
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)

Vol. 13, No. 1, March 2025, pp. 184~195

ISSN: 2089-3272, DOI: 10.52549/ijeei.v13i1.5938 184

Journal homepage: http://section.iaesonline.com/index.php/IJEEI/index

A Novel Methodology for Container Scheduling and Load

Balancing in Distributed Environments

Saravanan.M.S1 Neelima Gogineni2
1Professor, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of

Medical and Technical Sciences, Chennai – 602105 Tamilnadu. India.
2Research Scholar, Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha

Institute of Medical and Technical Sciences Chennai – 602105, Tamilnadu. India.

Article Info ABSTRACT

Article history:

Received Oct 4, 2024

Revised Dec 19, 2024

Accepted Jan 9, 2025

 Deployment of applications in distributed environments via containers has

gained huge popularity lately, specifically with cloud-based ecosystems.

Inspired by the quick growth of container usage and deployment in distributed

environments, efficient scheduling techniques are of prior significance

embedded with load balancing in it for cloud computing tasks. Most of the

scheduling strategies adopt conventional methods and fail to execute

efficiently in the dynamic cloud or distributed environments where

applications around the world depend on them for scalability, efficiency, and

availability. Existing applications focus more on performance metrics instead

of scheduling efficiency, so often they offer performance that can come at the

expense of scheduling. This paper proposes a new algorithm that includes

consideration of contention over the network, along with efficient canister

planning and load distribution. The algorithm we have designed to achieve the

proposed scheduling and load balancing is Contention-aware Greedy Heuristic

Scheduling and Load Balancing for Containers (CGHSLBC), which has been

extensively evaluated under continuous workload and has outperformed

current state-of-the-art algorithms by 20% in load balancing efficiency and

25% in network contention reduction, demonstrating its promise for container

scheduling in dynamic distributed environments.

Keyword:

Container Scheduling,

Load Balancing,

Distributed Computing,

Cloud Computing

Copyright © 2025 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Saravanan.M.S

Professor, Department of Computer Science and Engineering,

Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,

Chennai – 602105 Tamilnadu. India.

Email: saravananms@saveetha.com

1. INTRODUCTION

The services and infrastructure provided by cloud computing can be leveraged for new cases as

applications can be deployed and scaled in remote locations and be accessible to users at any time or place.

However, many applications are developed and deployed in cloud computing environments over time. Cloud

computing has become cheaper because of Virtual machines and virtualization technology. The cloud

ecosystem caters to microservices and containerized app-based architectures. Container-based applications

integrated with cloud services are packaged as unit workloads with facets that can be deployed into distributed

environments, and differentiate the location of the application from the user, providing services closer to the

end user. Yet, the cloud is dynamic and resource-intensive, and remedying these challenges such as scheduling

and load balancing is nontrivial in the cloud ecosystem. Due to these inefficiencies, for example, low resource

utilization, low scalability, and high computational overhead, traditional scheduling algorithms usually perform

badly in cloud computing environments. For instance, Patra et al. Randomized load–balancing approaches [6],

although they are among the best known since they operate without any prior knowledge of the workloads at

each resource, they fail to dynamically adapt to the workload variation and allocate the resources in a

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

185

suboptimal manner. Similarly, Ma et al. Edge computing has numerous advantages but has been hampered by

inefficient container migration mechanisms that incur high latency and fail to sand allocatecale for dynamic

and continuous workload changes [11].

Additionally, although useful in special situations, most heuristic-based approaches do not avoid the

NP-hardness of scheduling problems or are computationally expensive, as pointed out by Zhou et al. [15].

Although reinforcement learning-based methods are promising [4], they struggle to scale effectively and must

rely on analytical joins in the modeling process, which makes them more difficult to use in heterogeneous

environments. These shortcomings require novel approaches to optimize load balancing and contend for

network bandwidth as efficiently as possible. Beyond this trend, now container-based approaches like docker

are witnessing great achievement even in software-defined computing environments, for their sustainability,

scalability, and availability of applications. Still, network contention and I/O congestion are two factors that

current approaches do not sufficiently tackle. Singh et al. They find that while the placement of containers in

large-scale systems is occasionally restricted by scalability limitations, the loss of performance is often

prompted by the lack of effective resource allocations. [14]

Thus, the lack of a suitable scheduling algorithm to lessen these drawbacks and additionally balance

the loads and adapt both exquisitely to the network contention necessitates such a new scheduling algorithm.

We propose a novel algorithm, Contention-aware Greedy Heuristic Scheduling and Load Balancing for

Containers (CGHSLBC) that takes into account both network contention and I/O dynamics and achieves total

resource utilization while significantly improving the performance of the application at run-time. We

demonstrate the superiority of our method over state-of-the-art algorithms through empirical evaluations with

workloads of continuous workloads. While there have been many promising developments in container

scheduling and load balancing, the existing techniques are still far from solving these crucial problems in

distributed environments. Heuristic-based approaches, which are computationally efficient but appropriately

scale poorly and cannot benefit from dynamic workloads, often lead to inefficient resource usage.

Reinforcement learning-based frameworks hold promising solutions to many of these challenges but require

significant computational power and fail when environments are only partially homogeneous. Many existing

algorithms also ignore this trade-off of balancing load and network contention which leads to high latency and

degradation in performance as we go to large-scale deployments. This motivates the underlying method of the

developed CGHSLBC algorithm that incorporates real-time adjustability, awareness of I/O contention, and

dependency handling. The rest of this paper is organized as follows: Section 2 provides a literature review of

existing techniques for the problems of load balancing and container scheduling. In Section 3, we describe

our contention-aware and efficient scheduling and load-balancing approach for distributed systems. Our

empirical investigation and the performance of the proposed method are provided in section 4. Section 5 wraps

up our results and offers directions for future work.

2. RELATED WORK

Alqahtani et al. [1] created the Load Balanced Service Scheduling Approach (LBSSA) to handle load

balancing and dependability in fog computing, with plans for further simulation evaluations. Xie and

Govardhan [2] created a scalable architecture emphasizing load balancing and resource assessment for

implementing DL applications utilizing technology for service meshes and containers. Ahmad et al. [3] carried

out an extensive assessment on container scheduling strategies, classifying, and highlighting advantages,

drawbacks, and potential areas for further cloud computing research. Mattia and Beraldi [4] created the

P2PFaaS framework, which uses Docker containers and supports many algorithms, including Reinforcement

Learning, for decentralized scheduling in Edge and Fog Computing. Potential areas for improvement in the

future may be scalability and new features. Singh et al. [5] provided a low-weight Container-as-a-Service

(CaaS) approach that addresses energy concerns and edge computing compatibility difficulties while handling

latency-sensitive IoT applications.

Patra et al. [6] provided a randomized load-balancing approach that addresses both scalability and

dynamic workload adaption when allocating jobs to servers in containerized clouds. Muniswamy and Vignesh

[7] improved resource allocation by developing a hybrid deep-learning technique for dynamic job scheduling

in containerized clouds. Subsequent endeavors may enhance optimizations. Dhahbi et al. [8] created novel

approaches to cloud computing load balancing that improve resource efficiency and minimize makespan. The

complexity of the algorithm is one of the limitations. Additional improvements and scalability may be the focus

of the next studies. Saif et al. [9] created an autonomous CSO-ILB load balancer to improve performance and

handle workloads effectively in multi-cloud settings. Communication overheads may be the subject of future

research. Oleghe [10] discussed edge computing container deployment and migration, with a focus on

scheduling models. Inadequate decentralized systems are one of the limitations; mobile edge scheduling should

be the main focus of future research.

 ISSN: 2089-3272

IJEEI, Vol. 13, No. 1, March 2025: 184 – 195

186

Ma et al. [11] created a decision-making method for container migration in edge computing to support

power IoT load balancing. Subsequent investigations might enhance tactics and implementations. Rajasekar

and palanichamy [12] improved resource consumption, Workflow as a Service (WaaS) required the

development of a dynamic scheduling and resource provisioning system. Potential issues with scalability are

among the limitations. Subsequent research endeavours might concentrate on enhancing algorithms to achieve

more efficiency and economy. Menouer [13] constructed a multi-criteria KCSS, or Kubernetes Container

Scheduling Strategy to increase the effectiveness of container placement. Difficulties stem from

implementation complexity; future research might improve integration and flexibility. Singh et al. [14]

examined the use of containers in large data analysis and presented the Docker Swarm scheduling method for

load balancing. Implementation scope is limited; scalability and performance metrics might be improved by

further study. Zhou et al. [15] examined many metaheuristic load-balancing methods for cloud computing,

emphasizing the higher performance of particle swarm optimization. Among the limitations is the problem's

NP-hardness. Further research might concentrate on improving the efficiency of these algorithms.

Tychalas and Karatza [16] demonstrated a fog computing system that uses a variety of resources to

keep response times consistent while cutting expenses. Reliance on particular workload models is one of the

limitations. More applications and optimization methods may be investigated in future research. Shekhar and

Sharvani [17] provided a multi-tenant load balancing technique (MTLBP) with scaling problems to improve

work efficiency and cloud resource management. Subsequent research endeavors may augment adaptability

throughout diverse application sectors. Ranjan et al. [18] created a containerized process scheduling approach

that saves energy in software-defined data centers while improving resource performance and access.

Complexity is one of the limitations. Enhancing scalability and flexibility across a range of applications may

be the main emphasis of future study. Cai et al. [19] created the HDCBS scheduling model to enhance load

balancing and system performance for affordable bioinformatics processes in diverse cloud settings. Reliance

on queuing theory is one of its limitations. Upcoming research might improve flexibility and scalability in a

variety of applications. Srirama et al. [20] created a scheduling method for microservices that is container-

aware and has auto-scaling, improving deployment speed and resource efficiency. One of the limitations is the

complexity of the implementation; performance and scalability may be improved in future work.

Table 1. Summary of related works, their contributions, and identified deficiencies
Reference Contribution Deficiencies

Alqahtani et al.

[1]

Load Balanced Service Scheduling Approach

(LBSSA) for fog computing.

Limited scalability and lack of empirical validation in

diverse workload scenarios.
Xie and

Govardhan [2]

Scalable architecture for DL applications using

service meshes and containers.

High complexity and resource overhead during service

mesh deployment.

Mattia and
Beraldi [4]

P2PFaaS framework for decentralized scheduling in
edge computing.

Scalability and lack of support for dynamic workload
adaptation.

Patra et al. [6] Randomized load balancing algorithm for

containerized cloud.

Inefficient in dynamically changing workloads, leading

to poor resource utilization.
Ma et al. [11] Decision-making method for container migration in

edge networks.

High latency and limited ability to handle real-time

dynamic workloads.

Zhou et al. [15] Comparative analysis of metaheuristic algorithms
for load balancing.

NP-hardness of algorithms and high computational
complexity.

Singh et al. [14] Docker Swarm scheduling for big data applications. Limited scalability and lack of optimal resource
allocation.

Ranjan et al. [18] Energy-efficient workflow scheduling in software-

defined data centers.

Complexity in implementation and limited adaptability

to varied workloads.
Cai et al. [19] HDCBS model for cost-effective bioinformatics

task scheduling.

Reliance on queuing theory and lack of flexibility in

heterogeneous environments.

Nadim and Kamal [21] suggested cloud computing using a hybrid load-balancing method that

outperforms current techniques and increases efficiency and scalability. Future research and limitations should

look into more optimization strategies and practical implementation issues. Devi et al. [22] reviewed the

literature in a methodical manner with a focus on the gaps in technology and upcoming prospects in the areas

of Job scheduling and load distribution in cloud computing. Limitations include the need for more extensive

investigation and the possibility of bias in some of the papers. Menaka et al. [23] reduced makespan and energy

consumption by developing a mixed load balancing technique for virtual machine job scheduling. Upcoming

projects will investigate more comprehensive optimization methods and fill up known research gaps. Rausch

et al. [24] created a scheduling system for containers for edge computing that maximizes resource use and job

completion. Scalability issues are among the limitations, and more work has to be done on expanding the use

cases and fine-tuning the scheduling settings. Zhu et al. [25] enhanced cloud resource management,

ADATSA—a learning automata-based self-adapting task scheduling technique—was presented. Potential

implementation complexity is one of the limitations; future studies will concentrate on better-improving

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

187

performance metrics and flexibility. Table 1 provides a concise summary of significant related works in

container scheduling and load balancing, highlighting their primary contributions and deficiencies. The table

underscores the challenges in scalability, adaptability, and resource optimization, driving the need for a novel

strategy to address network contention, dynamic workloads, and efficient load balancing in distributed

environments.

3. PROPOSED METHODOLOGY

There are several zones in the system model, with a data center serving as the consideration for each

zone. There may be a number of nodes in a zone where containers execute programs. A single cell is regarded

as a Docker instance. The letter C stands for the number of accessible cells. Apps are the active programs

within a certain cell. The terms CPU, RAM, and disk are used to identify the resources in each cell. The symbol

"io" stands for the I/O bandwidth. Stands for applications list. Consideration is given to a dependency matrix

D that illustrates relationships between applications. The system model uses zone, node, and cell as its

allocation units. T stands for a matrix holding traffic data. Interactions between two nodes within the same

zone incur less cost than those between two zones.

Figure 1. Conceptual abstract diagram of the proposed methodology

Figure 1 illustrates the proposed methodology, Contention-aware Greedy Heuristic Scheduling and Load

Balancing for Containers (CGHSLBC), in a stepwise flow. It begins with the input layer, where

applications with their resource requirements and dependencies are classified into I/O-intensive and non-I/O-

intensive types. The candidate selection module identifies suitable cells for each application based on available

resources and contention evaluation. The scoring and placement module optimally allocates applications to

cells using a scoring function that balances load and minimizes network contention. The normalization module

adjusts traffic and load balancing when no suitable cells are found. The output layer represents scheduled

applications with improved load balancing and application performance metrics. This streamlined approach

ensures efficiency and scalability in container scheduling.

The fact that running applications are moved to various places in an effort to optimize and balance

load is a crucial factor. Two types of contentions are taken into consideration in order to balance the load and

improve application performance. We refer to them as contentions on the local and network levels. Reducing

the amount of nodes experiencing I/O congestion is the method's aim. The strategy outlined in Eq. 1

accomplishes this aim.

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 ∑ ((∑{𝐴𝑘. 𝑖𝑜|𝑐𝑒𝑙𝑙(𝐴𝑘) == 𝐶𝑗}) ≥ 𝐶𝑗. 𝑖𝑜)
|𝐶|
𝑗=1 (1)

Three requirements must be met for this statement to be tr. The first criterion, 𝐶𝑗. 𝑐𝑝𝑢 > 𝐴𝑖. 𝑐𝑝𝑢

indicates that the CPU power of a particular cell must be greater than the CPU power of a certain application.

The second criterion is that the RAM of a particular cell must be more than the RAM a scific application

𝐶𝑗 . 𝑟𝑎𝑚 > 𝐴𝑖. 𝑟𝑎𝑚. The third requirement, 𝐶𝑗 . 𝑑𝑖𝑠𝑘 > 𝐴𝑖 . 𝑑𝑖𝑠𝑘 indicates that the DISK space of a particular

cell must be more than the DISK space of a specific application. The aforementioned proposal aims to decrease

Input layer

Applications with their

resource requirements and

dependency matrix

Classification Module

Classifies applications into

I/O-intensive and non-I/O-

intensive

Candidate Selection module

Identifies suitable cells based

on resource availability and

contention evaluation.

Scoring and placement

Uses a scoring function to

allocate applications to cells

Normalization module

Adjusts for contention and

imbalance when necessary

Output layer

Scheduled applications with

optimized load balancing and

performance metrics

 ISSN: 2089-3272

IJEEI, Vol. 13, No. 1, March 2025: 184 – 195

188

the quantity of cells that result in I/O contention. I/O-intensive apps operating in a cell are a major factor in I/O

contention in that cell. Applications can fit inside any cell if they don't require a lot of input or output. When

several I/O-intensive applications need to be deployed over a small number of nodes, job placement becomes

less straightforward. This type of problem is not amenable to exponential solutions. To handle such a problem,

an effective algorithm is required. In addition to slowing down the execution of other deployed apps, service

providers occasionally may choose not to execute I/O-intensive applications due to the potential for SLA

violations. Delaying such an application until the current one is finished or extra resources become available

is one way to handle this issue. "How a server can schedule many such applications without exhausting a cell's

I/O bandwidth?" is the simplest way to put this challenge now. The response is provided by Equation 2.

𝑎𝑟𝑔𝑀𝑚𝑎𝑥 ∑ ((∑{𝐴ℎ . 𝑖𝑜|𝑐𝑒𝑙𝑙(𝐴ℎ) == 𝐶𝑗 && 𝑐𝑒𝑙𝑙(𝐴𝑘) == 𝐶𝑗 }) ≤ 𝐶𝑗 . 𝑖𝑜)𝑖
𝑘=1 (2)

If cell 𝐶𝑗 Is already managing an I/O-intensive application, then Ah indicates such. If this is the case,

the goal is to assign the next application, 𝐴𝑘, correctly without using up all of the available I/O bandwidth in

the cell. The three requirements that were stated in the instance of Equation 1 must once more be met for this

proposal to stand. While Eq. 1 aims to increase the number of programs that may operate in a cell without using

up all of its I/O bandwidth, Eq. 2 attempts to reduce that number. A further factor taken into consideration is

network contention. The three aforementioned allocation units are involved in this type of conflict.

Applications and services are deemed interchangeable to streamline the analysis. Because both are viewed as

planned jobs from the perspective of the proposed system, this is justified. Table 2's Dependency Matrix D is

employed in this situation.

Table 2. Shows application dependencies
 A0 A1 A2 A3 A4 A5 A6 A7

A0 0 0 0 0 0 0 0 0

A1 0 0 0 0 0 0 0 0

A2 0 1 0 0 0 0 0 0
A3 1 0 0 0 0 0 0 0

A4 0 0 0 1 0 0 0 0

A5 0 0 0 0 1 0 0 0

A6 0 0 0 0 0 1 0 0

A7 0 0 0 0 0 0 1 0

Applications and services may have dependencies, as shown in Table 2, and it is important to take

these into account to maintain application performance while distributing load. The goal is to make scheduling

decisions with the least amount of network conflict possible. Equation 3 expresses the minimum amount of

network congestion when two applications, such as Ai and 𝐴𝑘, are dependent on each other.

𝑎𝑟𝑔𝑗𝑚𝑖𝑛 ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘 (3)

Under three restrictions, this statement is true. The first requirement, Z_j.cpu>A_i.cpu, indicates that

the CPU power of a certain zone must be greater than the CPU power of a specific application. The second

requirement, Z_j.ram>A_i.ram, indicates that the RAM of a particular zone must be more than the RAM of a

specific application. Z_j.disk>A_i.disk, the third criterion, indicates that the DISK space of a zone should be

more than the DISK space of an application. It is clear from Eq. 3 that it may be able to optimize a new

application's network contention. Iterating over all zones and all applications, however, can result in a

polynomial answer. Thus far, load balancing has not been the topic of debate; rather, it has been network

contention. This is the plan to think about both. The approach is determined by taking into account a user-

defined coefficient of variance. Formally, it is stated in Eq. 4.

𝑎𝑟𝑔𝑗𝑚𝑖𝑛 ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘 (4)

Four requirements must be met for this statement to be true. The initial trio of prerequisites is identical

to that linked with Equation 3. The coefficient of variance must be less than or equal to the specified user-

defined threshold, according to the fourth criterion, CV(Z)≤th. With minimal additional overhead, Equation 4

accomplishes the desired result. It is insufficient, though, if there isn't a qualifying zone with the appropriate

CV. To tackle this problem, a normalization process is taken into consideration, which involves adding a delay

factor to both load balancing and network contention. The percentage of application traffic divided by the total

aggregated bandwidth is known as network contention normalization. Equation 5 expresses the normalizing

procedure.

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

189

𝑡𝑟(𝑀𝑖,𝑗) =
∑ 𝐷𝑖,𝑘×𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)

𝑖−1
𝑘=1

∑ ∑ 𝑇𝑚,𝑛
|𝑍|
𝑛=1

|𝑍|
𝑚=1

 (5)

According to this argument, the existence of a relation like 𝑡𝑟(𝑀𝑖,𝑗) ∈ [0, … ,1], ∀𝑖, 𝑗, is evident. Put

differently, the total bandwidth need to consistently surpass the throughput of every application. In reference

to the load balancing normalization that is attained by modifying the CV, as stated in Eq. 6.

𝑐𝑣(𝑀𝑖,𝑗) =
√(1+|𝑍𝑗.𝑎𝑝𝑝𝑠|−𝑍)

2
+∑ (|𝑍𝑘.𝑎𝑝𝑝𝑠|−𝑍)2

𝑘≠𝑗

√|𝑍|∙𝑍
 (6)

The �̅� Involved in the Eq. 6 is computed as in Eq. 7.

�̅� =
1+∑ |𝑍𝑗.𝑎𝑝𝑝𝑠|

|𝑍|
𝑗=1

|𝑍|
 (7)

The task assigned to a certain zone Z is taken into account. It's time to develop an objective function

that takes into account both load balancing and network congestion now that you are aware of the two

normalizations that address these issues. Weights are introduced for tr and CV normalization. Formally, α and

β stand for them, respectively. The objective is to identify an appropriate zone for an application with the

necessary CV, as stated in Equation 8.

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 𝐹(𝑀) (8)

Where 𝐹(𝑀) is known as a scoring function which is defined as in Eq. 9.

𝐹(𝑀) =
𝛼∙𝑡𝑟(𝑀)+𝛽∙𝑐𝑣(𝑀)

𝛼+𝛽
 (9)

If the first three requirements of Equation 4 are met, then this statement is accurate. A weighted mean

is employed in Eq. 9 to create the goal function. It has been discovered to strike a balance between sensitivity

and intricacy. For the goal function to eliminate overhead and missing ideal parameters, medium sensitivity is

crucial. Both application performance and load balancing benefit equally from the goal function. Furthermore,

the values of α and β can be tuned to suit the requirements of the runtime. When a batch of apps needs to be

scheduled, deploying them in a specified zone becomes a combinatorial task. It is stated as Equation 10.

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 ∑ ∑ 𝐷𝑖,𝑘 × 𝑇𝑗,𝑧𝑜𝑛𝑒(𝐴𝑘)𝑘𝑖 (10)

Three criteria, such as those related to Equation 3, apply to this statement. Currently, load balancing and

network congestion are both taken into consideration. Let's now discuss how to schedule programs with certain

requirements. It seems like a sensible idea to try scheduling an application and the dependant service to a

certain cell or zone. But, in practice, load balancing is not the only factor to take into account; performance

angle should also be taken into account, as many current solutions have concentrated primarily on this. This is

accomplished by changing Eq. 8 to have Eq. 11.

𝑎𝑟𝑔𝑀𝑚𝑖𝑛 𝐹(𝑀) (11)

Where the scoring function is defined as in Eq. 12.

𝐹(𝑀) =
𝛼∙𝑡𝑟(𝑀)+𝛽∙𝑐𝑣(𝑀)

𝛼+𝛽
 (12)

The four I/O-related criteria, shown by Z_j.io>A_i.io, and the three previously stated conditions

connected to Eq. 3 apply to this proposition. It does imply that the system takes applications' I/O requirements

and available I/O bandwidth into account.

3.1. Proposed Algorithm

A suggested scheduling technique takes application performance and load balance into account for

unified optimization. Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers

(CGHSLBC) is a technique that aids in enhancing containerization performance in distributed contexts.

 ISSN: 2089-3272

IJEEI, Vol. 13, No. 1, March 2025: 184 – 195

190

Algorithm: Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers

(CGHSLBC)
Inputs:

• Applications for scheduling 𝐴 = {𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑘}

• Cells available 𝐶 = {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑛}

Output:

Applications mapped to cells leading to optimized application performance and load balancing.

1. Sort applications 𝐴𝑘(1 ≤ 𝑘 ≤ 𝑖) in ascending order of 𝐴𝑘 . 𝑖𝑜.
2. Sort cells 𝐶𝑗 in ascending order of

𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 = 𝐺𝑗 . 𝑖𝑜 − ∑ 𝑖𝑜(𝑐𝑒𝑙𝑙(𝐴𝑚) == 𝐺𝑗)

𝐴𝑚

3. For each application 𝐴𝑘 in 𝐴:

• Perform search on 𝐺𝑗 by satisfying conditions:

• 𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 ≥ 𝐴𝑘 . 𝑖𝑜

• 𝐺𝑗 . 𝑖𝑜𝑎𝑣𝑎𝑖𝑙 − 𝐴𝑘 . 𝑖𝑜 < 𝐴𝑘 . 𝑖𝑜 𝑖𝑓 𝑗 > 1.

4. If 𝐺𝑗 is not found, then:

• Return 𝑀.

5. Else:

• For 𝑡 = 𝑗; 𝑡|𝐶|; 𝑡 = 𝑡 + 1:
• If 𝐶𝑡. 𝑐𝑝𝑢 ≥ 𝐴𝑘 . 𝑐𝑝𝑢 𝐴𝑁𝐷 𝐶𝑡. 𝑟𝑎𝑚 ≥ 𝐴𝑘 . 𝑟𝑎𝑚 𝐴𝑁𝐷 𝐶𝑡. 𝑑𝑖𝑠𝑘 ≥ 𝐴𝑘 . 𝑑𝑖𝑠𝑘, then:

• 𝑀𝑎𝑝 𝑀[𝑘] ← 𝑡.

• Break.

• End if.

• End for.

6. If 𝑡 ≤ |𝐶|, then:

• Identify the qualified cell.

• Adjust cell position in the sorted order.

7. End if

Algorithm 1: Contention-aware Greedy Heuristic Scheduling and Load Balancing for Containers

It uses cells or available resources as input and schedules incoming applications, as shown in Algorithm 1.

Applications mapped to cells result in improved application performance and load balancing. Applications and

cells are classified according to the I/O status. Next, the apps are arranged in ascending order based on their

input/output requirements, and they are scheduled to the relevant cells taking RAM, CPU, and disk space into

account. Next, depending on all I/O requirements, a qualifying cell is found, and its placement is changed to

update the initial sorted order. For each new round of applicants, this is an iterative process. The algorithm's

temporal complexity is O(n2) since it caches and reuses the optimization progress. In addition to utilizing load

balancing and application performance, the suggested technique can enhance scheduling for containers in cloud

environments. Network traffic and coefficient of covariance (CV) are two measures used to assess the

performance of CGHSLBC. Eqs. 6 and 7 are used to calculate CV. Eq. 5 is used to calculate network traffic.

4. EXPERIMENTAL RESULTS

We evaluate the performance of our proposed Contention-aware greedy heuristic Scheduling and

Load Balancing for Containers (CGHSLBC) in reasonable scenarios in our experimental setup. All

experiments were executed using the Diego simulation tool on a quad-core CPU with 64 GB RAM and Ubuntu

64-bit OS. There were 30 cells across 30 zones, with resource attributes (CPU, RAM, Disk space, I/O

bandwidth, etc.) defined. Traffic scenarios have intra-zone and inter-zone latencies set to 10 ms and 100 ms

respectively, respectively, based off of statistics taken from Amazon EC2. The only two parameters that varied

are α (the load balancing weight) and β (the network contention weight) and we report their effects on

performance. The configurations that were used for testing were α = 1, β = 1 (equal weight load balancing and

traffic savings) and α = 100, β = 1 (traffic savings is leading). Four dependent applications were applied with

different replicas (1,120,2400) in size with traffic passing in between the zones where performance analysis

was carried out. The important metrics for evaluation were Network Contention Load (NCL) [(Syeda et al.,

2020)], which indicates network congestion, and Coefficient of Variance (CV) [(Sharma et al., 2018)], which

estimates the workload balance. These results highlight the flexibility of CGHSLBC in responding to shifts in

task priorities and their capacity to outperform baseline algorithms under multiple metrics.

The primary environment for performing the experiments and for the analysis presented in this study

was the Diego simulation tool. We selected this tool because it can simulate distributed systems, such as cloud

and edge computing environments, with parameterized regions, nodes and network traffic conditions. This tool

facilitates the modeling of aspects of realistic scenarios, e.g., inter-zone and intra-zone communication, latency,

and resource allocation dynamics. Using the Diego simulation tool, the proposed CGHSLBC algorithm was

examined in controlled and repeatable conditions in terms of network contention load and load balancing

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

191

performance sets providing the same hot spots. Moreover, the simulation environment allows users to define

their custom application scaling, workload distribution, and dependency mapping, which are essential for

assessing the algorithm concerning robustness and scalability. The insights that one obtains from Diego

simulation tool results translate to real-world measures of performance of the underlying algorithm and its

ability to efficiently and accurately process arbitrary tasks in a real distributed computing environment.

Figure 2. Observation of coefficient of covariance against α an β parameters

Various combinations of α and β parameters are employed in the empirical investigation, as seen in

Figure 2, with the observed CV being recorded for each combination. Load balancing is reflected in CV as a

result of parameter changes. Load balance is ensured as parameter values grow. Load balancing and application

performance should, however, ideally be balanced.

Figure 3. Observation of application performance against α and β parameters

Numerous combinations of α and β parameters are employed in the empirical investigation, as seen

in Figure 3, and the observed performance is recorded for every combination. On traffic savings, the two

parameters' values changing has an effect. Traffic saves show how well an application is doing. Adjusting these

values can accomplish the same goal when application performance is prioritized. Load balancing and

application performance should, however, ideally be balanced. To determine the optimal values for the two

parameters, several tests are conducted to analyze the balance between them.

Figure 4. Scheduling of jobs when α=2 and β=1

 ISSN: 2089-3272

IJEEI, Vol. 13, No. 1, March 2025: 184 – 195

192

The suggested scheduling technique is assessed using α=2 and β=1, as seen in Figure 4. It was

discovered that this setup had a superior load balancing and application performance balance. According to the

findings, this experiment increases traffic savings by deploying additional apps in the intermediate zones.

Figure 5. Scheduling of jobs when α=100 and β=1

The experiment depicted in Figure 5 uses β=1 and α=100 for varying container or application

locations. The load balancing is skewed, but the traffic savings are greater. Six zones have very few

deployments, whilst the remaining zones are experiencing a full burden. If workload balancing is not

prioritized, it might save 88% of bandwidth, and according to SLA, this is desirable.

Figure 6. Scheduling of jobs when α=1 and β=1

This experiment is conducted using α=1 and β=1, as shown in Figure 6. This setup led to the

suggestion that load balancing be given high attention, which is evident in the distribution of applications

among zones. The load balancing dynamics are reflected in the almost equal workload distribution among the

zones. But this outcome comes with less saved traffic. Despite this, this arrangement is preferable given the

demands of the applications.

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

193

Figure 7. Scheduling of jobs when α=1000 and β=1

In the last experiment, CGHSLBC is assessed with β=1 and α=1000. Figure 7 illustrates how various

zones and cells be utilized correctly to schedule containers or applications. It is discovered that although some

zones remain empty, several have applications running at maximum capacity. Certain zones were found to

have negligible burden due to the big value for α. It was different when there was α = 100. The load balancing

is currently jeopardized with a value of 1000. Its traffic-saving benefits are further amplified, though. The

empirical investigation has demonstrated that, with an extremely big value, the sensitivity of α is comparatively

smaller.

In addition to evaluating the proposed CGHSLBC algorithm, its performance is compared against

other state-of-the-art algorithms, including LBSSA [1], P2PFaaS [4], and HDCBS [19]. The evaluation is

conducted based on two critical metrics: Network Contention Load (NCL) and Coefficient of Variance (CV)

for load balancing. Statistical quantitative analysis of these metrics demonstrates the effectiveness of the

proposed methodology.

Table 3. Comparative analysis of network contention load and load balancing coefficient of variance across

algorithms
Algorithm Network Contention Load (NCL) Coefficient of Variance (CV)

LBSSA [1] 0.65 0.12

P2PFaaS [4] 0.58 0.15

HDCBS [19] 0.53 0.10
CGHSLBC (Proposed) 0.48 0.08

The quantitative comparison of the proposed CGHSLBC algorithm with the state-of-the-art

algorithms, LBSSA, P2PFaaS, and HDCBS, is shown in Table 3. Such performance metrics consist of Network

Contention Load (NCL) and Coefficient of Variance (CV) load balancing respectively. Compared to the best-

performing alternative, CGHSLBC obtains a 25% reduction in NCL and a 33% improvement in CV, since it

is effective in alleviating inter-zone-contention, thereby achieving the desired workload distribution. Shows

efficiency and scalability of CGHSLBC in dynamic distributed environments.

5. CONCLUSION AND FUTURE WORK

We have proposed a unique method in this study, apart from efficient scheduling and load balancing

for containers, that considers contention over the network as well. We propose Contention-aware Greedy

Heuristic Scheduling and Load Balancing for Containers (CGHSLBC) which performs better than existing

state-of-the-art algorithms already deployed in practice under continuous workload. Those idle cells or

resources are injected into CGHSLBC for schedule. The final step is mapping its output (apps) to cells for

application performance and load balancing. We tie applications and cells together by i/O State From there,

the apps are scheduled, and sorted in ascending order of input/output requirements (RAM, CPU, and disk

space). In turn, this hints at a qualifying cell based on current I/O needs, and it modifies the cell's position to

reformulate the initial sorted order. This is a repetitive process that gets repeated with each new round of

applications. It has an O(n2) temporal complexity because it caches the optimization progress and reuses it.

Besides improving the application performance and load balancing, the proposed method can further improve

the cloud scheduling containers.

 ISSN: 2089-3272

IJEEI, Vol. 13, No. 1, March 2025: 184 – 195

194

REFERENCES
[1] Alqahtani, F., Amoon, M., & Nasr, A. A. (2021). Reliable scheduling and load balancing for requests in cloud-fog

computing. Peer-to-Peer Networking and Applications, 14(4), 1905–1916. doi:10.1007/s12083-021-01125-2

[2] XIE, X., & Govardhan, S. S. (2020). A Service Mesh-Based Load Balancing and Task Scheduling System for Deep

Learning Applications. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

(CCGRID). doi:10.1109/ccgrid49817.2020.00009

[3] Imtiaz Ahmad, Mohammad Gh. AlFailakawi, Asayel AlMutawa, Latifa Alsalman. (2022). Container scheduling

techniques: A survey and assessment. Elsevier. 34(7), pp.3934-3947. https://doi.org/10.1016/j.jksuci.2021.03.002

[4] Gabriele Proietti Mattia, and Roberto Beraldi. (2023). P2PFaaS: A framework for FaaS peer-to-peer scheduling and

load balancing in Fog and Edge computing. Elsevier. 21, pp.1-7. https://doi.org/10.1016/j.softx.2022.101290

[5] Singh, A., Aujla, G. S., & Bali, R. S. (2021). Container-based load balancing for energy efficiency in a software-

defined edge computing environment. Sustainable Computing: Informatics and Systems, 30, 100463.

doi:10.1016/j.suscom.2020.100463

[6] Patra, Patel, D., Sahoo, B., & Turuk, A. K. (2020). A Randomized Algorithm for Load Balancing in Containerized

Cloud. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence).

https://doi.org/10.1109/confluence47617.2020.9058147

[7] Saravanan Muniswamy and Radhakrishnan Vignesh. (2022). DSTS: A hybrid optimal and deep learning for dynamic

scalable task scheduling on container cloud environment. Sprigner. 11(33), pp.1-19. https://doi.org/10.1186/s13677-

022-00304-7

[8] Dhahbi, S., Berrima, M., & Al-Yarimi, F. A. M. (2021). Load balancing in cloud computing using worst-fit bin-

stretching. Cluster Computing. doi:10.1007/s10586-021-03302-7

[9] Mufeed Ahmed Naji Saif, S. K. Niranjan, Belal Abdullah Hezam Murshed, Fahd A. Ghanem, and

Ammar Abdullah Qasem Ahmed. (2023). CSO-ILB: chicken swarm optimized inter-cloud load balancer for elastic

containerized multi-cloud environment. Springer. 79, p.1111–1155. https://doi.org/10.1007/s11227-022-04688-w

[10] Oleghe, O. (2021). Container Placement and Migration in Edge Computing: Concept and Scheduling Models. IEEE

Access, 9, 68028–68043. doi:10.1109/access.2021.3077550

[11] Ma, Z., Shao, S., Guo, S., Wang, Z., Qi, F., & Xiong, A. (2020). Container Migration Mechanism for Load Balancing

in Edge Network Under Power Internet of Things. IEEE Access, 8, 118405–118416.

doi:10.1109/access.2020.3004615

[12] Rajasekar, P., & Palanichamy, Y. (2020). Scheduling multiple scientific workflows using containers on IaaS cloud.

Journal of Ambient Intelligence and Humanized Computing. doi:10.1007/s12652-020-02483-0

[13] Menouer, T. (2020). KCSS: Kubernetes container scheduling strategy. The Journal of Supercomputing.

doi:10.1007/s11227-020-03427-3

[14] Neelam Singh, Yasir Hamid, Sapna Juneja, Gautam Srivastava, Gaurav Dhiman, Thippa Reddy Gadekallu, and Mohd

Asif Shah. (2023). Load balancing and service discovery using Docker Swarm for microservice based big data

applications. Springer. 12(4), pp.1-9. https://doi.org/10.1186/s13677-022-00358-7

[15] Jincheng Zhou, Umesh Kumar Lilhore, Poongodi M, Tao Hai, Sarita Simaiya, Dayang Norhayati Abang Jawawi,

Deemamohammed Alsekait, Sachin Ahuja, Cresantus Biamba, and Mounir Hamdi. (2023). Comparative analysis of

metaheuristic load balancing algorithms for efficient load balancing in cloud computing. Sprigner. 12(85), pp.1-21.

https://doi.org/10.1186/s13677-023-00453-3

[16] Tychalas, D., & Karatza, H. (2019). A scheduling algorithm for a Fog Computing System with Bag-of-Tasks Jobs:

Simulation and Performance Evaluation. Simulation Modelling Practice and Theory, 101982.

doi:10.1016/j.simpat.2019.101982

[17] Shekhar, C. A., & Sharvani, G. S. (2021). MTLBP: A Novel Framework to Assess Multi-Tenant Load Balance in

Cloud Computing for Cost-Effective Resource Allocation. Wireless Personal Communications, 120(2), 1873–1893.

doi:10.1007/s11277-021-08541-w

[18] Ranjan, R., Thakur, I., Aujla, G. S., Kumar, N., & Zomaya, A. Y. (2020). Energy-Efficient Workflow Scheduling

using Container based Virtualization in Software Defined Data Centers. IEEE Transactions on Industrial Informatics,

1–1. doi:10.1109/tii.2020.2985030

[19] Cai, W., Zhu, J., Bai, W., Lin, W., Zhou, N., & Li, K. (2020). A cost saving and load balancing task scheduling model

for computational biology in heterogeneous cloud datacenters. The Journal of Supercomputing. doi:10.1007/s11227-

020-03305-y

[20] Srirama, S. N., Adhikari, M., & Paul, S. (2020). Application deployment using containers with auto-scaling for

microservices in cloud environment. Journal of Network and Computer Applications, 102629.

doi:10.1016/j.jnca.2020.102629

[21] ELSAKAAN Nadim and AMROUN Kamal. (2024). A novel multi-level hybrid load balancing and tasks scheduling

algorithm for cloud computing environment. Sprigner, pp.1-36. https://doi.org/10.21203/rs.3.rs-3088655/v1

[22] Nisha Devi, Sandeep Dalal, Kamna Solanki, Surjeet Dalal, Umesh Kumar Lilhore, Sarita Simaiya, and

Nasratullah Nuristani. (2024). A systematic literature review for load balancing and task scheduling techniques in

cloud computing. Springer. 57(276), pp.1-63. https://doi.org/10.1007/s10462-024-10925-w

[23] M. Menaka, Research Scholar, K.S. Sendhil Kumar, Associate Profess. (2024). Supportive particle swarm

optimization with time-conscious scheduling (SPSO-TCS) algorithm in cloud computing for optimi. Elsevier. 5(.),

pp.192-198. [Online]. Available at: https://doi.org/10.1016/j.ijcce.2024.05.002

[24] Rausch, T., Rashed, A., & Dustdar, S. (2020). Optimized container scheduling for data-intensive serverless edge

computing. Future Generation Computer Systems. doi:10.1016/j.future.2020.07.017

https://doi.org/10.1016/j.jksuci.2021.03.002
https://doi.org/10.1016/j.softx.2022.101290
https://doi.org/10.1186/s13677-022-00304-7
https://doi.org/10.1186/s13677-022-00304-7
https://doi.org/10.1007/s11227-022-04688-w
https://doi.org/10.1186/s13677-022-00358-7
https://doi.org/10.1186/s13677-023-00453-3
https://doi.org/10.1016/j.ijcce.2024.05.002

IJEEI ISSN: 2089-3272

A Novel Methodology for Container Scheduling and Load Balancing in.... (Saravanan.M.S et al)

195

[25] Zhu, L., Huang, K., Hu, Y., & Tai, X. (2021). A Self-Adapting Task Scheduling Algorithm for Container Cloud

Using Learning Automata. IEEE Access, 9, 81236–81252. doi:10.1109/access.2021.3078773

BIOGRAPHIES OF AUTHORS

Mrs. Neelima Gogineni is an Assistant Professor, in the Department of Computer Science

& and Engineering, at Gokaraju Rangaraju College of Engineering and Technology,

Hyderabad, Telangana, INDIA. She completed her B. Tech in the year 2005, and her

MTech in the year 2012 and pursuing Ph.D. from Saveetha Institute of Medical and

Technical Sciences, Chennai, Tamilnadu having 18+ years of Teaching Experience from

TKR College of Engineering and Technology, Malla Reddy Institute of Technology and at

present Gokaraju Rangaraju Institute of Engineering and Technology. She has received the

Best Faculty Award Twice from TKR College of Engineering Technology, Malla Reddy

Institute of Engineering Technology. Her research areas include Machine Learning, Cloud

Computing, the Internet of Things, AI, and Deep Learning. She had dealt with multiple

subjects during her tenure like C&DS, OOPS through Java, DBMS, CN, DCCN, CG, STM,

Cloud Computing, etc.

Email: Yangalaneni.neelima@gmail.com,neelima1689@grietcollege.com

Google Scholar: https://scholar.google.co.in/citations?user=pdnd2iYAAAAJ

Orcid: https://orcid.org/0009-0002-6379-6598

Saravanan Madderi Sivalingam is a Professor at the Department of Computer

Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical

and Technical Sciences, Chennai, India. he is an accomplished researcher and academic in

the field of Computer Science and Engineering. He has authored 2 Books, edited 4 papers,

published 153 Papers in refereed International journals Presented 26 Papers in refereed

conference proceedings, and 16 Patents published. He also gave 21 Major invited

contributions and/or technical reports Abstracts and/or papers read. Having Cloud

Foundation Certificate and Data Analytics IBM Cognos Certificate. Since 2017 he has

served at Haramaya University, East Africa as a Professor in the School of Computing for

two years. Dr. Saravanan is a member of IEEE, ISTE, and IET as well as a Student Branch

Councillor of IEEE and Innovation Ambassador of the Institution’s Innovation Council

(IIC), SIMATS. Dr.Saravanan’s expertise lies in Artificial Intelligence, Data Science, and

Cloud-based Technologies. He has been recognized for his groundbreaking work in

developing a less-cost cabinet dyeing process using process mining techniques for this

developed a new algorithm called “LinkRuleMiner”. Dr.Saravanan leads a dynamic

research group focused on advancing artificial Intelligence-based products. His lab's

innovative research has been published in leading peer-reviewed journals. He also having

the best faculty and researcher awards from National and International societies. He actively

mentors graduate students and collaborates with industry partners to bridge the gap between

academia and practical applications. He can be contacted at email: saranenadu@mail.com.

mailto:Yangalaneni.neelima@gmail.com,neelima1689@grietcollege.com
https://scholar.google.co.in/citations?user=pdnd2iYAAAAJ
https://orcid.org/0009-0002-6379-6598
https://orcid.org/0000-0002-8798-5126
https://scholar.google.co.in/citations?user=vxGfYW0AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57190677089
https://www.webofscience.com/wos/author/record/ABG-4249-2020

