. Experimental results of training-testing procedure: Olivetti Faces dataset

Optimal

algorithm

Training process Testing process

RF SVC
KN

N
CNN RF SVC

KN

N
CNN

RS
84.7

8
92.5

0
86.4

1
93.5

6
90.1

3
97.5

0
91.0

0
98.6

3

BO-GP
84.5

7

92.4

4

84.4

0

93.4

7

90.3

7

97.3

7

89.6

2

98.7

5

BO-TPE
85.6

0

92.5

0

81.3

1

93.8

1

91.3

8

97.5

0

87.1

3

98.6

3

An analysis of the results from Table 4 for the MNIST dataset using the RS optimization algorithm

shows that the accuracy of the traditional models is consistently lower than that of the CNN model in both the

training and testing process. Specifically, the traditional models achieve the following accuracy rates: RF =

96.02% (training) and 97.17% (testing), SVC = 98.82% (training) and 98.64% (testing), and KNN = 98.40%

(training) and 98.33% (testing). In contrast, the CNN model attains higher accuracy rates of 99.18% during

training and 99.31% during testing. When examining the CNN model integrated with different optimization

algorithms, the BO-TPE algorithm achieves the highest training accuracy of 99.20%, slightly surpassing the

RS algorithm's 99.18%. However, the BO-GP algorithm underperforms in training, with an accuracy of

99.14%. In the testing phase, the CNN model with the BO-GP algorithm achieves the highest accuracy of

99.39%, exceeding that of the RS algorithm (99.31%). In contrast, the BO-TPE algorithm shows no significant

improvement, reaching 99.31%. These trends are similarly observed for the Olivetti Faces dataset, as shown in

Table 5, further reinforcing the conclusion that the CNN model generally outperforms traditional models,

particularly when optimized with the BO-GP algorithm.

Overall, the above analysis across the MNIST and Olivetti Faces datasets consistently demonstrates

that the CNN deep learning model outperforms traditional machine learning models such as RF, SVC, and

KNN in terms of accuracy. This trend is evident in the training and training-testing procedure for all

optimization algorithms evaluated (RS, BO-GP, and BO-TPE).

4. CONCLUSION

In this study, the authors propose a novel approach using RS, BO-GP, and BO-TPE algorithms to

optimize the hyperparameters of a CNN model, aiming to enhance its performance. The effectiveness of both

the training and training-testing procedures is assessed using the MNIST and Olivetti Faces datasets. The

performance of the CNN model, optimized with the RS, BO-GP, and BO-TPE algorithms, is compared to the

results reported in [23] during the training phase. Additionally, the CNN model's performance in the training-

testing phase is evaluated against traditional models across all three optimization algorithms, including RF,

SVC, and KNN. The findings demonstrate that the CNN model consistently achieves higher accuracy than

traditional models in all evaluated scenarios, highlighting its potential for various applications in image

recognition and classification tasks.

REFERENCES
[1] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions”, SN Computer

Science, Vol. 2, No. 3, pp. 160, 2021.

[2] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition for autonomous driving”,

IATSS Research, Vol. 43, No. 4, pp. 244-252, 2019.

[3] W. J. Wong and S. H. Lai, “Multi-task CNN for restoring corrupted fingerprint images”, Pattern Recognition, Vol.

101, pp. 107203, 2020.

[4] H. H. Luong, T. T. Khanh, M. D. Ngoc, M. H. Kha, K. T. Duy, and T. T. Anh, “Detecting Exams Fraud Using

Transfer Learning and Fine-Tuning for ResNet50”, In: Communications in Computer and Information Science, Ho

Chi Minh City, Vietnam, Vol. 1688, pp. 747-754, 2022.

[5] M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications,

Future Directions”, Computation, Vol. 11, No. 3, pp. 52, 2023.

[6] S. Almabdy and L. Elrefaei, “Deep Convolutional Neural Network-Based Approaches for Face Recognition”,

Applied Sciences (Switzerland), Vol. 9, No. 20, pp. 4397, 2019.

[7] D. Beohar and A. Rasool, “Handwritten Digit Recognition of MNIST dataset using Deep Learning state-of-the-art

Artificial Neural Network (ANN) and CNN”, In: International Conference on Emerging Smart Computing and

Informatics (ESCI), Pune, India, pp. 542-548, 2021.

[8] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra and J. M. Z. Maningo, “Object Detection Using

Convolutional Neural Networks”, In: IEEE Region 10 Annual International Conference, Proceedings TENCON,

Jeju, Korea (South), pp. 2023-2027, 2018.

  ISSN: 2089-3272

IJEEI, Vol. 12, No. 3, September 2024: 575 – 582

582

[9] S. Kumaar, R. M. Vishwanath, S. N. Omkar, A. Majeedi and A. Dogra, “Disguised Facial Recognition Using Neural

Networks”, In: 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen, China,

pp. 28-32, 2018.

[10] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical Image Analysis using

Convolutional Neural Networks: A Review”, Journal of Medical Systems, Vol. 42, No. 11, pp. 226, 2018.

[11] R. Lateef and A. Abbas, “Tuning the Hyperparameters of the 1D CNN Model to Improve the Performance of Human

Activity Recognition”, Engineering and Technology Journal, Vol. 40, No. 4, pp. 547-554, 2022.

[12] TN Tran, “Grid Search of Convolutional Neural Network model in the case of load forecasting”, Archives Of

Electrical Engineering, Vol. 70, No. 1, pp. 25-36, 2021.

[13] M. A. K. Raiaan et al., “A systematic review of hyperparameter optimization techniques in Convolutional Neural

Networks,” Decision Analytics Journal, vol. 11, p. 100470, Jun. 2024, doi: 10.1016/J.DAJOUR.2024.100470.

[14] Y. Zhao, W. Zhang, and X. Liu, “Grid search with a weighted error function: Hyper-parameter optimization for

financial time series forecasting,” Applied Soft Computing, vol. 154, p. 111362, Mar. 2024, doi:

10.1016/J.ASOC.2024.111362.

[15] N. Sharma, L. Malviya, A. Jadhav, and P. Lalwani, “A hybrid deep neural net learning model for predicting Coronary

Heart Disease using Randomized Search Cross-Validation Optimization,” Decision Analytics Journal, vol. 9, p.

100331, Dec. 2023, doi: 10.1016/J.DAJOUR.2023.100331.

[16] D. Shakya, V. Deshpande, M. J. S. Safari, and M. Agarwal, “Performance evaluation of machine learning algorithms

for the prediction of particle Froude number (Frn) using hyper-parameter optimizations techniques,” Expert Systems

with Applications, vol. 256, p. 124960, Dec. 2024, doi: 10.1016/J.ESWA.2024.124960.

[17] H. Sadoune, R. Rihani, and F. S. Marra, “DNN model development of biogas production from an anaerobic

wastewater treatment plant using Bayesian hyperparameter optimization,” Chemical Engineering Journal, vol. 471,

p. 144671, Sep. 2023, doi: 10.1016/J.CEJ.2023.144671.

[18] A. Sabouri and C. S. Perez-Martinez, “Design of electrostatic lenses through genetic algorithm and particle swarm

optimisation methods integrated with differential algebra,” Ultramicroscopy, vol. 266, p. 114024, Dec. 2024, doi:

10.1016/J.ULTRAMIC.2024.114024.

[19] P. K. Chahal, K. Kumar, and B. S. Soodan, “Grey wolf algorithm for cost optimization of cloud computing repairable

system with N-policy, discouragement and two-level Bernoulli feedback,” Mathematics and Computers in

Simulation, vol. 225, pp. 545–569, Nov. 2024, doi: 10.1016/J.MATCOM.2024.06.005.

[20] N. M. Aszemi and P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic

algorithms,” International Journal of Advanced Computer Science and Applications, Vol. 10, No. 6, pp. 269-278,

2019.

[21] R. Zatarain Cabada, H. Rodriguez Rangel, M. L. Barron Estrada, and H. M. Cardenas Lopez, “Hyperparameter

optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems,” Soft Computing,

Vol. 24, No. 10, pp. 7593-7602, 2020.

[22] K. and N. R. O’Shea, “An Introduction To Convolutional Neural Networks”, International Journal for Research in

Applied Science and Engineering Technology, Vol. 10, No. 12, 2015.

[23] L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,”

Neurocomputing, Vol. 415, pp. 295-316, 2020.

[24] A. Morales-Hernández, I. van Nieuwenhuyse, and S. Rojas Gonzalez, “A survey on multi-objective hyperparameter

optimization algorithms for machine learning,” Artificial Intelligence Review, Vol. 56, No. 8, pp. 8043-8093, 2023.

[25] W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, “Prediction of undrained shear strength using extreme gradient

boosting and random forest based on Bayesian optimization,” Geoscience Frontiers, vol. 12, no. 1, pp. 469–477, Jan.

2021, doi: 10.1016/J.GSF.2020.03.007.

[26] Frazier, P. I., “A Tutorial on Bayesian Optimization”, Art. no. arXiv:1807.02811, 2018.

doi:10.48550/arXiv.1807.02811.

[27] J. Rodemann and T. Augustin, “Imprecise Bayesian optimization,” Knowledge-Based Systems, vol. 300, p. 112186,

Sep. 2024, doi: 10.1016/J.KNOSYS.2024.112186.

[28] E. Brochu, V. M. Cora, and N. D. Freitas, “A tutorial on Bayesian optimization of expensive cost functions, with

application to active user modeling and hierarchical reinforcement learning,” ArXiv, vol. abs/1012.2599, 2010.

[29] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown, “Towards an empirical

foundation for assessing Bayesian optimization of hyperparameters,” BayesOpt Work., pp. 1–5, 2013.

[30] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” in Adv. Neural Inf.

Process. Syst., vol. 24, 2011.

[31] K. Shen, H. Qin, J. Zhou, and G. Liu, “Runoff probability prediction model based on natural gradient boosting with

tree-structured parzen estimator optimization,” Water, vol. 14, no. 4, p. 545, 2022. [Online]. Available:

https://doi.org/10.3390/w14040545.

[32] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of performance measures for

classification,” Pattern Recognition Letters, vol. 30, no. 1, pp. 27–38, Jan. 2009, doi:

10.1016/J.PATREC.2008.08.010.

[33] W. Dhifli and A. B. Diallo, “Face Recognition in the Wild,” Procedia Computer Science, Vol. 96, pp. 1571-1580,

2016.

https://doi.org/10.3390/w14040545

