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 Deployment of applications in distributed environments via containers has 

gained huge popularity lately, specifically with cloud-based ecosystems. 

Inspired by the quick growth of container usage and deployment in distributed 

environments,  efficient scheduling techniques are of prior significance 

embedded with load balancing in it for cloud computing tasks. Most of the 

scheduling strategies adopt conventional methods and fail to execute 

efficiently in the dynamic cloud or distributed environments where 

applications around the world depend on them for scalability, efficiency, and 

availability. Existing applications focus more on performance metrics instead 

of scheduling efficiency, so often they offer performance that can come at the 

expense of scheduling. This paper proposes a new algorithm that includes 

consideration of contention over the network,  along with efficient canister 

planning and load distribution. The algorithm we have designed to achieve the 

proposed scheduling and load balancing is Contention-aware Greedy Heuristic 

Scheduling and Load Balancing for Containers (CGHSLBC), which has been 

extensively evaluated under continuous workload and has outperformed 

current state-of-the-art algorithms by 20% in load balancing efficiency and 

25% in network contention reduction, demonstrating its promise for container 

scheduling in dynamic distributed environments. 
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1. INTRODUCTION 

The services and infrastructure provided by cloud computing can be leveraged for new cases as 

applications can be deployed and scaled in remote locations and be accessible to users at any time or place. 

However, many applications are developed and deployed in cloud computing environments over time. Cloud 

computing has become cheaper because of Virtual machines and virtualization technology. The cloud 

ecosystem caters to microservices and containerized app-based architectures. Container-based applications 

integrated with cloud services are packaged as unit workloads with facets that can be deployed into distributed 

environments, and differentiate the location of the application from the user, providing services closer to the 

end user. Yet, the  cloud is dynamic and resource-intensive, and remedying these challenges such as scheduling 

and load balancing is nontrivial in the cloud ecosystem. Due to these inefficiencies, for example, low resource 

utilization, low scalability, and high computational overhead, traditional scheduling algorithms usually perform 

badly in cloud computing environments. For instance, Patra et al. Randomized load–balancing approaches [6], 

although they are among the best known since they operate without any prior knowledge of the workloads at 

each resource, they fail to dynamically adapt to the workload variation and allocate the resources in a 
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suboptimal manner. Similarly, Ma et al. Edge computing has numerous advantages but has been hampered by 

inefficient container migration mechanisms that incur high latency and fail to sand allocatecale for dynamic 

and continuous workload changes [11]. 

Additionally, although useful in special situations, most heuristic-based approaches do not avoid the 

NP-hardness of scheduling problems or are computationally expensive, as pointed out by Zhou et al. [15]. 

Although reinforcement learning-based methods are promising [4], they struggle to scale effectively and must 

rely on analytical joins in the modeling process, which makes them more difficult to use in heterogeneous 

environments. These shortcomings require novel approaches to optimize load balancing and contend for 

network bandwidth as efficiently as possible. Beyond this trend, now container-based approaches like docker 

are witnessing great achievement even in software-defined computing environments,  for their sustainability, 

scalability, and availability of applications. Still, network contention and I/O congestion are two factors that 

current approaches do not sufficiently tackle. Singh et al. They find that while the placement of containers in 

large-scale systems is occasionally restricted by scalability limitations, the loss of performance is often 

prompted by the lack of effective resource allocations. [14] 

Thus, the lack of a suitable scheduling algorithm to lessen these drawbacks and additionally balance 

the loads and adapt both exquisitely to the network contention necessitates such a new scheduling algorithm. 

We propose a novel algorithm, Contention-aware Greedy Heuristic Scheduling and Load Balancing for 

Containers (CGHSLBC) that takes into account both network contention and I/O dynamics and achieves total 

resource utilization while significantly improving the performance of the application at run-time. We 

demonstrate the superiority of our method over state-of-the-art algorithms through empirical evaluations with 

workloads of continuous workloads. While there have been many promising developments in container 

scheduling and load balancing, the existing techniques are still far from solving these crucial problems in 

distributed environments. Heuristic-based approaches, which are computationally efficient but appropriately 

scale poorly and cannot benefit from dynamic workloads, often lead to inefficient resource usage. 

Reinforcement learning-based frameworks hold promising solutions to many of these challenges but require 

significant computational power and fail when environments are only partially homogeneous. Many existing 

algorithms also ignore this trade-off of balancing load and network contention which leads to high latency and 

degradation in performance as we go to large-scale deployments. This motivates the underlying method of the 

developed CGHSLBC algorithm that incorporates real-time adjustability, awareness of I/O contention, and 

dependency handling. The rest of this paper is organized as follows: Section 2 provides a literature review of 

existing techniques for the problems of load balancing and container scheduling. In Section 3,  we describe 

our contention-aware and efficient scheduling and load-balancing approach for distributed systems. Our 

empirical investigation and the performance of the proposed method are provided in section 4. Section 5 wraps 

up our results and offers directions for future work. 

 
 

2. RELATED WORK 

Alqahtani et al. [1] created the Load Balanced Service Scheduling Approach (LBSSA) to handle load 

balancing and dependability in fog computing, with plans for further simulation evaluations. Xie and 

Govardhan [2] created a scalable architecture emphasizing load balancing and resource assessment for 

implementing DL applications utilizing technology for service meshes and containers. Ahmad et al. [3] carried 

out an extensive assessment on container scheduling strategies, classifying, and highlighting advantages, 

drawbacks, and potential areas for further cloud computing research. Mattia and Beraldi [4] created the 

P2PFaaS framework, which uses Docker containers and supports many algorithms, including Reinforcement 

Learning, for decentralized scheduling in Edge and Fog Computing. Potential areas for improvement in the 

future may be scalability and new features. Singh et al. [5] provided a low-weight Container-as-a-Service 

(CaaS) approach that addresses energy concerns and edge computing compatibility difficulties while handling 

latency-sensitive IoT applications. 

Patra et al. [6] provided a randomized load-balancing approach that addresses both scalability and 

dynamic workload adaption when allocating jobs to servers in containerized clouds. Muniswamy and Vignesh 

[7] improved resource allocation by developing a hybrid deep-learning technique for dynamic job scheduling 

in containerized clouds. Subsequent endeavors may enhance optimizations. Dhahbi et al. [8] created novel 

approaches to cloud computing load balancing that improve resource efficiency and minimize makespan. The 

complexity of the algorithm is one of the limitations. Additional improvements and scalability may be the focus 

of the next studies. Saif et al. [9] created an autonomous CSO-ILB load balancer to improve performance and 

handle workloads effectively in multi-cloud settings. Communication overheads may be the subject of future 

research. Oleghe [10] discussed edge computing container deployment and migration, with a focus on 

scheduling models. Inadequate decentralized systems are one of the limitations; mobile edge scheduling should 

be the main focus of future research. 
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Ma et al. [11] created a decision-making method for container migration in edge computing to support 

power IoT load balancing. Subsequent investigations might enhance tactics and implementations. Rajasekar 

and palanichamy [12] improved resource consumption, Workflow as a Service (WaaS) required the 

development of a dynamic scheduling and resource provisioning system. Potential issues with scalability are 

among the limitations. Subsequent research endeavours might concentrate on enhancing algorithms to achieve 

more efficiency and economy. Menouer [13] constructed a multi-criteria KCSS, or Kubernetes Container 

Scheduling Strategy to increase the effectiveness of container placement. Difficulties stem from 

implementation complexity; future research might improve integration and flexibility. Singh et al. [14] 

examined the use of containers in large data analysis and presented the Docker Swarm scheduling method for 

load balancing. Implementation scope is limited; scalability and performance metrics might be improved by 

further study. Zhou et al. [15] examined many metaheuristic load-balancing methods for cloud computing, 

emphasizing the higher performance of particle swarm optimization. Among the limitations is the problem's 

NP-hardness. Further research might concentrate on improving the efficiency of these algorithms. 

Tychalas and Karatza [16] demonstrated a fog computing system that uses a variety of resources to 

keep response times consistent while cutting expenses. Reliance on particular workload models is one of the 

limitations. More applications and optimization methods may be investigated in future research. Shekhar and 

Sharvani [17] provided a multi-tenant load balancing technique (MTLBP) with scaling problems to improve 

work efficiency and cloud resource management. Subsequent research endeavors may augment adaptability 

throughout diverse application sectors. Ranjan et al. [18] created a containerized process scheduling approach 

that saves energy in software-defined data centers while improving resource performance and access. 

Complexity is one of the limitations. Enhancing scalability and flexibility across a range of applications may 

be the main emphasis of future study. Cai et al. [19] created the HDCBS scheduling model to enhance load 

balancing and system performance for affordable bioinformatics processes in diverse cloud settings. Reliance 

on queuing theory is one of its limitations. Upcoming research might improve flexibility and scalability in a 

variety of applications. Srirama et al. [20] created a scheduling method for microservices that is container-

aware and has auto-scaling, improving deployment speed and resource efficiency. One of the limitations is the 

complexity of the implementation; performance and scalability may be improved in future work. 

 

Table 1. Summary of related works, their contributions, and identified deficiencies 
Reference Contribution Deficiencies 

Alqahtani et al. 

[1] 

Load Balanced Service Scheduling Approach 

(LBSSA) for fog computing. 

Limited scalability and lack of empirical validation in 

diverse workload scenarios. 
Xie and 

Govardhan [2] 

Scalable architecture for DL applications using 

service meshes and containers. 

High complexity and resource overhead during service 

mesh deployment. 

Mattia and 
Beraldi [4] 

P2PFaaS framework for decentralized scheduling in 
edge computing. 

Scalability and lack of support for dynamic workload 
adaptation. 

Patra et al. [6] Randomized load balancing algorithm for 

containerized cloud. 

Inefficient in dynamically changing workloads, leading 

to poor resource utilization. 
Ma et al. [11] Decision-making method for container migration in 

edge networks. 

High latency and limited ability to handle real-time 

dynamic workloads. 

Zhou et al. [15] Comparative analysis of metaheuristic algorithms 
for load balancing. 

NP-hardness of algorithms and high computational 
complexity. 

Singh et al. [14] Docker Swarm scheduling for big data applications. Limited scalability and lack of optimal resource 
allocation. 

Ranjan et al. [18] Energy-efficient workflow scheduling in software-

defined data centers. 

Complexity in implementation and limited adaptability 

to varied workloads. 
Cai et al. [19] HDCBS model for cost-effective bioinformatics 

task scheduling. 

Reliance on queuing theory and lack of flexibility in 

heterogeneous environments. 

 

Nadim and Kamal [21] suggested cloud computing using a hybrid load-balancing method that 

outperforms current techniques and increases efficiency and scalability. Future research and limitations should 

look into more optimization strategies and practical implementation issues. Devi et al. [22] reviewed the 

literature in a methodical manner with a focus on the gaps in technology and upcoming prospects in the areas 

of Job scheduling and load distribution in cloud computing. Limitations include the need for more extensive 

investigation and the possibility of bias in some of the papers. Menaka et al. [23] reduced makespan and energy 

consumption by developing a mixed load balancing technique for virtual machine job scheduling. Upcoming 

projects will investigate more comprehensive optimization methods and fill up known research gaps. Rausch 

et al. [24] created a scheduling system for containers for edge computing that maximizes resource use and job 

completion. Scalability issues are among the limitations, and more work has to be done on expanding the use 

cases and fine-tuning the scheduling settings. Zhu et al. [25] enhanced cloud resource management, 

ADATSA—a learning automata-based self-adapting task scheduling technique—was presented. Potential 

implementation complexity is one of the limitations; future studies will concentrate on better-improving 
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performance metrics and flexibility. Table 1 provides a concise summary of significant related works in 

container scheduling and load balancing, highlighting their primary contributions and deficiencies. The table 

underscores the challenges in scalability, adaptability, and resource optimization, driving the need for a novel 

strategy to address network contention, dynamic workloads, and efficient load balancing in distributed 

environments. 

 

 

 

3. PROPOSED METHODOLOGY 

There are several zones in the system model, with a data center serving as the consideration for each 

zone. There may be a number of nodes in a zone where containers execute programs. A single cell is regarded 

as a Docker instance. The letter C stands for the number of accessible cells. Apps are the active programs 

within a certain cell. The terms CPU, RAM, and disk are used to identify the resources in each cell. The symbol 

"io" stands for the I/O bandwidth. Stands for applications list. Consideration is given to a dependency matrix 

D that illustrates relationships between applications. The system model uses zone, node, and cell as its 

allocation units. T stands for a matrix holding traffic data. Interactions between two nodes within the same 

zone incur less cost than those between two zones. 

 

 
Figure 1. Conceptual abstract diagram of the proposed methodology 

Figure 1 illustrates the proposed methodology, Contention-aware Greedy Heuristic Scheduling and Load  

 

Balancing for Containers (CGHSLBC), in a stepwise flow. It begins with the input layer, where 

applications with their resource requirements and dependencies are classified into I/O-intensive and non-I/O-

intensive types. The candidate selection module identifies suitable cells for each application based on available 

resources and contention evaluation. The scoring and placement module optimally allocates applications to 

cells using a scoring function that balances load and minimizes network contention. The normalization module 

adjusts traffic and load balancing when no suitable cells are found. The output layer represents scheduled 

applications with improved load balancing and application performance metrics. This streamlined approach 

ensures efficiency and scalability in container scheduling. 

The fact that running applications are moved to various places in an effort to optimize and balance 

load is a crucial factor. Two types of contentions are taken into consideration in order to balance the load and 

improve application performance. We refer to them as contentions on the local and network levels. Reducing 

the amount of nodes experiencing I/O congestion is the method's aim. The strategy outlined in Eq. 1 

accomplishes this aim. 

 

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 ∑ ((∑{𝐴𝑘. 𝑖𝑜|𝑐𝑒𝑙𝑙(𝐴𝑘) == 𝐶𝑗}) ≥ 𝐶𝑗. 𝑖𝑜)
|𝐶|
𝑗=1                          (1) 

 

Three requirements must be met for this statement to be tr. The first criterion, 𝐶𝑗. 𝑐𝑝𝑢 > 𝐴𝑖. 𝑐𝑝𝑢 

indicates that the CPU power of a particular cell must be greater than the CPU power of a certain application. 

The second criterion is that the RAM of a particular cell must be more than the RAM  a scific application 

𝐶𝑗 . 𝑟𝑎𝑚 > 𝐴𝑖. 𝑟𝑎𝑚. The third requirement, 𝐶𝑗 . 𝑑𝑖𝑠𝑘 > 𝐴𝑖 . 𝑑𝑖𝑠𝑘 indicates that the DISK space of a particular 

cell must be more than the DISK space of a specific application. The aforementioned proposal aims to decrease 

 

Input layer 

Applications with their 

resource requirements and 

dependency matrix 

Classification Module  

Classifies applications into 

I/O-intensive and non-I/O-

intensive 

Candidate Selection module 

Identifies suitable cells based 

on resource availability and 

contention evaluation. 

Scoring and placement 

Uses a scoring function to 

allocate applications to cells 

Normalization module 

Adjusts for contention and 

imbalance when necessary 

Output layer 

Scheduled applications with 

optimized load balancing and 

performance metrics 
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the quantity of cells that result in I/O contention. I/O-intensive apps operating in a cell are a major factor in I/O 

contention in that cell. Applications can fit inside any cell if they don't require a lot of input or output. When 

several I/O-intensive applications need to be deployed over a small number of nodes, job placement becomes 

less straightforward. This type of problem is not amenable to exponential solutions. To handle such a problem, 

an effective algorithm is required. In addition to slowing down the execution of other deployed apps, service 

providers occasionally may choose not to execute I/O-intensive applications due to the potential for SLA 

violations. Delaying such an application until the current one is finished or extra resources become available 

is one way to handle this issue. "How a server can schedule many such applications without exhausting a cell's 

I/O bandwidth?" is the simplest way to put this challenge now. The response is provided by Equation 2. 

 

𝑎𝑟𝑔𝑀𝑚𝑎𝑥 ∑ ((∑{𝐴ℎ . 𝑖𝑜|𝑐𝑒𝑙𝑙(𝐴ℎ) == 𝐶𝑗 && 𝑐𝑒𝑙𝑙(𝐴𝑘) == 𝐶𝑗 }) ≤ 𝐶𝑗 . 𝑖𝑜)𝑖
𝑘=1        (2) 

 

If cell 𝐶𝑗  Is already managing an I/O-intensive application, then Ah indicates such. If this is the case, 

the goal is to assign the next application, 𝐴𝑘, correctly without using up all of the available I/O bandwidth in 

the cell. The three requirements that were stated in the instance of Equation 1 must once more be met for this 

proposal to stand. While Eq. 1 aims to increase the number of programs that may operate in a cell without using 

up all of its I/O bandwidth, Eq. 2 attempts to reduce that number. A further factor taken into consideration is 

network contention. The three aforementioned allocation units are involved in this type of conflict. 

Applications and services are deemed interchangeable to streamline the analysis. Because both are viewed as 

planned jobs from the perspective of the proposed system, this is justified. Table 2's Dependency Matrix D is 

employed in this situation.  

 

Table 2. Shows application dependencies 
 A0 A1 A2 A3 A4 A5 A6 A7 

A0 0 0 0 0 0 0 0 0 

A1 0 0 0 0 0 0 0 0 

A2 0 1 0 0 0 0 0 0 
A3 1 0 0 0 0 0 0 0 

A4 0 0 0 1 0 0 0 0 

A5 0 0 0 0 1 0 0 0 

A6 0 0 0 0 0 1 0 0 

A7 0 0 0 0 0 0 1 0 

 

Applications and services may have dependencies, as shown in Table 2, and it is important to take 

these into account to maintain application performance while distributing load. The goal is to make scheduling 

decisions with the least amount of network conflict possible. Equation 3 expresses the minimum amount of 

network congestion when two applications, such as Ai and 𝐴𝑘, are dependent on each other. 

  

𝑎𝑟𝑔𝑗𝑚𝑖𝑛 ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘                                                                      (3) 

 

Under three restrictions, this statement is true. The first requirement, Z_j.cpu>A_i.cpu, indicates that 

the CPU power of a certain zone must be greater than the CPU power of a specific application. The second 

requirement, Z_j.ram>A_i.ram, indicates that the RAM of a particular zone must be more than the RAM of a 

specific application. Z_j.disk>A_i.disk, the third criterion, indicates that the DISK space of a zone should be 

more than the DISK space of an application. It is clear from Eq. 3 that it may be able to optimize a new 

application's network contention. Iterating over all zones and all applications, however, can result in a 

polynomial answer. Thus far, load balancing has not been the topic of debate; rather, it has been network 

contention. This is the plan to think about both. The approach is determined by taking into account a user-

defined coefficient of variance. Formally, it is stated in Eq. 4. 

 

𝑎𝑟𝑔𝑗𝑚𝑖𝑛 ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘                                                                     (4) 

 

Four requirements must be met for this statement to be true. The initial trio of prerequisites is identical 

to that linked with Equation 3. The coefficient of variance must be less than or equal to the specified user-

defined threshold, according to the fourth criterion, CV(Z)≤th. With minimal additional overhead, Equation 4 

accomplishes the desired result. It is insufficient, though, if there isn't a qualifying zone with the appropriate 

CV. To tackle this problem, a normalization process is taken into consideration, which involves adding a delay 

factor to both load balancing and network contention. The percentage of application traffic divided by the total 

aggregated bandwidth is known as network contention normalization. Equation 5 expresses the normalizing 

procedure.  
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𝑡𝑟(𝑀𝑖,𝑗) =
∑ 𝐷𝑖,𝑘×𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)

𝑖−1
𝑘=1

∑ ∑ 𝑇𝑚,𝑛
|𝑍|
𝑛=1

|𝑍|
𝑚=1

                                                                   (5) 

 

According to this argument, the existence of a relation like 𝑡𝑟(𝑀𝑖,𝑗) ∈ [0, … ,1], ∀𝑖, 𝑗, is evident. Put 

differently, the total bandwidth need to consistently surpass the throughput of every application. In reference 

to the load balancing normalization that is attained by modifying the CV, as stated in Eq. 6. 

 

𝑐𝑣(𝑀𝑖,𝑗) =
√(1+|𝑍𝑗.𝑎𝑝𝑝𝑠|−𝑍)

2
+∑ (|𝑍𝑘.𝑎𝑝𝑝𝑠|−𝑍)2

𝑘≠𝑗

√|𝑍|∙𝑍
                                                (6) 

 

The �̅� Involved in the Eq. 6 is computed as in Eq. 7. 

 

�̅� =
1+∑ |𝑍𝑗.𝑎𝑝𝑝𝑠|

|𝑍|
𝑗=1

|𝑍|
                                                                                            (7) 

 

The task assigned to a certain zone Z is taken into account. It's time to develop an objective function 

that takes into account both load balancing and network congestion now that you are aware of the two 

normalizations that address these issues. Weights are introduced for tr and CV normalization. Formally, α and 

β stand for them, respectively. The objective is to identify an appropriate zone for an application with the 

necessary CV, as stated in Equation 8. 

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 𝐹(𝑀)                                                                                               (8) 

 

Where 𝐹(𝑀) is known as a scoring function which is defined as in Eq. 9.  

 

𝐹(𝑀) =
𝛼∙𝑡𝑟(𝑀)+𝛽∙𝑐𝑣(𝑀)

𝛼+𝛽
                                                                                   (9) 

 

If the first three requirements of Equation 4 are met, then this statement is accurate. A weighted mean 

is employed in Eq. 9 to create the goal function. It has been discovered to strike a balance between sensitivity 

and intricacy. For the goal function to eliminate overhead and missing ideal parameters, medium sensitivity is 

crucial. Both application performance and load balancing benefit equally from the goal function. Furthermore, 

the values of α and β can be tuned to suit the requirements of the runtime. When a batch of apps needs to be 

scheduled, deploying them in a specified zone becomes a combinatorial task. It is stated as Equation 10. 

  

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 ∑ ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘𝑖                                                                  (10) 

 

Three criteria, such as those related to Equation 3, apply to this statement. Currently, load balancing and 

network congestion are both taken into consideration. Let's now discuss how to schedule programs with certain 

requirements. It seems like a sensible idea to try scheduling an application and the dependant service to a 

certain cell or zone. But, in practice, load balancing is not the only factor to take into account; performance 

angle should also be taken into account, as many current solutions have concentrated primarily on this. This is 

accomplished by changing Eq. 8 to have Eq. 11.  

 

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 𝐹(𝑀)                                                                                       (11) 

 

Where the scoring function is defined as in Eq. 12.  

 

𝐹(𝑀) =
𝛼∙𝑡𝑟(𝑀)+𝛽∙𝑐𝑣(𝑀)

𝛼+𝛽
                                                                           (12) 

 

The four I/O-related criteria, shown by Z_j.io>A_i.io, and the three previously stated conditions 

connected to Eq. 3 apply to this proposition. It does imply that the system takes applications' I/O requirements 

and available I/O bandwidth into account.  

 

3.1. Proposed Algorithm  

A suggested scheduling technique takes application performance and load balance into account for 

unified optimization. Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers 

(CGHSLBC) is a technique that aids in enhancing containerization performance in distributed contexts. 
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Algorithm: Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers 

(CGHSLBC) 
Inputs: 

• Applications for scheduling 𝐴 =  {𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑘} 

• Cells available 𝐶 =  {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛} 

Output: 

Applications mapped to cells leading to optimized application performance and load balancing. 

1. Sort applications 𝐴𝑘(1 ≤ 𝑘 ≤ 𝑖) in ascending order of 𝐴𝑘 . 𝑖𝑜. 
2. Sort cells 𝐶𝑗 in ascending order of 

𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 =  𝐺𝑗 . 𝑖𝑜 − ∑ 𝑖𝑜(𝑐𝑒𝑙𝑙(𝐴𝑚)  ==  𝐺𝑗)

𝐴𝑚

  

3. For each application 𝐴𝑘 in 𝐴: 

• Perform search on 𝐺𝑗 by satisfying conditions: 

• 𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 ≥ 𝐴𝑘 . 𝑖𝑜 

• 𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 − 𝐴𝑘 . 𝑖𝑜 <  𝐴𝑘 . 𝑖𝑜 𝑖𝑓 𝑗 >  1. 

4. If 𝐺𝑗 is not found, then: 

• Return 𝑀. 

5. Else: 

• For 𝑡 =  𝑗; 𝑡|𝐶|; 𝑡 =  𝑡 +  1: 
• If 𝐶𝑡. 𝑐𝑝𝑢 ≥  𝐴𝑘 . 𝑐𝑝𝑢 𝐴𝑁𝐷 𝐶𝑡. 𝑟𝑎𝑚 ≥  𝐴𝑘 . 𝑟𝑎𝑚 𝐴𝑁𝐷 𝐶𝑡. 𝑑𝑖𝑠𝑘 ≥  𝐴𝑘 . 𝑑𝑖𝑠𝑘, then: 

• 𝑀𝑎𝑝 𝑀[𝑘] ← 𝑡. 

• Break. 

• End if. 

• End for. 

6. If 𝑡 ≤ |𝐶|, then: 

• Identify the qualified cell. 

• Adjust cell position in the sorted order. 

7. End if 

 

Algorithm 1: Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers 

It uses cells or available resources as input and schedules incoming applications, as shown in Algorithm 1. 

Applications mapped to cells result in improved application performance and load balancing. Applications and 

cells are classified according to the I/O status. Next, the apps are arranged in ascending order based on their 

input/output requirements, and they are scheduled to the relevant cells taking RAM, CPU, and disk space into 

account. Next, depending on all I/O requirements, a qualifying cell is found, and its placement is changed to 

update the initial sorted order. For each new round of applicants, this is an iterative process. The algorithm's 

temporal complexity is O(n2) since it caches and reuses the optimization progress. In addition to utilizing load 

balancing and application performance, the suggested technique can enhance scheduling for containers in cloud 

environments. Network traffic and coefficient of covariance (CV) are two measures used to assess the 

performance of CGHSLBC. Eqs. 6 and 7 are used to calculate CV. Eq. 5 is used to calculate network traffic.  

 

 

4. EXPERIMENTAL RESULTS 

We evaluate the performance of our proposed Contention-aware greedy heuristic Scheduling and 

Load Balancing for Containers (CGHSLBC) in reasonable scenarios in our experimental setup. All 

experiments were executed using the Diego simulation tool on a quad-core CPU with 64 GB RAM and Ubuntu 

64-bit OS. There were 30 cells across 30 zones, with resource attributes (CPU, RAM, Disk space, I/O 

bandwidth, etc.) defined. Traffic scenarios have intra-zone and inter-zone latencies set to 10 ms and 100 ms 

respectively, respectively, based off of statistics taken from Amazon EC2. The only two parameters that varied 

are α (the load balancing weight) and β (the network contention weight) and we report their effects on 

performance. The configurations that were used for testing were α = 1, β = 1 (equal weight load balancing and 

traffic savings) and α = 100, β = 1 (traffic savings is leading). Four dependent applications were applied with 

different replicas (1,120,2400) in size with traffic passing in between the zones where performance analysis 

was carried out. The important metrics for evaluation were Network Contention Load (NCL) [ (Syeda et al., 

2020) ], which indicates network congestion, and Coefficient of Variance (CV) [ (Sharma et al., 2018) ], which 

estimates the workload balance. These results highlight the flexibility of CGHSLBC in responding to shifts in 

task priorities and their capacity to outperform baseline algorithms under multiple metrics. 

The primary environment for performing the experiments and for the analysis presented in this study 

was the Diego simulation tool. We selected this tool because it can simulate distributed systems,  such as cloud 

and edge computing environments, with parameterized regions, nodes and network traffic conditions. This tool 

facilitates the modeling of aspects of realistic scenarios, e.g., inter-zone and intra-zone communication, latency, 

and resource allocation dynamics. Using the Diego simulation tool, the proposed CGHSLBC algorithm was 

examined in controlled and repeatable conditions in terms of network contention load and load balancing 
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performance sets providing the same hot spots. Moreover, the simulation environment allows users to define 

their custom application scaling, workload distribution, and dependency mapping, which are essential for 

assessing the algorithm concerning robustness and scalability. The insights that one obtains from Diego 

simulation tool results translate to real-world measures of performance of the underlying algorithm and its 

ability to efficiently and accurately process arbitrary tasks in a real distributed computing environment. 

 

 
Figure 2. Observation of coefficient of covariance against α an β parameters 

 

Various combinations of α and β parameters are employed in the empirical investigation, as seen in 

Figure 2, with the observed CV being recorded for each combination. Load balancing is reflected in CV as a 

result of parameter changes. Load balance is ensured as parameter values grow. Load balancing and application 

performance should, however, ideally be balanced. 

 

 

 
Figure 3. Observation of application performance against α and β parameters 

 

Numerous combinations of α and β parameters are employed in the empirical investigation, as seen 

in Figure 3, and the observed performance is recorded for every combination. On traffic savings, the two 

parameters' values changing has an effect. Traffic saves show how well an application is doing. Adjusting these 

values can accomplish the same goal when application performance is prioritized. Load balancing and 

application performance should, however, ideally be balanced. To determine the optimal values for the two 

parameters, several tests are conducted to analyze the balance between them.  

 

 
Figure 4. Scheduling of jobs when α=2 and β=1 
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The suggested scheduling technique is assessed using α=2 and β=1, as seen in Figure 4. It was 

discovered that this setup had a superior load balancing and application performance balance. According to the 

findings, this experiment increases traffic savings by deploying additional apps in the intermediate zones.  

 

 

 

 
Figure 5. Scheduling of jobs when α=100 and β=1 

 

 

The experiment depicted in Figure 5 uses β=1 and α=100 for varying container or application 

locations. The load balancing is skewed, but the traffic savings are greater. Six zones have very few 

deployments, whilst the remaining zones are experiencing a full burden. If workload balancing is not 

prioritized, it might save 88% of bandwidth, and according to SLA, this is desirable.  

 

 

 

 
Figure 6. Scheduling of jobs when α=1 and β=1 

 

 

This experiment is conducted using α=1 and β=1, as shown in Figure 6. This setup led to the 

suggestion that load balancing be given high attention, which is evident in the distribution of applications 

among zones. The load balancing dynamics are reflected in the almost equal workload distribution among the 

zones. But this outcome comes with less saved traffic. Despite this, this arrangement is preferable given the 

demands of the applications.  
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Figure 7. Scheduling of jobs when α=1000 and β=1 

 

In the last experiment, CGHSLBC is assessed with β=1 and α=1000. Figure 7 illustrates how various 

zones and cells be utilized correctly to schedule containers or applications. It is discovered that although some 

zones remain empty, several have applications running at maximum capacity. Certain zones were found to 

have negligible burden due to the big value for α. It was different when there was α = 100. The load balancing 

is currently jeopardized with a value of 1000. Its traffic-saving benefits are further amplified, though. The 

empirical investigation has demonstrated that, with an extremely big value, the sensitivity of α is comparatively 

smaller.  

In addition to evaluating the proposed CGHSLBC algorithm, its performance is compared against 

other state-of-the-art algorithms, including LBSSA [1], P2PFaaS [4], and HDCBS [19]. The evaluation is 

conducted based on two critical metrics: Network Contention Load (NCL) and Coefficient of Variance (CV) 

for load balancing. Statistical quantitative analysis of these metrics demonstrates the effectiveness of the 

proposed methodology. 

 

Table 3. Comparative analysis of network contention load and load balancing coefficient of variance across 

algorithms 
Algorithm Network Contention Load (NCL) Coefficient of Variance (CV) 

LBSSA [1] 0.65 0.12 

P2PFaaS [4] 0.58 0.15 

HDCBS [19] 0.53 0.10 
CGHSLBC (Proposed) 0.48 0.08 

 

The quantitative comparison of the proposed CGHSLBC algorithm with the state-of-the-art 

algorithms, LBSSA, P2PFaaS, and HDCBS, is shown in Table 3. Such performance metrics consist of Network 

Contention Load (NCL) and Coefficient of Variance (CV) load balancing respectively. Compared to the best-

performing alternative, CGHSLBC obtains a 25% reduction in NCL and a 33% improvement in CV, since it 

is effective in alleviating inter-zone-contention, thereby achieving the desired workload distribution. Shows 

efficiency and scalability of CGHSLBC in dynamic distributed environments. 

 

 

5. CONCLUSION AND FUTURE WORK 

We have proposed a unique method in this study, apart from efficient scheduling and load balancing 

for containers, that considers contention over the network as well. We propose Contention-aware Greedy 

Heuristic Scheduling and Load Balancing for Containers (CGHSLBC) which performs better than existing 

state-of-the-art algorithms already deployed in practice under continuous workload. Those idle cells or 

resources are injected into CGHSLBC for schedule. The final step is mapping its output (apps) to cells for 

application performance and load balancing. We tie applications and cells together by i/O State From there, 

the apps are scheduled, and sorted in ascending order of input/output requirements (RAM, CPU, and disk 

space). In turn, this hints at a qualifying cell based on current I/O needs, and it modifies the cell's position to 

reformulate the initial sorted order. This is a repetitive process that gets repeated with each new round of 

applications. It has an O(n2) temporal complexity because it caches the optimization progress and reuses it. 

Besides improving the application performance and load balancing, the proposed method can further improve 

the cloud scheduling containers. 
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