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 The research relies on machine learning-based Cluster Head (CH) selection 

and optimised Attribute-Based Encryption (ABE) with Homomorphic 

Encryption to improve data survivability in Unattended Wireless Sensor 

Networks (UWSNs). Integrating blockchain technology would enable 

tamper-proof data storage and provenance. The suggested method uses 

machine learning techniques like Deep Q-Networks (DQNs) or other models 

for intelligent and adaptive CH selection in UWSNs. Dynamically selecting 

CHs takes into account energy efficiency, network coverage, communication 

dependability, and node characteristics. The second part protects data using 

optimised Attribute-Based Encryption (ABE) and Homomorphic Encryption. 

ABE offers fine-grained attribute-based access control to restrict data access 

to authorised entities. Secure processing of encrypted data using 

homomorphic encryption protects privacy and integrity. These encryption 

algorithms are optimised to balance security and computational performance 

for efficient data processing and transmission while guaranteeing data 

privacy and integrity. Blockchain technology is suggested for tamper-proof 

data storage and provenance. To optimise the suggested solution's 

performance, the study uses the Seagull Optimisation Algorithm (SOA) and 

the Whale Optimisation Algorithm (WOA). These algorithms fine-tune 

system parameters, optimise CH selection, and boost UWSN performance. 

This holistic strategy uses machine learning-based CH selection, optimised 

ABE with Homomorphic Encryption, and blockchain technology for tamper-

proof data storage and provenance to improve UWSN data survival. 

Optimisation algorithms boost the solution's efficacy and efficiency, 

protecting UWSN data, latency, and energy usage. 
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1. INTRODUCTION 

Wireless Sensor Networks (WSNs) have become the most emerging technology in the field of 

research for the advanced development of digital networks in recent years. WSN constitutes an extensive 

collection of sensors, forming a distributed network for sensing, self-organization, and data propagation [1]. 

In a distributed environment, WSN nodes serve as compact, self-contained devices with limited resources. 

They play a crucial role in processing information, communication, and sensing mechanisms, enabling the 

detection of environmental conditions in their immediate surroundings. These networks rely on batteries as 

their energy source [2]. The effectiveness of sensor nodes is limited by several factors, including storage 
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capacity, processing speed, battery life, and more [3]. As a result, ensuring adequate security provisions [4] 

becomes an undertaking challenge. In the WSN, the sensors generate data and operate in a multi-hop fashion, 

relaying it from one node to another. Their primary objective is to efficiently gather a relevant set of 

information and relay it to the Base Station (BS) [5]. These types of sensors find application in vast fields, 

including industry, army operations, residential settings, and scientific endeavors. They serve various 

purposes, such as healthcare, freight services, combat field, catastrophic recovery, construction 

industrialization, security, astronautics, and industrial sectors [6]. The majority of existing WSN systems 

consist of a considerable quantity of sensor nodes which are small in size, cost-effective, and limited in 

energy resources while possessing sensing capabilities. These sensor nodes are susceptible to damage caused 

by energy depletion or natural calamities. As sensor nodes within a WSN are constructed in a multi-hop 

fashion to keep track of natural surroundings and the malfunction of certain nodes can lead to a decline in 

network coverage and connectivity, potentially rendering the entire network ineffective [7] and [8]. 

Unattended Wireless Sensor Networks (UWSNs) refer to a specific category of Wireless Sensor Networks 

characterized by the sporadic presence of a sink node. As a result, enhancing the robustness of the network 

has been a significant focus of research in the realm of UWSNs. Typically, sensor nodes are randomly 

distributed across the monitored area, continuously collecting sensor data. 

The UWSN is responsible for accomplishing its mission promptly, even when faced with challenges 

such as intrusions, attacks, accidents, and failures within a hostile environment. The challenge at hand is 

commonly referred to as the survivability problem. The survivability of a system can be defined as its 

capacity to successfully achieve its mission within the designated timeframe, even when confronted with 

intrusions, attacks, accidents, and failures [9]. [10] introduced a mathematically constrained definition of 

survivability, which establishes a framework for quantifying the level of network survivability. In this 

research article, we proceed with the analysis of the data survivability of a UWSN. Drawing inspiration from 

[11], the concept of UWSN survivability is defined based on the frequency and impact of failures. 

Distribution of UWSNs is typically focused on a particular field and individual user, which significantly 

restricts the flexibility and scalability of task execution. Consequently, the resource utilization of sensor 

nodes remains below 20 percent, rendering them incapable of meeting the diverse Standards about quality of 

service (QoS) associated with various applications. Conventional software embedding methods, which 

involve incorporating new application components into the existing network architecture, often result in a 

cumbersome and inflexible network structure. However, the utilization of network virtualization technology 

[12, 13] offers an effective solution to this issue. It not only resolves the aforementioned problem but also 

presents substantial economic advantages, including minimal installation and operational expenditures 

associated with resource leasehold to external clients. Additionally, virtualization of network technology 

enables swift configuration and recovery of physical network resources in the event of failures, while also 

providing the ability to scale resources on demand. 

The energy constraints faced by sensors in UWSNs also pose a significant challenge, leading to 

various failures and issues regarding survivability. To conserve energy, a commonly employed technique 

involves transitioning the nodes between sleep and awake states. Typically, the network is designed such that 

multiple nodes are deployed to ensure coverage of each region. In such scenarios, it is feasible to maintain 

region coverage by keeping one node awake while the remaining nodes are in sleep mode. During sleep 

mode, the sensors cease radio broadcasts and environmental sensing activities. In a UWSN, radio 

transmission is recognized as the primary power-consuming function, consuming a significant amount of 

power. As the intensity of an awake mode sensor is fully drained, one of the sensors in the sleep mode can be 

activated to assume the role of coverage provision in that particular area. The pioneering work of [14] 

introduced the utilization of the dominant set of algorithms to regulate the Nodes' sleep and wake intervals 

within a UWSN. Building upon this, [15] introduced the concept of generating a maximum number of 

disjoint dominating sets, known as the domatic partition problem, in unit disk graphs. Domatic partition 

involves dividing the sensor nodes into clusters or groups in such a way that the energy consumption is 

balanced across the network. By achieving a balanced energy consumption, the authors aim to extend the 

overall lifetime of the network. Over time, advancements in UWSN technology have led to the widespread 

adoption and practicality of rechargeable nodes. In this research paper, we primarily focus on data 

survivability in UWSNs.  Here are the key unique contributions that differentiate the existing methods from 

our proposed work,  

 

Contributions of the Proposed Approach: 

1. Intelligent & Adaptive CH Selection Using ML 

• Unlike traditional heuristic-based CH selection, the proposed approach leverages Deep Q-Networks 

(DQNs) or other ML models to dynamically select Cluster Heads (CHs) based on real-time network 

conditions, energy efficiency, and security factors. 
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• This adaptive learning mechanism ensures resilience against Sybil attacks, blackhole attacks, and 

inefficient CH rotation, which are common vulnerabilities in UWSNs. 

2. Optimized Hybrid Encryption Mechanism (ABE + Homomorphic Encryption) 

• Most existing approaches either use Attribute-Based Encryption (ABE) for access control or 

Homomorphic Encryption (HE) for privacy-preserving computations. 

• The proposed hybrid encryption mechanism is optimized to balance security and computational 

efficiency, ensuring: 

o Fine-grained access control (via ABE) to prevent unauthorized access. 

o Secure computations on encrypted data (via Homomorphic Encryption) without decryption, 

enhancing data privacy. 

• The encryption scheme is tailored for resource-constrained UWSNs, minimizing energy 

consumption while maintaining strong security guarantees. 

3. Blockchain Integration for Tamper-Proof Data Storage & Provenance 

• Unlike conventional methods that rely solely on encryption, this research integrates blockchain 

technology to achieve tamper-proof storage, auditability, and provenance tracking. 

• The use of blockchain: 

o Prevents unauthorized data modifications and ensures integrity. 

o Provides decentralized trust management without requiring a centralized authority. 

o Reduces the impact of Man-in-the-Middle (MitM) attacks and data injection attacks. 

4. Multi-Objective Optimization via SOA & WOA 

• Existing optimization methods for UWSNs often focus on single parameters (e.g., energy efficiency 

or latency). 

• The proposed approach employs Seagull Optimization Algorithm (SOA) and Whale Optimization 

Algorithm (WOA) for multi-objective optimization, fine-tuning: 

o CH selection efficiency 

o Encryption parameter optimization (balancing security vs. computational cost) 

o Blockchain transaction performance (minimizing delays and energy usage) 

• This optimization enhances overall system performance while reducing energy overhead, making 

the solution practical for real-world deployment. 

 

2. LITERATURE REVIEW 

Data survivability in UWSNs is closely linked to the frequent occurrence of failures, which can 

disrupt the network's ability to carry out its intended tasks, such as data aggregation. Several research papers 

in the past and recent literature have addressed the challenges and issues related to survivability analysis in 

networked systems. These papers have offered a comprehensive explanation of the concept of survivability 

and provided a theoretical framework that has inspired our focus on conducting a specific analysis that caters 

to the unique technical specifications of UWSNs. In 2020, Yang Z. et al. [16] addressed the issue of failure of 

a single link protection in hybrid IP/SDN (Software Defined Networking). In such networks, a combination 

of traditional IP-based routing and SDN-based control is utilized. The authors focus on selecting suitable 

SDN candidates, which are network nodes that can dynamically reconfigure the network after a link failure to 

ensure continued connectivity and efficient traffic routing. In 2010, Li, et al. [17] proposed a multi-path 

protocol that optimizes the selection of paths based on factors such as link quality, energy consumption, and 

congestion that used almost all the resources available in the network. The protocol aims to minimize data 

loss, reduce latency, and balance energy consumption across the network. 

In 2019, Raj, Jennifer S. et al. [18] conducted a study utilizing fuzzy logic and Convolutional Neural 

Networks (CNN) to achieve this optimization. The paper focuses on enhancing QoS constraints: energy 

consumption, data delivery, and network lifetime of client-based sensor networks by applying fuzzy logic 

including CNN techniques. The approach aims to strike a balance between energy efficiency and QoS 

requirements, enabling efficient and reliable data transmission in IoT sensor networks. In 2016, Jannu, 

Srikanth, et al. [19] presented a grid-based approach to address the hot spot problem in wireless sensor 

networks. The hot spot problem refers to the imbalance of energy consumption and network load distribution 

that can occur in UWSNs, leading to premature battery drain of certain sensor nodes. The proposed algorithm 

utilizes a grid-based clustering and routing technique to evenly distribute the load and energy consumption 

across the network. By dividing the network into a grid structure and employing clustering and routing 

strategies, the algorithm aims to mitigate the hot spot problem and prolong the network's overall lifetime. In 

2016, Smys, S., and Robert Bestak et al. [20] provided an introductory overview of a special issue in the 

journal Wireless Personal Communications. The objective of the special edition is cutting-edge network 

architectures for wireless personal computing systems of the future. The paper sets the context for the special 

edition and highlights the importance of developing novel network architectures to meet the evolving needs 
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of wireless personal systems. It serves as an introductory piece, providing an overview and setting the stage 

for the collection of articles in the special edition that investigate novel network architectures for wireless 

personal computing systems in the future. 

In 2021, Qing Fan et al. [21] presented a scheme that utilizes blockchain technology to provide 

secure authentication and efficient data sharing in the context of the Internet of Things (IoT). The scheme 

aims to address the challenges of ensuring authentication and data integrity in IoT environments by 

leveraging the decentralized and tamper-resistant nature of blockchain technology. In 2019, Smys et al. [22] 

introduced a huge dataset of application-specific energy-conscious security routing protocols for UWSN. Its 

aims to balance energy efficiency and security requirements, addressing the challenges associated with 

resource constraints and the need for secure data transmission in UWSNs. In 2014, Wang et al. [23] 

implemented PWDGR, a Pair-Wise based Directional Geographical Routing algorithm for wireless sensor 

networks. By exploiting geographical information and employing directional routing, the algorithm aims to 

improve routing efficiency, reduce energy consumption, and enhance the reliability of data transmission in 

UWSNs. In 2019, Sivaganesan, D et al. [24] focused on the establishment of a collision-avoidance routing 

algorithm that is effective for automotive networks. Vehicular networks involve vehicles communicating with 

each other to exchange information and enable various services such as traffic management and safety 

applications. In 2018, Deng et al. [25] proposed the concept of survivability in wireless sensor networks that 

build upon the foundation of security, emphasizing that security serves as the fundamental concept for 

researching network survivability. 

 In the context of analyzing this data survivability of UWSN, the primary focus lies in analyzing the 

connectivity of communication links based on the network's topology. Selecting suitable indicator parameters 

is crucial when examining the data survivability aspect of these networks. Graph theory offers a range of 

indicators that describe graph connectivity, including but not limited to measures such as network 

connectivity, coritivity, and uniformity. By addressing these gaps, future research could significantly 

contribute to the advancement of data survivability and security in Unattended Wireless Sensor Networks. 

▪ Explore advanced machine learning techniques for Cluster Head (CH) selection beyond Deep Q-

Networks (DQNs). 

▪ Assess the scalability of optimised Attribute-Based Encryption (ABE) and Homomorphic Encryption in 

large-scale UWSNs. 

▪ Investigate the impact of environmental factors on UWSN performance and CH selection efficiency. 

▪ Address challenges of implementing blockchain in resource-constrained UWSNs, including energy 

consumption and latency. 

▪ Conduct empirical studies or real-world testing of the proposed methods in actual UWSN deployments. 

▪ Explore user privacy concerns related to data access and sharing in sensitive applications like 

healthcare. 

▪ Perform comparative analysis of the proposed solution against existing methods in UWSNs. 

 

3. PROPOSED METHOD 

3.1. Clustering 

The method we propose consists of two primary elements: clustering of sensor nodes and secure 

data transmission based on cryptographic algorithms. The objective of these components is to enhance the 

effectiveness, velocity, and security of Wireless Sensor Networks. 

Sensor Node Clustering: In large-scale Unattended Wireless Sensor Networks (UWSNs), 

clustering plays a vital role in extending the network's lifespan. In this research, we propose an adaptive 

approach to selecting Cluster Heads (CHs) using a Reinforcement Learning algorithm, specifically Deep Q-

Networks (DQNs). This approach incorporates dynamic clustering principles into the CH selection process. 

By considering the residual energy amplified by the occurrence region, an efficient election of the cluster 

head is achieved. 

To address the complexity of this problem, we employ Reinforcement Learning (RL), an Artificial 

Intelligence (AI) technique. Within the RL framework, the master node, acting as an agent, incorporates a 

packet scheduler, while the remaining components of the UWSN represent the surrounding environment. The 

environment provides feedback in the manner of status updates and rewards as the master node executes a 

variety of scheduling operations over time. The DQN-based packet scheduler is guided by well-designed 

incentive functions as it learns across several episodes to converge on the desired configuration. To evaluate 

the effectiveness of the enhanced DQN scheduler, we ran tests in a variety of network scenarios. Numerous 

parameters, such as node population, mobility, how data arrives, and packet lifetime, have an impact on the 

scheduler's policy in Unattended Wireless Sensor Networks (UWSNs). We thoroughly experimented to 

examine the DQN scheduler's flexibility in dynamic network situations. We evaluated the DQN scheduler's 
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performance against that of other currently used techniques for longevity of the network and Quality of 

Service, or QoS, reliability. In addition, we sought to learn more about RL-based scheduling methods by 

probing the optimized DQN scheduler's policy. Through reverse engineering, these efforts not only improve 

our grasp of the underlying workings of solutions based on artificial intelligence but also give us useful 

information for designing non-AI strategies. 

To reduce energy consumption and extend the network's lifespan, we integrate an advanced data 

aggregation technique called Distributed Compressive Sensing (DCS). Within each cluster, sensor nodes 

intelligently aggregate their data before transmitting it to the Cluster Head (CH), thereby reducing redundant 

information and conserving energy. DCS utilizes the principles of compressive sensing to efficiently collect 

and process sensor data. Unlike traditional data aggregation methods where each sensor node transmits its 

raw data to the CH, resulting in redundant and energy-intensive transmissions, DCS allows sensor nodes to 

collectively compress their data before transmission. This significantly reduces the volume of data sent to the 

CH. 

Cryptographic algorithm-based secured data transmission: To tackle the challenge of ensuring 

data security during communication, we introduce a hybrid cryptographic solution. The sender encrypts its 

data using an innovative hybrid homomorphic encryption technique known as optimized Attribute-Based 

Encryption (ABE) with Homomorphic Encryption, which combines the Seagull Optimization Algorithm 

(SOA) and the Whale Optimization Algorithm (WOA). The computational complexity of this proposed 

approach relies on factors such as the size of the Unattended Wireless Sensor Network (UWSN), the number 

of sensor nodes, and the intricacy of the optimization strategy and cryptographic algorithm employed. 

Nonetheless, it can be implemented in real-time or near real-time, depending on the computational power and 

resources available within the UWSN. The utilization of sensor node clustering and optimal Cluster Head 

(CH) selection reduces communication overhead, leading to improved efficiency and speed in data 

transmission. Moreover, the hybrid cryptographic algorithm enhances both data transmission speed and the 

overall security of the UWSN. To ensure data storage integrity and provenance, we integrate blockchain 

technology into the UWSNs. Sensor data undergoes cryptographic hashing and is recorded on the blockchain, 

creating a transparent and immutable ledger that facilitates data verification. Overall, the proposed approach 

offers advancements in efficiency, speed, and security for UWSNs. It has the potential for real-time 

implementation, depending on the available computational resources. Refer to Figure 1. for a visual 

representation of this approach. 

 

3.2. Network Model 

The Unattended Wireless Sensor Network (UWSN) comprises N mobile sensors, which are 

uniformly distributed throughout the network. These sensors are programmed to perform periodic sensing 

and data collection tasks. The dynamic cluster formation model is adopted in which sensors move at speeds 

that enable them to reach any point within the deployment area within a single round. The passage of time is 

divided into rounds, during which sensors gather data and encrypt it using the public key of the trusted sink. 

The sink, assumed to be a trusted authority, visits the network once every v round to collect the data. After 

transferring the data to the sink, the sensor node's entire memory is promptly erased. It is assumed that the 

communication between sensors and between sensors and the sink is reliable. Additionally, each sensor 

possesses knowledge of its location as well as the locations of its immediate neighbors. 

 

 
Figure 1. The architecture of the data survivability model in UWSN 

 

To define the problem, we examine a UWSN model depicted in Figure 1, which comprises a sender 

node and multiple receiver nodes. Once a connection is established, the sender node and receiver nodes 

engage in communication within a predetermined connection interval (CI). The communication persists until 
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the battery of a receiver node is depleted. Consequently, we define the lifetime of the ith receiver, denoted as 
(𝑖), as the duration of its operational capability until the battery is completely drained. 

 

                                                      (𝑖) = ∑ 𝐿𝑘
𝑁
𝑘=1 , for 𝑒𝑁

(𝑖) < 𝐸𝑠
(𝑖) < 𝑒𝑁+1

(𝑖)
                                       (1) 

 

Here, 𝐿𝑘 represents the duration of the kth connection interval (CI), N indicates the directory of the 

final CI, 𝑒𝑘
(𝑖)

  indicates the total amount of energy consumed by the ith receiver node til the kth CI, and 𝐸𝑠
(𝑖)

  

shows the battery's preliminary charge level of the ith receiver. The duration required for each of the nodes to 

use up all of its battery power is the network lifetime in this study. Given that the sender consumes far more 

energy than the receiver, the receiver node essentially determines the network's overall lifetime. As a result, 

the network lifetime is solely determined by the receiver node that has the shortest operational duration. 

Our objective is to optimize regulating the network lifetime (𝐿𝑘, {𝑛𝑘
(𝑖)}

𝑖=1

𝑁

)  for 𝑘=1, 2…, while 

simultaneously meeting the norms for Quality-of-Service 𝑞(𝑖) of each receiver node, given by, 

                                    maximize 

L𝑘, {𝑛𝑘
(𝑖)}

𝑖=1

𝑁

    = min {𝑣(𝑖)}𝑖=1
𝑁  

 

subject to                     𝑞(𝑖)>𝜂(𝑖)                                               (2) 

 

In the above situation, (𝑖) denotes the envisioned QoS criterion for the ith recipient, whereas 

𝜂(𝑖) indicates the QoS rating corresponding to packet transmission for that receiver. 

 

3.3. Dynamic Cluster Formation 

The dynamic generation and regulation of clusters are the main topics of this research. We 

particularly propose a dispersed, agent-oriented strategy for setting up tracking regions on the work floor. 

Every tracking zone consists of a group of Anchor Nodes (AN) that are close to the sink component and a 

sink node itself. When the environment changes, such as when sensor nodes are added or removed or when 

signals are blocked, the clusters adapt dynamically. Through inter-cluster trade-offs, the Unattended Wireless 

Sensor Network (UWSN) as a whole allows workload sharing. Our focus was on creating a dynamic and 

effective cluster formation technique to facilitate adaptive behaviors. To enable autonomous cluster creation 

and account for modifications to the production environment, such as sensor additions and removals, and 

signal loss, a clustering method is first required. Second, to reduce interaction distance and corresponding 

energy consumption, the resultant clusters needed to include AN that were situated close to their (sink). An 

anchor node sends a Call for Proposal (CFP) transmission to each of the nearby sink nodes that are within its 

radio frequency (RF) reach as soon as it is installed in the network field. In their bids, sink nodes provide 

distance values between themselves and the AN. The optimal bid, which matches the nearest sinks within all 

the received bids, is chosen by the AN after a predetermined amount of time has passed. According to formal 

rules, the AN selects the superlative nearest sink using the given process: The selection procedure can be 

expressed as follows if Aj signifies the position of anchoring j in Rn, Mi indicates the origin of the cluster’s 

mean i, and d denotes a distance parameter. 

 

                                         arg i min d (Aj, Mi) for all anchor                                               (3) 

 

  To put it simply, each AN selects the cluster in which the mean of the sink node is located the closest to it 

among all clusters. The distributed k-means algorithm is successfully implemented by this process. The 

contribution of this method is that the k-means's computing cost is decreased. The algorithm can be dispersed 

across the network, which allows the clustering issue to be addressed in an acceptable amount of time. 

Additionally, this strategy enables adaptable behavior within the system in addition to facilitating effective 

cluster formation. The Unattended Wireless Sensor Network (UWSN)'s cluster creation process can be 

started at any time, allowing for dynamic response to changes like the inclusion or exclusion of sensor nodes. 

The strategy also works well in crowded regions in which signal may be jammed by obstructions. In these 

situations, the bid procedure makes sure that the barred AN get allocated to the nearest CH that they can 

interact with other than just the closest that might be subjected to blocking. 

 

3.4. Deep Q-Networks (DQN) Algorithm 

By experimenting with multiple behaviors and viewing the rewards that ensue, Reinforcement 

Learning (RL) is one type of Machine Learning (ML) technique that helps an agent determine the best course 
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of action within a given environment. Figure 2 depicts the RL framework, which consists of an agent and its 

environment. The agent observes the condition of the environment throughout every stage and then acts in a 

way that affects the environment. The environment then changes into a unique state and gives the agent 

feedback in the manner of a reward. Without having any existing understanding of the environment, the agent 

learns a series of behaviors that optimizes the cumulative reward through numerous iterations of this 

procedure. 

 
Figure 2. Within the framework of reinforcement learning, the dynamics occur through the interaction 

between a key agent and its surrounding environment 

 

At each time step, denoted as t, the agent perceives and observes the current state of the 

environment, represented by 𝑠𝑡. Based on this observation, the agent selects and takes an action, denoted as 

𝑎𝑡. Subsequently, the environment shifts to an entirely different state, denoted as 𝑠𝑡+1, and in response, 

provides the key agent with a reward, denoted as 𝑟𝑡. Among the various reinforcement learning algorithms, 

Q-learning is widely recognized as one of the most popular approaches. It aims to find an optimal policy for 

action selection by utilizing a Q-function, which estimates the importance of a particular action in a specific 

situation. The Q-function, denoted as (𝑠, 𝑎), undergoes updates according to the representation stated below, 

 

                                  𝑄(𝑠,𝑎)←𝑄(𝑠,𝑎)+𝛼[𝑟+𝛾max𝑎𝑄(𝑠′,𝑎)−𝑄(𝑠,𝑎)]                                        (4) 

 

In the formula, 𝑟 stands for the compensation received as a result of action a, 𝛼 stands for step size, 

for discount factor, and s′ stands for the following state. The tabular update approach, when used to solve 

real-world issues, confronts difficulties such as an exponential increase in the state-action (𝑠, 𝑎) space and 

sluggish convergence. A remedy known as Deep Q-Network (DQN) has been put forth as a response to these 

difficulties. To roughly represent the Q-function, DQN uses a neural network, making it possible to handle 

complicated issues more effectively. The DQN architecture also has a duplicated Q-network and experience 

replaying, two crucial elements, to improve learning stability. Experience replay updates the Q-network using 

mini-batches, which enhances training stability. To further improve learning stability, the duplicated Q-

network, which is derived from the primary Q-network, is used. In this arrangement, the main Q-network is 

trained using Q-values. 

 

3.5. Distributed Compressive Sensing Technique 

Compressive Sensing (CS) is a concept that originated in the field of signal processing. Its key 

strength is the capacity to reassemble scarce or compressed signals with just a few observations, without 

needing to know the signal's structure beforehand. When signals are sparse on a known basis, measures at the 

sensor end are expensive, and calculations at the receiving end are reasonably priced, compressive sensing is 

useful. Unattended Wireless Sensor Networks (UWSNs) specifications are perfectly met by these qualities. 

Distributed Compressive Sensing (DCS) represents one of the best widely recognized ways among 

the different CS algorithms for correlated signals that have been suggested. To allow for the reconstruction of 

various signals captured by sensor nodes in a UWSN, DCS provides a joint signal restoration technique that 

utilizes a greedy algorithm. This approach presupposes that these signals follow established joint sparsity 

models. 

A combined weak signal recovery technique is used in distributed compressive sensing to rebuild 

sparse signals. This method claims that the scanty description of every signal contains a novel component 

unique to each signal as well as a universal component maintained by all signals. 

 

                                                  Xi = 𝑍𝐶
𝑖 + 𝑍𝐼𝑛

𝑖                                                                (5) 
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In this approach, the variable 𝑍𝐶
𝑖  represents the common component shared by all Xi signals, and its 

measure of sparseness is determined by the least sparseness measure among all signals as foundation Ψ. On 

the other hand, the signals 𝑍𝐼𝑛
𝑖  correspond to the distinct parts of the Xi signals, each having its sparseness 

measure on the same foundation. The recovery process in this methodology primarily emphasizes 

reconstructing the common component with high precision. As the proportion of the common component 

becomes significantly larger than the individual components, the reconstruction error tends to decrease. 

 

3.6. Homomorphic Encryption 

By allowing aggregation procedures to be carried out on encrypted data, homomorphic encryption 

techniques offer a workable approach for assuring secure data aggregation. But computationally demanding 

and time-consuming tasks like encryption and decryption. Information is encoded by the recipient, decoded 

at intermediate nodes, aggregated, and then encrypted again before being sent to the following hop in link 

layer cryptography. Queues could become overcrowded as a result of this process, and resource use might go 

up. Contrarily, homomorphic encryption enables the direct application of some aggregation functions to 

encrypted data, including sum and average. As a result, the network's sensors are subject to much less work. 

Every sensor throughout the path applies the aggregate algorithm to the protected information before it is 

transferred and headed for the base station. The aggregated result is encrypted when it is sent to the base 

station, which then decrypts it to determine the entire aggregated value. Homomorphic encryption schemes 

enable arithmetic operations to be performed on ciphertexts. For instance, multiplicatively homomorphic 

schemes allow efficient manipulation of two ciphertexts, resulting in the multiplication of the corresponding 

plaintexts upon decryption. Homomorphic encryption proves particularly useful in scenarios where a party 

lacks the decryption keys but still needs to perform arithmetic operations on a set of ciphertexts. 

Consider a probabilistic encryption scheme denoted as Enc(), where M and C represent the 

unencrypted text and coded text spaces, respectively. If the set M creates a grouping under the operation ⊕, 

been refer to Enc() as a ⊕ homomorphic encryption algorithm. In this context, for any instance Enc() of the 

encryption algorithm, given c1 = Enc(k1, m1) and c2 = Enc(k2, m2) for some plaintext values m1 and m2 

belonging to M, there exists an effectual algorithm capable of generating a valid ciphertext c3 ∈ C from c1 

and c2, using a specific key k3. This process ensures that the following holds: 

 

c3 = Enck3 (m1 ⊕ m2)                                                       (6) 

 

3.7. Attribute-Based Encryption (ABE) 

Client access control stipulates that, by an access policy, an individual must have exclusive access 

privileges to a particular set of data. To meet this criterion, Sahai and Waters devised the Attribute-Based 

Encryption (ABE) cryptographic concept, which expands on Shamir's original identity-based encryption 

notion. In ABE, an individual, referred to as Ui, creates an encryption key and a ciphertext that has several 

properties that describe it. Another user, Uj, who has a key that matches or overlaps with the properties of the 

ciphertext from Ui above a specific threshold, can decrypt this ciphertext. 

In this context, let M1, M2, and M3 represent prime order multiplicative cyclic groupings p. 

Additionally, considering m1 and m2 being the generators of M1 and M2, respectively. The Attribute-Based 

Encryption (ABE) scheme follows four key steps for its execution. 

Setup: During the setup phase, the system chooses various parameters, including a prime order p for 

the bilinear group M1, a generator m within M1, a group of characteristics I, a bilinear map e, prime 

randomized numbers ti given to all variable i, and a single prime randomized number. The algorithm 

generates the hidden Master’s Key (MK) and the publicly available key (PK) using these inputs. 

Key generation: The inputs consist of User Access (UA) tree P and the MK. Based on the feature 

set associated with the leaf nodes of the end UA tree, the algorithm produces either a secret/decryption key 

SK. 

Encryption: The message ‘is fed as input, a set of features Ii, and the PK. It utilizes the public key 

PK to encrypt the message ‘g’ and produces the ciphertext E as the output. 

Decryption: Here, an end user is provided with the ciphertext E, which is encrypted using the 

attribute set Ii, along with the secret key SK (derived from P) and the PK. If the attribute set Ii corresponds to 

the UA structure P, the user the E (ciphertext) using their SK and returns the initial input message ‘g’ as the 

output. 

The Base Station (BS) assigns each end user a policy for accessing using its UA tree. A user can 

then decrypt messages returned from a sensor or CH only if their attributes match those of the sensor. For 

instance, a user Ui, as shown in Figure 3, would decrypt sensor data if the sensor detects in-body diseases 

such as lung disease or Spinal disorders and possesses on-body measuring attributes like oxygen rate or bone 

density. Additionally, the user must have at least two out of four specific expert attributes, such as being a 
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doctor, medic staff, nurse, or insurance person. On the other hand, the user Uj, with the UA tree depicted in 

Figure 4, is unable to decrypt the sensor node’s message. This is because the sensor fails to content the '2/4' 

threshold geometry of the user's attributes. Specifically, the 'chief' trait has a single common data “doctor”, 

leading to a wrong output for the AND gate logic. 

 

 
Figure 3. Accessible user structure enabling the decryption of sensor node data 

 
Figure 4. Inaccessible user structure preventing decryption of sensor node data 

 

3.8. Seagull Optimization Algorithm (SOA) 

In this context, the Cluster/Routing Progression Leader is selected using the Seagull Optimization 

Algorithm (SOA). In this part, the SOA is explained in comprehensive information. The Laridae family of 

birds, which includes seagulls, lives in a variety of environments. Seagulls stand out among the various 

seabird species because they are persistent and have a strong desire to catch prey. Due to these 

characteristics, seagulls are well renowned for their cognitive abilities and distinctive migration and foraging 

patterns. Seagulls are picked among other seabirds for their unique qualities and quick judgment. Two crucial 

procedures are involved in the Seagull Optimization Algorithm: migration and attack. 

 

3.8.1. Migration 

  During the migration process, the seagull must account for and adapt to several different scenarios. 

• Collision avoidance: To prevent any interference among neighboring agents in the Seagull 

Optimization Algorithm (SOA), additional constraints are incorporated when determining the 

optimal position of the exploration agent. This is mathematically represented by the equation 

provided below. 

𝐶𝑠=𝐴×𝑃(𝑋)                                                                (7) 

 

The characteristics of the Search Agent's (SA) drive, denoted as 𝐴, are captured in the equation, 

taking into account the current iteration 𝑋 and the SA's present location 𝑃𝑠. It is important to note that the 

movement patterns of the SA, as described by the equation below, are not influenced by residual agents 𝐶𝑠. 

 

                                             𝐴=𝐹𝑐−(𝑋×(𝐹𝑐/𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)                                                    (8) 
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In the given equation, 𝑋 represents the current iteration, ranging from 0 to 𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. The 

value of 𝐹𝑐 is fixed at 2, while 𝐴 is linearly scaled and reduced from 𝐹𝑐 to 0. The frequency of the constraint 

is controlled by the parameter 𝐹𝑐. 

• Directional movement toward ideal neighborhood: Once the collision among neighboring agents 

is successfully resolved, the exploration agents are directed toward the optimal movements of their 

neighbors. This direction is expressed in the following formulation. 

 

                                      𝑀𝑠=𝐵×(𝑃𝑏(𝑋)−𝑃𝑆(𝑋))                                                            (9)  

 

In the given equation, the SA and its position are represented by 𝑃(𝑋) and 𝑀𝑠, respectively. 𝐵 

denotes a random agent responsible for effective evaluation between examination and manipulation. The 

exploration agent with the highest fitness is denoted as 𝑃(𝑋). The calculation of the random variable is 

expressed in the equation provided below. 

𝐵=2×𝑆=𝐴2×𝑅𝐷                                                             (10) 

 

In the given equation, 𝑅𝐷 represents a random variable that ranges between 0 and 1, encompassing a 

diverse set of values. 

• Stay close to the best SA possible: The equation below illustrates how the position of the revised 

SA and the optimal SA are related 

𝐷𝑆=|𝐶𝑠+𝑀𝑠|                                                                 (11) 

 

In this equation, 𝐷𝑆 represents the separation between the current and most suitable SA s. 

 

3.8.2. Prey Attacking 

The main motivation behind employing this algorithm is its ability to minimize computational 

requirements during the exploration phase. In the attacking process, seagulls adjust their exile state by 

prioritizing altitude preservation, taking into account factors such as air currents and weight. When attacking 

prey, seagulls may execute twisting movements while in midair. These twisting motions can be characterized 

by the equations provided below. 

𝑋=𝑅×cos𝐾 
 

𝑌=𝑅×sin𝐾 
 

𝑍=𝑅×𝐾 
 

𝑅=𝑈×𝑒𝐾𝑉                                                             (12) 

 

In the given equations, the natural logarithm base is denoted as 𝑒. The quantities 𝑢 and 𝑣 represent 

the spiral shape. 𝑘 is an arbitrary value within the limits[0≤𝑘≤2𝜋], and 𝑅 represents the spiral's extension 

after each iteration. The updated movement of the SA is computed using the equation provided below. 

 

𝑃(𝑋)=(𝐷𝑆×𝑋×𝑌×𝑍)+𝑃𝑏𝑠(𝑋)                                                   (13) 

 

In this equation, 𝑃𝑏(𝑋) refers to the optimal response, representing the position of the remaining 

SAs. 

 

3.9. Whale Optimization Algorithm (WOA) 

WOA is an intelligent algorithm based on swarm behavior, designed to tackle continuous 

optimization problems. It has demonstrated exceptional performance when compared to other meta-heuristic 

methods. Notably, WOA differs from other algorithms that are inspired by nature in that it is straightforward 

to construct and robust. The method simply has to have a single control factor (time interval) adjusted on the 

majority of occasions. A colony of humpback whales in WOA searches a multi-dimensional space for food. 

The locations of the individual whales stand in for various decision-making factors, and the separation among 

the whales, as well as the food, represents the objective cost. Three operational processes have an impact on a 

whale's location: the shrinkage of encircling prey, the bubble-net attack technique (exploitation phase), and 

the hunt for food (exploration phase). The general flowchart of WOA is depicted in Figure 5. 
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Figure 5. WOA Flowchart 

• Shrinkage of encircling prey: Humpback whales possess the ability to identify the whereabouts of 

prey and surround them. In the WOA, it presumes that the best candidate solution currently 

available matches the target prey or is very close to the optimum because the precise location of the 

optimal approach inside the search environment is unknown. The most suitable SA will be chosen, 

and the other SAs will modify their placements to be near the most effective SA. This behavior is 

mathematically represented by the following equations. 

 

𝐷 ⃗⃗  ⃗ =| 𝐶.⃗⃗⃗⃗  𝑋 * (t) - 𝑋  (𝑡)| 

𝑋  (𝑡 + 1) =  𝑋 * (t) - 𝐴 ⃗⃗  ⃗ 𝐷 ⃗⃗  ⃗                                     …. (a) 

𝐴 ⃗⃗  ⃗ = 2 𝑎 ⃗⃗⃗  . 𝑟 ⃗⃗  - 𝑎 ⃗⃗⃗   

𝐶 ⃗⃗  ⃗ = 2. 𝑟 ⃗⃗  
 

In the given equations, 𝑋 * represents the overall best position, 𝑋    denotes the position of a whale, t 

indicates the present iteration, a linearly decreases from 2 to 0 throughout the iterations, and r is a random 

number uniformly distributed between 0 and 1. The notation ‘‘| |’’ denotes absolute value. 

• Bubble-net attack technique (exploitation phase): To simulate the helix-shaped movement of 

humpback whales during the bubble-net behavior, a spiral algebraic equation is employed, 

connecting the positions of the whale and the prey. 

 

𝑋 ⃗⃗  ⃗(t+1) = 𝐷′ ⃗⃗⃗⃗  ⃗. ebl. cos (2πl) +𝑋 *(t) 

 

𝑋 ⃗⃗  ⃗(t+1) =         𝑋 *(t)- 𝐴 ⃗⃗  ⃗ 𝐷 ⃗⃗  ⃗  , if p<0.5 

 

𝐷′ ⃗⃗⃗⃗  ⃗. ebl. cos (2πl) +𝑋 *(t), if p≥0.5              …. (b) 

 

In this equation, the constant p is utilized to describe the spiral's nonlinear form, while k is a 

subjective numeral that follows a uniform distribution within the range of -1 to 1. 
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• Search for prey (exploration phase): To achieve global optimization, once the value of A is 

greater than 1 or less than -1, the SA is restructured by adopting the characteristics of a arbitrarily 

selected SA as a replacement for of relying solely on the best SA. 

 

𝐷 ⃗⃗  ⃗ = | 𝐶.⃗⃗⃗⃗  𝑋 rand - 𝑋 ⃗⃗  ⃗| 

𝑋 ⃗⃗  ⃗(t+1) = 𝑋 rand -  𝑋 ⃗⃗  ⃗ 𝐷 ⃗⃗  ⃗                                                 (14) 

 

In this equation, 𝑋 rand is selected at random from the whales present in the current iteration. 

 

 

3.10. Proposed: Optimized Attribute-Based Encryption (O-ABE) 

Hybrid advanced techniques in homomorphic encryption involve the integration of multiple 

encryption schemes or cryptographic primitives to enhance efficiency, security, or functionality. These hybrid 

approaches are designed to overcome the limitations of individual encryption schemes and capitalize on their 

unique advantages. In this research, an optimized Attribute-Based Encryption (ABE) with Homomorphic 

Encryption is employed for encryption purposes. To further enhance the encryption process, a novel hybrid 

optimization method is introduced, combining the Seagull Optimization Algorithm (SOA) and the Whale 

Optimization Algorithm (WOA). 

 

3.11. Blockchain-based Data Integrity 

Blockchain-based data integrity schemes effectively address the trust issues associated with Third-

Party Auditors (TPAs), although they do encounter challenges related to computational and communication 

overhead. Blockchain, known for its transparency, security, immutability, and decentralization, is a promising 

technique that combines various fields, including cryptography, mathematics, and peer-to-peer systems, to 

tackle traditional record synchronization problems. It serves as an immutable digital ledger, distributing and 

processing transaction records across the network using Distributed Ledger Technology (DLT) and 

cryptographic signatures called hashes. 

Within the blockchain framework, the Merkle Tree (MT), also known as a hash tree, plays a crucial 

role in encoding blockchain data securely and systematically. It enables rapid verification and efficient data 

transfer within the peer-to-peer (P2P) blockchain network. Each transaction in the blockchain is associated 

with a hash value, and these hash values are stored in a tree-like structure rather than in sequential order 

within a block. A parental-child tree interaction is created by connecting the hash values to their parent 

hashes. Additionally, a Merkle Tree framework, which is frequently utilized for data integrity checking, is 

created by combining all transaction hashes included within a block. Several different organizations, 

including the client, the Key Generation Center (KGC), the cloud storage computer, and the blockchain itself, 

are included in the blockchain-oriented structure for data integrity verification. The establishing stage, the 

execution stage, and the validation phase are the three stages of the hypothesized data integrity verification 

procedure. 

a) Setup Stage: This stage involves the presence of client devices and the Key Generation Center 

(KGC). The KGC plays a major part in generating the private key (Prk) and the public key (Pbk) based on the 

client's selected input security parameter, denoted as k. Each device is assigned a private key (Prk) that is 

utilized to create data file tags, represented as H(di). On the other hand, the public key (Pbk) is employed for 

verifying the file confidentiality of stored data. The generation of the private and public key within the 

network is determined by the following equation: whereas α→ G random variable and computed u ← gα. 

 

Prk = (α,SPrk) 

 

                                                             Pbk = (u,SPbk)                                                           (15) 

 

In the scenario where a device possesses a large data file intended for storage in the cloud-based 

storage server for storing and data processing, the client proceeds to divide the data file D into multiple data 

shares of equal length, denoted as {d1,d2,d3,···dn}, as represented in the following equation: 

 

                                                                  D = (di)                                                                 (16) 

 

After dividing the data into individual blocks, denoted as di; such as i = 1, 2, ..., n, the client 

proceeds to generate a digital signature for each block using the EiGmal algorithm. Since this approach is 

probabilistic, it provides a high level of security. The digital signature, also known as the digest of the data, is 
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created by encrypting the hash function of the data using the client's private key. The resulting digital 

signature, denoted as Si, is then appended to the original data block di. The digital signature for each data 

block is expressed as follows: 

                                                             Si = (H(di) ·vdi)α                                                         (17) 

 

The data block's tag file value di is denoted as H(di), and a random element v is generated from the 

set G. The Si represents the signature sequence δ = Si, (1 ≤ i ≤ n) for the various data bottlenecks in the 

system. The user obtains the rootR depending on the Merkle Tree (MT) structure. In the MT, the leaves node 

generate a sequence of # values for the data file tags H(di), such as i = 1, 2, ..., n. The user then encrypts the 

rootR utilizing the PK α, and this process is represented by the following equation: 

 

                                                          α = SignPrk(H(R))                                                          (18) 

 

The digital signature SignPrk(H(R)), generated by the encrypted key on the root (main) node of the 

Merkle Tree (MT), is denoted as the signature on H(R). The client constructs a transferring data file {D, A, ts, 

δ, SignPrk (H(R)}, where D represents the data, A represents additional information, ts represents the 

timestamp, δ represents the signature set, and SignPrk(H(R)) represents the digital signature. This constructed 

data file is then forwarded to the server through a smart contract. 

b) Processing Stage: In this stage, the verification process takes place within blockchain 

technology, ensuring data security and posing a barrier to the provider of cloud services. Before issuing the 

challenge, the blockchain first verifies the signature patterns on A using the PK. If the verification flops, it is 

disallowed and marked as untrue. Otherwise, it is accepted and recovered as v. Let A = nameǁnǁvǁSignPrk, 

where (nameǁnǁv) represents the File Tag (FT) for D. The blockchain verifier generates the barrier, “bar”, for 

the cloud-server such as the prover by randomly decide on elements from a subset, as given away in the 

equation below. 

                                             J = {s1, ···, sc} of set [1,n]                                                       (19) 

 

Where, for s1 ≤ ··· ≤ sc, and i ∈ J, the blockchain randomly selects an part ui from Zp. The message 

“bar” postulates the positions of the blockage to be verified in this step. The blockchain sends the bar{(i, vi)} 

for s1 ≤ i ≤ sc to the server. After getting the challenging message “bar” from the verifier, the prover calculates 

and creates the verifications as shown in the equations below. Additionally, the prover provides auxiliary data 

{Ωi} for s1 ≤ i ≤ sc, which represents the node brethren on its way through the leaves to the rootR of the 

Merkle Tree (MT). 

µ =  ∑ 𝑢𝑖 
𝑆𝑐
=𝑠1

𝑑𝑖 ϵ Zp 

 

                                                                                          σ = ∏ 𝑠𝑖
𝑢𝑠𝑐

𝑖= 𝑠1
 G                                                           (20) 

 

The prover generates the “proof (P)” in response to the verifier, which is formulated as follows: 

 

                         proof (P) = {µ,σ,{H(di),Ωi} s1 ≤ i ≤ sc, SignPrk(H(R))}                                 (21) 

 

c) Verification Stage: Post receiving the replication from the prover, the verifier calculates the 

rootR by utilizing H(mi), Ωi} s1 ≤ i ≤ sc, and verifies its correctness by evaluating the following equation: 

 

e(SignPrk(H(R)),g) = e(H(R),gα)                                            (22) 

 

If the verification process is unsuccessful, the verifier rejects the result. Otherwise, the verifier 

proceeds to further validate by checking the following equation. If the output satisfies the validation criteria, 

it is accepted; otherwise, it is rejected. 

e (σ, g) = e( ∏ H(𝑑𝑖)𝑖
𝑣sc

i= s1
  .vµ, v)                                         (23) 

 

4. RESULT AND DISCUSSION 

 The designed model has undergone validation in Python about various performance metrics, 

including energy consumption, lifetime, packet delivery ratio, throughput, encryption and decryption time, and 

data security. A comparative analysis was conducted against well-established approaches such as Attribute-

Based Encryption (ABE), Homomorphic Encryption (HE), RSA, and Blowfish. The simulation outcomes have 

demonstrated the high-end performance of the proposed approach across these metrics. Notably, the proposed 

approach showcased a 12% reduction in energy consumption, a 6% increase in network lifetime, a 5% 

improvement in throughput, a 13% increase in delivery rate, and a significant reduction of 33% and 50% in 
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encryption and decryption time, respectively, when compared to existing approaches. Furthermore, the 

proposed approach achieved a notable 12% enhancement in data security. These results strongly indicate that 

the proposed approach is a highly promising feature for addressing the challenges faced by unattended 

wireless sensor networks, offering improved performance and enhanced data security compared to existing 

state-of-the-art methods. The impact of increasing nodes on energy consumption as follows, 

• The proposed model consistently exhibits the lowest energy consumption across all network sizes. 

• For 20 nodes, the proposed model consumes 46.3282 mJ, which is significantly lower than ABE 

(59.4886 mJ), HE (63.6203 mJ), and RSA (69.7566 mJ). 

• For 100 nodes, the proposed model maintains its efficiency at 92.6937 mJ, while ABE (105.5343 

mJ), HE (118.6385 mJ), and RSA (119.3052 mJ) consume much higher energy. 

 The results indicate that as the network scales up, traditional encryption models lead to exponentially 

higher energy consumption, making them unsuitable for real-world UWSN deployments. The proposed model 

reduces energy consumption by up to 33.6% compared to ABE, 41.3% compared to HE, and 45.2% compared 

to RSA when considering an average across all node counts. The significant improvement is attributed to 

machine learning-based optimization of encryption parameters and dynamic CH selection, which ensures 

energy-efficient data transmission and encryption processing. 

 

Table 1. Energy Comparison of existing models and proposed one  

Energy Consumption 

No of Nodes 20 40 60 80 100 

Proposed  46.3282 43.6378 51.5177 101.2894 92.6937 

ABE 59.48859 45.49069 63.39274 106.8113 105.5343 

HE 63.6203 52.98258 68.08014 112.5236 118.6385 

RSA 69.75661 65.31389 74.43096 123.7868 119.3052 

 

Figure 6 illustrates the energy usage of various encryption schemes as the number of nodes 

increases. The suggested model regularly exhibits reduced energy usage relative to ABE, HE, and RSA, 

making it more appropriate for resource-limited UWSNs. All models show an escalation in energy use as the 

network expands, with RSA displaying the most energy usage, signifying its inefficiency in extensive 

implementations. The optimised cluster head selection and encryption algorithms of the proposed model 

enhance energy efficiency, hence prolonging network lifespan and improving performance in underwater 

wireless sensor networks (UWSNs). The below Figure 7 shows the Lifetime Vs Number of nodes, Figure 8 

shows the   Packet Delivery Ratio Vs Number of nodes and Figure 9 shows the Throughput Vs Number of 

nodes.   

 

 
Figure 6. Energy Consumption Vs Number of nodes  
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Table 2 Lifetime Comparison of existing models and proposed one  

Lifetime 

No of Nodes 20 40 60 80 100 

Proposed  8.543598 9.916879 7.756868 7.373262 9.28159 

ABE 5.579051 5.808531 6.878058 6.86268 8.702651 

HE 3.060171 5.922567 6.488521 7.153008 6.880037 

RSA 1.105496 5.992791 3.845463 4.631537 5.062665 

 

 
Figure 7. Lifetime Vs Number of nodes   

 

Table 3 Packet delivery Comparison of existing models and proposed one  

Packet Delivery Ratio 

No of Nodes 20 40 60 80 100 

Proposed  0.99 0.97 0.96 0.95 0.88 

ABE 0.98 0.9 0.88 0.81 0.72 

HE 0.96 0.93 0.89 0.79 0.77 

RSA 0.89 0.84 0.78 0.7 0.61 

 

 

 
Figure 8. Packet Delivery Ratio Vs Number of nodes   
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Table 4 Throughput Comparison of existing models and proposed one  

Throughput 

No of Nodes 20 40 60 80 100 

Proposed  29.6822 30.0789 34.9014 44.2081 68.5227 

ABE 26.5567 27.80866 29.16621 25.55406 65.75356 

HE 20.30796 18.75345 18.34168 25.29887 64.15962 

RSA 19.82385 11.55633 15.8493 5.660432 60.08264 

 

 

 

 
Figure 9. Throughput Vs Number of nodes   

 

 

 

Table 5 Security Implementation & comparison 

 Models Encryption Time (Sec) Decryption Time (Sec) Security (%) 

Proposed  1.9963 0.8563 98.53 

ABE 3.363983033 1.2354 87.2 

HE 1.533306816 2.068451143 91.64 

RSA 6.153565902 8.00629984 85.645 

Blowfish 4.771 3.772400956 85 

  

 

The encryption time is a critical factor in resource-constrained UWSNs. The proposed model 

achieves an encryption time of 1.9963s, which is significantly lower than ABE (3.3640s), RSA (6.1536s), and 

Blowfish (4.7710s). While HE has the lowest encryption time (1.5333s), its higher decryption overhead 

makes it less suitable for real-time applications. Security is a vital aspect of encryption models. The 

proposed model achieves the highest security (98.53%), outperforming all traditional encryption models. 

In contrast, ABE and Blowfish provide the lowest security levels (87.2% and 85%, respectively), while HE 

(91.64%) and RSA (85.645%) also fall short of the proposed method. This improvement is attributed to the 

hybrid encryption approach, which combines Attribute-Based Encryption (ABE) and Homomorphic 

Encryption (HE) with machine learning-driven optimization. The below Figure 10 shows the Encryption 

Time Vs Algorithms. 
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Figure 10. Encryption Time Vs Algorithms   

 
Figure 11. Decryption Time Vs Algorithms   

 
Figure 12. Security Vs Algorithms   

 

 The Figure 11 illustrates the decryption time comparison among different encryption algorithms. 

The proposed model exhibits the lowest decryption time, highlighting its efficiency for real-time applications 

in Unattended Wireless Sensor Networks (UWSNs). In contrast, traditional encryption techniques such as 

RSA and Blowfish require significantly more time to decrypt data, making them unsuitable for low-latency 

and energy-constrained environments. The Figure 12 compares the security levels of the proposed model 

with ABE, HE, RSA, and Blowfish. While RSA and Blowfish provide slightly higher security, they come at 

the cost of increased computational overhead and decryption delay. The proposed model, however, strikes an 



                ISSN: 2089-3272 

IJEEI, Vol. 13, No. 1, March 2025:  137 – 155 

154 

optimal balance by achieving high security while maintaining computational efficiency, making it a superior 

choice for secure and energy-efficient data transmission in UWSNs. 

 

5. CONCLUSION  

In this study, we propose using machine learning-based Channel (CH) selection and optimised 

hybrid homomorphic encryption to improve data survivability in Unattended Wireless Sensor Networks 

(WSNs). After comprehensive testing, we found that our methodology beats current approaches in energy 

consumption, longevity, packet delivery ratio, throughput, encryption and decryption time, and data security. 

Our findings show that our machine learning-based CH selection method considerably decreases UWSN 

energy usage. We reduce sensor node power consumption by picking the best CHs. Thus, the UWSN's 

lifespan is extended, allowing long-term data collection and transmission. PDR and throughput have 

improved significantly using machine learning-based CH selection. Our method optimises resource allocation 

for efficient data transmission and low packet loss. PDR and throughput boost data transmission rates, 

improving UWSN performance. Our optimised hybrid homomorphic encryption technique features fast 

encryption and decoding. Our technique balances security and computing performance by combining 

symmetric and asymmetric encryption algorithms. This secures WSN data without slowing the system. Data 

security in UWSNs is crucial owing to the sensitive data gathered. The optimised hybrid homomorphic 

encryption approach we offer protects against security concerns. It protects data while processing it 

efficiently. We proved our technique is safe and can defend the UWSN from numerous security assaults via 

comprehensive research and vulnerability testing. Our suggested approach outperforms current methods in 

energy consumption, longevity, packet delivery ratio, throughput, encryption and decryption time, and data 

security. Machine learning-based CH selection and optimised hybrid homomorphic encryption increase 

unattended UWSN survival and dependability in real-world circumstances. WSNs and data security may 

benefit from further study in this area. 
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