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 The most critical and essential parts of rotating machinery are bearings. The 

main problem of the bearing fault classification is to select the fault features 

effectively because all extracted features are not useful, and the high-

dimensional features give poor performances and slow down the training 

process. Due to the effective feature selection problem, the bearing fault 

diagnosis method does not achieve a satisfactory result. The main goal of this 

paper is to extract the effective fault features with an optimization technique 

to classify the bearing faults using machine learning algorithms. Since wavelet 

entropy can determine complexity and degree of order of a vibration signal, 

this research uses it in features optimization.  The proposed wavelet entropy-

based optimization technique reduces the dimensionality of input, elapsed time 

and raises the learning process. Four Machine learning algorithms (naïve 

Bayes, support vector machine, artificial neural network and KNN) are applied 

to classify the bearing faults using the optimized features. To evaluate the 

proposed method, Case Western Reserve University’s (CWRU’s) bearing 

dataset is used which consists of three types of bearing faults. Based on the 

experimental data, it was shown that the proposed system reached 99.5% 

accuracy. The accuracy and robustness of the bearing fault classification are 

tested by adding noise to the vibration raw signals at various levels of Signal-

to-Noise Ratio (SNR). Experimental results show that the proposed method is 

very highly reliable in detecting bearing faults compared to the conventional 

methods. 
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1. INTRODUCTION 

Bearings are critical elements of rotating machinery. Bearing conditions have a significant impact on 

machines. Vibration analysis has been widely employed for bearing condition monitoring for many decades. 

Vibration signals caused by bearing problems have been intensively studied, and several diagnostic approaches 

have been used in the past [1]. Bearing faults diagnostics may be approached in three ways: predictive 

maintenance, reactive maintenance, and preventive maintenance. Real-time monitoring and diagnostics of 

bearings are the foundation of predictive maintenance. Reactive maintenance relies on repair activities 

conducted after a bearing failure has already been identified. Preventive maintenance relies on time bound 

approaches and best practices for planning and scheduling repair actions when the actual status of the bearing 

is unknown [2]. 

Artificial Neural Network (ANN) has been used to detect and diagnosis machine conditions, which 

have been considered classification problems according to learning patterns [3]. An issue with classifying 
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machine faults is divided into two sections. The first section deals with feature extraction from vibration 

signals, which is applied to extract some features exhibiting fault information. The second section is 

classification, which employs various artificial intelligence approaches to diagnose faults using the extracted 

features [4]. 

The features of vibration can be obtained using time-domain analysis, frequency-domain analysis, and 

combining time-frequency analysis [5], [6]. The time-domain features [3], [7], [8] are root means square 

(RMS), standard deviation, crest-factor, kurtosis, variance, envelop spectrum, estimation and crest value. 

Feature extraction via time-frequency analysis is commonly employed for nonlinear and non-stationary signals 

such as Empirical mode decomposition (EMD), wavelet packet transform, and short-time Fourier transform, 

which has demonstrated its high analytical capabilities for these signal types [9].  

It is exceedingly challenging to extract the features of bearing signals using the typical feature 

extraction process [10] because of the complicated vibration signals. The timefrequency domain analytic 

technique known as the wavelet transform has recently become quite effective for the fault classification of 

bearings [11]. As an advanced signal processing technique, Saida Dahmane et al. [12] proposed the discrete 

wavelet transform (DWT) with the envelope spectrum (ENV), combining a machine learning approach based 

on random forest classifier. By combining these methods, the dataset may be better organized and features can 

be extracted, which increases the random forest classifier's accuracy and raises its classification rate. The 

weakness of this method is high-dimensional feature set which increases training time, and slows down the 

learning process of the classifier. 

 In order to extract both temporal and spatial characteristics enhanced by Hilbert transform 2D images, 

a hybrid DTL architecture consisting of lengthy short-term memory layers and a deep convolutional neural 

network is described. In a variety of settings, the suggested model performed more accurately than the most 

advanced models [13]. But it requires 2D images, where the vibration signal is 1D data. 

A compact fault diagnostic model is presented by Zabin et al. [14]. It combines a hybrid texture 

representation method using gammatone spectrogram (GS) filter and empirical mode decomposition (EMD) 

with a self-attention SqueezeNet architecture. Based on the experimental data, it was shown that the 

SqueezeNet self-attention mechanism reached 97% accuracy. Its accuracy is not satisfactory as compared tp 

others so the accuracy needs to be improved. Purushotham et al. [15] and Prabhakar et al. [16] employed 

Discrete Wavelet Transforms (DWT) to identify bearing faults. Saravanan et al. [17] highlight the use of 

wavelet-based features for gear fault diagnostics using support vector machine (SVM) and Proximal Support 

Vector Machine (PSVM). It performs better than the Fourier analysis for processing non-stationary vibration 

signals [4]. Using a high-dimensional feature set reduces performance, increases training time, and slows down 

the learning process of the classifier [18]. Because of the large dimensionality of the feature set, the 

dimensionality of the feature set must be lowered following feature extraction because not all extracted features 

are equally meaningful [19], [20]. 

 In order to solve this issue, this work focuses on an effective feature selection-based optimization 

technique. First, The vibrational signal is decomposed using the discrete wavelet transforms (DWT) utilizing 

the Haar wavelet to yield both approximations and details. To ensure that no information is lost, every detail 

is then recreated. The minimum Shannon entropy criterion is then used to the reconstructed details that were 

collected to identify the fault frequencies, which are regarded as novel features and then using an optimization 

process. This combination of approaches allows effective feature extraction and structuring. These optimized 

features are fed into a feed-forward artificial neural network to train and test the model to classify the bearing 

fault diagnosis. To analyze the proposed system, the Case Western Reserve University (CWRU) dataset is 

used, which consists of three types of faulty bearing data. After successfully training the ANN, it will be ready 

to classify samples for the fault class of bearing diagnosis. Finally, it achieves the best accuracy, which shows 

that the proposed system is quite reliable in identifying bearing faults. 

The main contributions of this research are as follows: 

• An effective preprocessing technique is developed using wavelet transform and entropy to reduce 

input dimensionality and elapsed time and raise the learning process.  

• Wavelet entropy is introduced in this research to determine the significant fault signatures, i.e., 

optimized features. The impacts of the selected optimized features are investigated. 

• The proposed model is verified against four machine learning algorithms: naïve Bayes, support vector 

machine, artificial neural network, and KNN. 

• Furthermore, perform a comparative analysis of the proposed system to study the improvements in 

efficiency and performance. 
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2. PROPOSED FAULT CLASSIFICATION WITH OPTIMIZATION TECHNIQUE 

Due to the problem with the sizeable dimensional feature set, the dimensionality of the feature set 

needs to be reduced after the feature extraction because all extracted features are not equally valuable to detect 

the bearing faults. This proposed method focuses on detecting and classifying of bearing faults using 

optimization technique and machine learning algorithms. This proposed bearing fault detection method consists 

of two key steps: feature optimization and classification. The flowchart for the proposed system is shown in 

Figure 1. 

 

 
2.1.  Dataset preparation 

The Case Western Reserve University (CWRU) test bench is used to collect vibration signals 

(acceleration) to evaluate the effectiveness of the proposed system [21]. One of the most extensively used and 

freely available datasets is the CWRU dataset. It provides data on both normal and faulty bearings. There are 

mainly three types of bearing data in faulty data: inner race fault, ball fault, and outer race fault. Figure 3 shows 

the schematic diagram of the rotor-bearing system, which includes a dynamometer, an encoder and torque 

transducer, and an electric motor. There is a single-point fault in each faulty bearing to test bearings, which 

have sizes of 0.007 inch, 0.014 inch, and 0.021 inch. Accelerometers are used to collect data on vibration 

signals. 12 kHz and 48 kHz were chosen as the sample rates for the data collection. MATLAB (.mat) format 

is used to store all of the data files. Table 1 shows the information of the bearing fault data file with three types 

of fault: inner race fault, ball fault, and outer race fault. Each type of fault data consists of four diameters of 

fault bearing 0.00 inch (Class: 1), 0.007 inch (Class: 2), 0.014 inch (Class: 3) and 0.021 inch (Class: 4). Figure 

4 depicts the four vibration signals, which are normal, inner race fault, ball fault, and outer race fault. Figure 3 

shows how training and validation data are split for the ANN architectures.  

 

Table 1. Information of bearing faults 
Bearing    Fault Type Fault Diameter 

(inch) 

Fault Class Motor Speed  (RPM) Length of Data File 

 

Fault in Inner Race 

0.00 (Normal) Class: 1 1797 243938 

0.007 Class: 2 1797 121535 

0.014 Class: 3 1797 121351 

0.021 Class: 4 1797 121168 

 
Fault in Ball 

0.00 (Normal) Class: 1 1797 243938 

0.007 Class: 2 1797 121168 

0.014 Class: 3 1797 122086 

0.021 Class: 4 1797 121351 

 

Fault in Outer Race 

0.00 (Normal) Class: 1 1797 243938 

0.007 Class: 2 1797 121168 

0.014 Class: 3 1797 120984 

0.021 Class: 4 1797 121351 

 

 

Signal Preprocessed by Wavelet Transform 
Feature Extracted by 

Wavelet Entropy 

Feature Optimization 

Vibration Raw Signal 

Fault Classification 
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Figure 4. Raw Vibration Signal 

 

2.2.  Feature Optimization 

Dimensional reduction must be used in order to choose important and discriminating features that 

improve diagnosis system performance [14], [19]. To address this point, this paper focuses on an effective 

feature selection-based optimization technique, which reduces the dimensional of input features and raises the 

learning process, also increasing the diagnosis process efficiency with less elapsed time. At first, the vibration 

signal is decomposed by WT, and then entropy is applied to determine whether the decomposed part contains 

significant components of the fault features. 

  

2.2.1. Signal Decomposing by DWT 

The bearing's vibration signal frequently comprises components from other elements. Background 

noise is also present in the vibration signals, which makes extracting fault features difficult. A well-known 

technique for the analysis of signals is the wavelet transforms [9].  A wavelet transform in either the time 

domain or the frequency domain can represent the complexity of a non-stationary signal. The discrete wavelet 

transforms (DWT) is a signal decomposition technique that divides a signal into a number of separate, spatially 

directed frequency channels. Two filters are applied to the original signal, and two new signals—details and 

approximation—are produced. This procedure is known as signal decomposition or analysis. To ensure that no 

information is lost, every detail is then recreated. The breakdown signal's components can be reconstructed 

again into the original raw signal without losing any information. This is known as synthesis or reconstruction 

[10]. This paper focuses on wavelet transform to preprocess the vibration raw signals. This paper used the one-

Figure 3. Data Split for Training, Validation and 

Testing 

Figure 2. Experiental Setup [21] 
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dimensional wavelet decomposition up to three levels for the vibration raw signals: normal (healthy), inner 

race fault, ball fault, and outer race fault. In Figure 5, it shows the output of wavelet decomposition up to three 

levels. Moreover, it shows the three levels of detail (D1-D3), Vertical (V1-V3), Horizontal (H1-H3), and 

approximation (A1-A3) which are chosen for each signal. 

 

 

 
Figure 5. Output Result of Wavelet Transform 

 

 

2.2.2. Optimum Feature Extraction by Wavelet Entropy  

Entropy measures complexity and disorder of a signal. Vibration signals are adjusted appropriately 

when a single-point defect, also known as an incipient fault, occurs in a bearing. Changes in complexity values 

from vibration signals can be effectively connected with the incipient fault's growing rate [11]. The wavelet 

entropy can determine both the complexity and degree of order of a signal. As such, it is capable of offering 

the required information. Let x[n] be a discrete signal changed at instant K and scale j. It composes two parts: 

the high-frequency component coefficient, Hj [n], and the low-frequency component coefficient, LJ [n]. The 

signal x[n] is defined as the total of these components as following equations [12]. 

 

[𝑛] = ∑ 𝐻𝑗[𝑛] + 𝐿𝐽[𝑛]𝐽
𝑗=1                                                                                             (1) 

 

Non-normalized Shannon entropy can be described as Ejk, where Ejk is the wavelet energy spectrum 

at instant k and scale j. 

 

 

 𝐸𝑗 = − ∑ 𝐸𝑗𝑘𝑙𝑜𝑔𝐸𝑗𝑘𝑘                                             (2) 

 

Where  

 𝐸𝑗𝑘 = |𝐷𝑗(𝑘)|
2
                                              (3) 

 

The minimum Shannon entropy criterion can be provided as an efficient method for generating feature 

sets. The Shannon Entropy of the associated wavelet coefficients to extract features from the decomposed 

signal and get four features from each level of the wavelet decomposition. W11, W12, W13, and W14 are four 

features from first-level decomposition, W21, W22, W23, and W24 are four features from second-level 

decomposition, and W31, W32, W33, W34 are four features from third-level decomposition.  12 features are 

extracted from three decomposition levels:  W11, W12, W13, W14, W21, W22, W23, W24, W31, W32, W33, and W34 

as shown in Table 2. 
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Table 2. Entropy result with feature 
Feature (W) Fault in Inner Fault in Ball Fault in Outer 

W11 29335.672588 24979.440333 55554.992716 

W12 17246.000512 28846.154124 2850.4850231 

W13 0 0 0 

W14 0 0 0 

W21 22086.117344 13850.856714 70336.370370 

W22 -34348.580889 26268.966535 34980.320309 

W23 0 0 0 

W24 0 0 0 

W31 18392.438357 10416.198884 62089.722435 

W32 -27012.849409 13848.516554 49998.225610 

W33 0 0 0 

W34 0 0 0 

 

 

Table 2 shows the values of six like W13, W14, W23, W24, W33, and W34 which are zero. It implies that 

these components do not contain any fault features. Therefore, we can omit these six features and take the other 

six components as effective features, which are W11, W12, W21, W22, W31, and W32. Table 3 represents the six 

effective features fed into the ML classifier’s input to train the network for classifying the bearing fault. 

 

Table 3. Optimized features 
Feature (W) Fault in Inner Fault in Ball Fault in Outer 

W11 29335.672588 24979.440333 55554.992716 

W12 17246.000512 28846.154124 2850.4850231 

W21 22086.117344 13850.856714 70336.370370 

W22 -34348.580889 26268.966535 34980.320309 

W31 18392.438357 10416.198884 62089.722435 

W32 -27012.849409 13848.516554 49998.225610 

 

 

2.3.  Machine Learning (ML) Classifier 

In machine learning, a classifier is an algorithm that automatically sorts or groups data into one or 

more "classes." The proposed model is verified against four machine learning algorithms: naïve Bayes, support 

vector machine, artificial neural network, and KNN. In this work, the optimized features are applied as the 

input to various machine learning classifiers, including artificial neural network (ANN), k-nearest neighbor (k 

NN), support vector machine (SVM), and naïve Bayes to select the best classifier. 

 

 2.3.1. ANN Classifier 

The most typical challenge in this sector is connected to decision-making, when the problem is 

difficult to solve using typical computation. ANNs can combine the processing capacity of digital computers 

with the capability to make rational decisions and learn through regular experience, much like people [22]. The 

procedure of training an ANN is carried out using the most widely used algorithm known as back-propagation. 

The ANN has three layers, including an input layer, a hidden layer, and an output layer. This work designs a 

simpler ANN model which can detect and correctly classify the bearing fault diagnosis, which is shown in 

Figure 6, where the six features (W11, W12, W21, W22, W31, W32) in the four-fault classes, respectively, are taken 

as each input of the ANN. The hidden layer consists of 30 nodes, and the output is the four fault classes 

accordingly, i.e., normal condition, inner race fault, ball fault, and out-race fault. So, the final ANN structure 

consisted of three layers: the input layer with 6 nodes, the hidden layer with 30 nodes, and the output layer 

with 4 nodes. Each class is trained by 200 samples and the iteration is 42. The learning speed of the ANN 

training algorithm is 0.06, and the network is trained indefinitely until it achieves convergence. The network’s 

parameters are given in Table 4, where “mse” is used as a performance function, “trainlm'” is used as a training 

function, the maximum number of iterations is 1000, and the number of epochs is 30. The fault classes are 

given as follows: 

Class 1—Fault bearing with 0.00-inch diameter (normal bearing) [0 0 0]; Class —2 fault bearing with 

0.007-inch diameter [1 0 0]; Class 3— fault bearing with 0.014-inch diameter [0 1 0]; and Class 4— fault 

bearing with 0.021-inch diameter [0 0 1]. 

 All test samples are correctly recognized by applying a trained ANN to the bearing fault test samples. 
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Figure 6. Architecture of ANN 

 

 

Table 4. Proposed ANN hyper-parameters 

 
Parameters Values 

Epochs 30 

Maximum Iterations 1000 

Performance Function 'mse' 

Training Function 'trainlm' 

 

 

2.3.2. SVM classifier 

Figure 7 shows the SVM architectures for bearing fault classification where the six features (W11, 

W12, W21, W22, W31, W32) in the four-fault classes are taken as each input of the SVM. There are four outputs 

in the SVM classifier: class 1, class 2, class 3, and class 4. The network’s parameters of SVM are given in 

Table 5. In the parameter of SVM, the value of C is 1.0, Kerner is “rbf”, degree is 3, tol value is 0.001, max_iter 

is –1, and decision_function_shape is “ovr”. 

 

Table 5. SVM classifier’s parameters 
SVM Parameters Size/ Value 

C 1.0 

kernel rbf 

degree 3 

gamma scale 

oefo 0.0 

Shrin king true 

probability false 

tol 0.001 

Cache_size 200 

Class_weight none 

verbose false 

Max_iter -1 

Decision_function_shape ovr 

Break_ties false 

Random_state none 
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Figure 7. Architecture of SVM classifier 

 

 

2.3.3. KNN classifier  

Figure 8 shows the KNN architectures for bearing fault classification where the six features (W11, 

W12, W21, W22, W31, W32) in the four-fault classes are taken as each input of the KNN. There are four outputs 

in the KNN classifier: class 1, class 2, class 3, and class 4. The network’s parameters of KNN are given in 

Table 6. In the parameter of KNN, the n_neighbors is 5, weights are “uniform”, algorithm is auto, leaf_size is 

30, P is 2, and metric is “minkowski”. 

 

 
Figure 8. Architecture of KNN classifier 

 

Table 6. KNN classifier’s parameters 
KNN Parameters Size/Value 

n_neighbors 5 

weights uniform 

algorithm auto 
leaf_size 30 

p 2 

metric ‘minkowski’ 
metric_params None 

n_jobs None 

 

3. RESULTS AND DISCUSSION 

This section represents the fault diagnosis capabilities of the proposed method using various machine 

learning classifiers. 

 

3.1.  ML classifier accuracy  

Optimized effective features are applied as the input to various machine learning models like ANN, 

SVM, KNN, Naïve Bayes, etc. Table 7 shows the effect of the feature optimization process on accuracy and 
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training time on other classifiers. Five classifiers such as Linear SVM, ANN, Cubic SVM, KNN, and Naïve 

Bayes, are considered to observe the feature optimization effect.  Table-7 indicates that the performance 

accuracy of the feature optimization process is significantly improved compared to reduce training times with 

the exception of feature optimization. It can be seen that the proposed ANN model provided 99.50% accuracy 

with minimum training time. Therefore, the ANN model has been selected for further analyzing the model. 

 

Table 7. Effect of feature optimization on ML classifiers 
 Except Optimization With Optimization 

Classifier Accuracy Training Time Accuracy Training Time 

Linear SVM 99% 39.703 s 99.7% 34.768 s 

ANN 98.10% 7.0 s 99.50% 4.10 

Cubic SVM 99.9% 28.64 s 100% 27.655 s 

KNN 99.4% 10.705 s 100% 6.727 s 

Naïve Bayes 98.76% 5.41 s 99% 8.646 s 

 

3.2.  Performance analysis of proposed ANN model 

After the proposed ANN architectures are successfully implemented, the proposed system is trained 

for CWRU datasets. 70% of the data in this network is used for training, 20% for validation, and 10% for 

testing. Proposed ANN uses “mse” as a performance function as well as “trainlm” as a training function. The 

learning rate is 0.002, the number of epoch is 30, and the maximum iterations are 1000. The simulation provides 

worthwhile values. Then, the accuracies are observed for CWRU datasets. This section considers five scenarios 

to verify the proposed ANN model: 

 

3.2.1. Performances of hidden layer of proposed ANN model 

Table 8 shows the effect of various hidden layers of the ANN model, which also shows that the 

accuracy was increased when number of the hidden layers was increased. However, when the number of hidden 

layers reached a certain threshold, its accuracy did not improve much than the previous. Therefore, the optimum 

number of the hidden layer must be set. 

 

Table 8. comparison results with tuning hidden layer 
Hidden Layers No of 

iterations  

Accuracy of fault 

in inner race 

Accuracy of fault 

in ball 

Accuracy of fault 

in outer race 

15 1000 98.3% 98.1% 85.6% 
20 1000 98.8% 97.9% 96.8% 

25 1000 98.6% 98.0% 97.9% 

30 1000 99.5% 98.8% 99.% 

35 1000 98.3% 74.4% 97.0% 

 

 

3.2.2. Performances of training function of proposed ANN model 

Table 9 represents the effect of changing the train function of the ANN model. Eight training functions 

are used to find best function for proposed model. It can be seen that the “Traingdm” and “traingda’’ train 

functions provide less accuracy which is only 30.9% and 72.3% but other train functions provide higher 

accuracy. This experiment observation confirms that the “trainlm” train function provides the best accuracy 

(99.5%) than other train functions for this ANN model. Therefore, the proposed model uses the “trainlm” train 

function. 

 

Table 9. comparison result with tuning train function 
Train Function Performance Function Hidden Layers Accuracy race Rate of Error 

traingdm mse 30 30.9% 69.1% 

trainggda mse 30 72.3% 27.7% 

trainggdx mse 30 93.3% 6.7% 
trainr mse 30 97.3% 2.7% 

traingrp mse 30 99.1% 0.9% 

traingoss mse 30 99.3% 0.7% 
traingscg mse 30 99.3% 0.7% 

trainglm mse 30 99.5% 0.5% 

 

3.2.3. Performances of performance function of proposed ANN model 

After selecting the “trainlm” function as a train function, this research observes three performance 

functions to find the best one. Table 10 shows the effect of changing the performance function of the ANN 
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model, which shows that the sum of squared errors (SSE) performance function provides only 50% accuracy 

which is very low, the mean squared error and mean squared weight and bias (MSEREG) performance function 

provides 98.5% accuracy and the mean square errors (MSE) performance function provides 99.5% accuracy. 

This experiment observation confirms that the “MSE” as performance function provides the highest accuracy 

for this ANN model. 

 

Table 10. comparison results   tuning performance function 
Performance Function Train Function Hidden Layers Accuracy race Rate of Error 

SSE trainlm 30 50% 50% 

MSEREG trainlm 30 98.5% 1.5% 

MSE trainlm 30 99.5% 0.5% 

 

 

3.2.4. Performances of optimized features for elapsed time and error rate 

Figure 9 shows the performance without and with feature optimization; the blue color of the graph 

indicates the performance without feature optimization and the red color shows the performance with feature 

optimization. Table 11 demonstrates that there are without-feature optimization methods for classifying bearing 

faults. The proposed system with the feature optimization method is best and capable of achieving 99.5% 

accuracy which is high enough for bearing fault classification. This accuracy is enhanced compared to the 

without feature optimization method. Table 11 also clearly displays that the proposed system with a feature 

optimization process takes only 4 seconds to obtain the testing accuracy. On the other hand, without a feature 

optimization process, the system takes more time than the proposed system with a feature optimization process. 

The error rate is also reduced to only 0.5% after using feature optimization. This experiment observation 

confirms that the proposed system with a feature optimization process reduces the dimensionality of input 

features and raises the learning process, also increasing the diagnosis process efficiency with less elapsed time. 

 

Table 11. Performance analysis on feature optimization 
Particulars Without optimization With optimization 

Input Layer 12 (More) 6 (Less) 

Number of features 12 (More) 6 (Less) 

Elapsed Time 7sec 4sec 

Accuracy 98.1% 99.5% 

Error Rare 1.9% 0.5% 

 

 

 

 
 

 

3.2.5. Accuracy for each fault diameters 

Table 12 depicts the overall result of the neural network respective to the inner race fault, the ball 

fault, and the outer race fault, with various fault diameters which shows a summary of the results of 

classification for four classes on the CWRU dataset. The first row of in table 12 shows as depicted in the 

accuracy result of the inner race fault of bearing. Thus, the classification accuracy for class 1, class 2, class 3 

and class 4 are 97.1%, 100%, 100% and 100%, respectively. The overall accuracy of the inner fault of the 

bearing is 99.3%. The second row of in Table 12 shows as depicted in the accuracy confusion matrix of ball 

fault of bearing. Thus, the classification accuracy for class 1, class 2, class 3, and class 4 are 100%, 96.1, 99.5, 

and 99.5%, respectively. The overall accuracy of ball fault of the bearing is 98.8%. The third row in Table 12 

shows as depicted in the confusion matrix accuracy of outer race fault is shown in the third row of table 12 of 

bearing. Thus, the classification accuracy for class 1, class 2, class 3 and class 4 is 96.2%, 100%, 100% and 



                ISSN: 2089-3272 

IJEEI, Vol. 12, No. 3, September 2024:  610 – 624 

620 

100%, respectively. The testing accuracy of the proposed system for bearing fault classification is recorded in 

the following Table 12. This table is presented to help explore the best result. 

 

Table 12. Classification accuracy of the system for various fault diameters 
Type of Fault Diameter of  Fault Accuracy Overall Accuracy 

 

Fault in Inner Race 

0.00 inch (Normal) 97%  

 

99.5% 

0.007 inch 100% 

0.014 inch 100% 

0.021 inch 100% 

 

Fault in Ball 

0.00 inch (Normal) 100%  

 
98.8% 

0.007 inch 96.1% 

0.014 inch 95.5% 

0.021 inch 95.5% 

 

Fault in Outer Race 

0.00 inch (Normal) 96.2%  

 

99.0% 
0.007 inch 100% 

0.014 inch 100% 

0.021 inch 100% 

 

 
Figure 10. Graphical representation of the testing accuracy of the proposed system 

 

Figure 10 shows the testing performance of the proposed system, four-fault diameter and among them, 

the blue color of the graph indicates the fault in inner race accuracy, which shows in 0.00 inch diameter of a 

fault, the accuracy is less (97%). However, when the diameter of fault increased by 0.007 inch, 0.014 inch and 

0.021 inch, the accuracy increases up to 100%.  The red color indicates the fault in the ball, and the green color 

indicates the fault in the outer race of bearing fault classification accuracy, which shows accuracy, is 100% 

except for 0.00 inch diameter of the fault. 

 

3.3.  Evaluate under different noisy environments 

In the real environments of industry, signals are affected by noise. Noise is another problem due to 

the change in working conditions, which reduces the performance of bearing fault diagnosis [22]. This part 

analyses the proposed system's performance under various noisy environments. The Additive Gaussian White 

Noise (AGWN) is added to the original raw signal to create the noisy signals. Figure 11 shows the process of 

creating noisy signals. 

 

 
Figure 11. Process of creating noisy signal process 
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Figure 12. Performance of the proposed model under different noisy 

 

In the environments of real industry, signals are affected by noise. Noise is a big problem due to the 

change in working conditions, which reduces the performance of bearing fault diagnosis. This section examines 

the effectiveness of the proposed system under noisy conditions with different values of SNR. The performance 

of the proposed model is shown in figure 12 under noisy conditions with varying SNR values from -10dB to 

+2 dB. In SNR=-3 dB, the proposed model still achieves 98.8%, 97.5%, and 98.2 % accuracy, respectively, 

inner, ball, and outer fault. SNR= -10 dB is the more considerable noise power, where it is more difficult to 

classify the bearing fault diagnosis. However, the proposed system provides 93.4%, 90.5%, and 92% accuracy, 

respectively, for inner, ball, and outer race faults. The proposed system's performance in this experiment 

exhibits its high reliability in defect diagnosis, even in noisy situations. 

 

3.4.  Comparison of this work with some previous research using CWRU bearings datasat 

This section compares the performance of the proposed system with several reported results in the 

literature. In Table 13, it shows the comparative studies on the CWRU dataset. In [24], To improve feature 

extraction, the Short-Time Fourier Transform (STFT) is applied as a preprocessing technique. Gammatone 

Transformation and raw data are also taken into consideration in order to establish the optimal preprocessing 

method. Few-shot learning (FSL) is used to overcome data scarcity, which is one of the main barriers to fault 

detection in the industrial context and the testing accuracy was 94.82%. According to [25], an Attention 

Mechanisms was used to evaluate the efficacy of the feature extraction approach based on EMD and GS filter 

and the testing precision was 97%. In [26], Various machine learning models was also employed to evaluate 

the efficiency of the feature reduction approach based on Frequency domain vibration analysis & envelope 

analysis and the accuracy is 94.4%. A Lite and Efficient Deep Learning Model were employed in [27] to 

determine the efficacy of the feature reduction technique based on spectrograms and the testing accuracy was 

98.66%. It can be seen from Table 10 that the proposed method provides a greater accuracy (99.5%) than Ref. 

[24-27]. 

 

Table 13. comparison result with several works 
Reference Method Preprocessing Published 

Year 

Accuracy 

[24] A Few-Shot Learning Gammatone Transformation 2023 94.82% 

[25] Attention Mechanisms EMD and GS filter 2024 97% 

[26] Various machine learning models Frequency domain vibration 

analysis & envelope analysis 

2023 94.4% 

[27] Lite and Efficient Deep Learning Model spectrograms 2023 98.66% 

Proposed system 

 

ANN, DWT and Wavelet Entropy with 

feature optimization technique 

 

DWT & Entropy 

 

- 

 

99.5% 

 

The results show that the proposed system regularly outperforms other recent research 

regarding diagnostic accuracy. This indicates that the proposed system efficiently addresses the difficulty of 

extracting in-depth features from complex vibration utilizing DWT and minimum Shannon entropy signal 

analysis approaches, as well as fulfilling the effective features requirements for ANN training while showing 

outstanding reliability. 
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4. CONCLUSION 

Bearing is a machinery device that constrains relative motion to only the desired motion and reduces 

friction between moving parts. The health of bearings has a significant impact on machines. Earlier detection 

and classification of bearing fault detection is an important aspect of machine health monitoring. A typical 

intelligent diagnosis method includes two main parts feature extraction and fault classification. The feature part 

needs signal processing techniques, which requires specialist knowledge, and human labor. The bearing fault 

diagnosis method does not produce a satisfactory result due to the effective feature selection difficulty. 

Additionally, because the working load is constantly changing and noise from the place of operation is 

unavoidable, the efficiency of intelligent fault diagnosis techniques suffers great reductions.  

To address the above problem of bearing fault detection and classification this research proposed a 

feature optimization based bearing fault classification method that can effectively solve the problem. The 

proposed method consists of two main parts including feature optimization and feature classification using 

machine learning classifier. Firstly, The vibrational signal is decomposed using the discrete wavelet transforms 

(DWT) utilizing the Haar wavelet to yield both approximations and details. To ensure that no information is 

lost, every detail is then recreated. The minimum Shannon entropy criterion is then used to the reconstructed 

details that were collected to identify the fault frequencies, which are regarded as novel features and then using 

an optimization process. This combination of approaches allows effective feature extraction and structuring. 

Finally those features are applied as a input of four machine learning algorithms: naïve Bayes, support vector 

machine, artificial neural network, and KNN. Because of the success rate of ANN classifier is higher compared 

to other machine learning classifier, The ANN is chosen for further analysis.  

The CWRU bearing dataset, which includes three different types of bearing faults, is employed to 

evaluate the proposed system. To verify the proposed ANN model five scenarios are considered like 

performances of hidden layer, performances of training function, performances of performance function, 

performances of optimized features for elapsed time and error rate, and accuracy for each fault diameters. 

Finally, the proposed system was tested satisfactorily and obtained 99.5%, 98.8%, and 99% accuracy for the 

inner race fault, the ball fault, and the outer race fault, respectively.  

In the real environments of industry, signals are affected by noise. Noise is another problem due to the change 

in working conditions, which reduces the performance of bearing fault diagnosis. The performance in noisy 

situations was investigated in this research using various SNR values. The results of this experiment highlight 

the great reliability of the proposed system in fault diagnosis even in noisy environments. Future research can 

make an effort to employ an automated feature extraction-based deep learning approach, which will analyze 

the performance in different load conditions, and noisy conditions. 
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