
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
Vol. 13, No. 2, June 2025, pp. 347∼367
ISSN: 2089-3272, DOI: 10.52549/ijeei.v13i2.6013 ❒ 347

Deep Learning-Driven Intrusion Detection System for
Distributed Denial of Service Mitigation

Wala ben Rhouma1, Haythem Hayouni1
1Department of Computer Sciences, Higher Institute of Computer Sciences of Kef, University of Jendouba, Tunisia

Article Info

Article history:

Received Nov 2, 2024
Revised Apr 15, 2025
Accepted May 4, 2025

Keywords:

DDoS attack
Intrusion Detection System
Machine Learning
Deep Learning
Convolutional Neural Networks

ABSTRACT

DDoS attacks continue to pose a serious risk to digital infrastructures, as they
can render online services inaccessible without altering system files or gain-
ing direct control over the target. Traditional security mechanisms often fall
short in identifying these attacks promptly due to their massive scale and the
subtlety with which they blend into regular traffic. With the advancement of
artificial intelligence, especially in the realm of deep learning, new solutions
are emerging to enhance the detection and classification of such threats. In this
work, we focus on strengthening Intrusion Detection Systems (IDS) by lever-
aging deep learning methods to improve accuracy and responsiveness in de-
tecting DDoS attacks. Using the comprehensive CIC-DDoS-2019 dataset, we
experimented with several deep learning architectures including Feedforward
Neural Networks (MLP), Convolutional Neural Networks (CNN), and Recur-
rent models incorporating Long Short-Term Memory (LSTM). These models
were evaluated for their ability to analyze complex traffic behaviors and identify
malicious activity within diverse network environments. his study contributes
to the ongoing research on intelligent cybersecurity solutions by proposing deep
learning-based IDS frameworks that not only detect threats with higher accuracy
but also adapt to dynamic attack patterns. Our findings suggest that such mod-
els can serve as a critical component in modern security infrastructures, offering
scalable and resilient defense mechanisms against increasingly sophisticated cy-
berattacks like DDoS. Our empirical results demonstrate that the MLP model
yielded the most reliable performance, achieving an outstanding classification
precision of 99.62% across various traffic categories. This highlights its effec-
tiveness in isolating harmful flows from legitimate ones, thereby reducing the
risk of false alarms and improving detection reliability.
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1. INTRODUCTION
In the modern era of digital transformation, the reliance on networked systems has grown exponen-

tially. From cloud computing to Internet of Things (IoT) devices, from e-commerce platforms to critical infras-
tructure management, nearly every sector depends on the continuous availability of online services. However,
with this increased connectivity comes a proportional rise in cyber threats. One of the most prevalent and
destructive forms of attack in this landscape is the Distributed Denial of Service (DDoS) attack [1]. A DDoS
attack attempts to exhaust the resources of a server, service, or network by flooding it with illegitimate requests,
often from thousands of compromised machines (botnets) distributed globally. Unlike traditional cyber intru-
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sions, DDoS attacks do not necessarily aim to steal data but to disrupt service availability, which can result in
financial loss, reputational damage, and system downtime. The growing complexity, speed, and scale of these
attacks have made real-time detection and response more crucial than ever.

Despite the existence of conventional security mechanisms such as firewalls, rate limiters, and rule-
based Intrusion Detection Systems (IDS) [2], these tools are increasingly ineffective against modern DDoS
attacks. Traditional IDSs typically rely on predefined signatures or rules that must be manually updated, which
limits their ability to detect novel or zero-day attacks. Moreover, the high volume of network traffic and the
subtle nature of some DDoS behaviors often result in false positives or missed detections, further reducing
their reliability in dynamic environments. In response to these limitations, the cybersecurity community has
begun to explore machine learning (ML) and, more recently, deep learning (DL) [3,4] as promising alternatives
for enhancing IDS capabilities. Unlike traditional approaches adapt to new types of attacks without manual
intervention, and scale effectively with the volume and complexity of modern network traffic. These properties
make deep learning especially suited for building intelligent, adaptive, and accurate intrusion detection systems.

This study concentrates on creating deep learning-based intrusion detection system (IDS) models
that can accurately and efficiently identify DDoS attacks. The CIC-DDoS-2019 dataset, which features a
broad spectrum of realistic DDoS traffic scenarios, serves as the foundation for evaluating various cutting-edge
neural network models. These include the Multilayer Perceptron (MLP), known for its effectiveness in handling
structured data; the Convolutional Neural Network (CNN), capable of recognizing spatial data patterns; and the
Recurrent Neural Network with Long Short-Term Memory (RNN-LSTM), which excels at modeling sequential
and time-dependent traffic behaviors.

This research contributes to the field of intelligent network security in the following ways:

• It presents the design and training of several deep learning-based intrusion detection models namely,
MLP, CNN, and RNN-LSTM tailored for identifying different categories of DDoS attacks, utilizing the
comprehensive CIC-DDoS-2019 dataset.

• It identifies the Multilayer Perceptron (MLP) as the top-performing model, attaining a high accuracy rate
of 99.62

• It establishes the advantages of deep learning techniques over traditional IDS approaches, especially in
terms of improved detection rates, greater adaptability, and enhanced robustness against sophisticated
attack strategies.

• It highlights the models’ ability to automatically learn and prioritize relevant features from raw data,
reducing reliance on manual feature engineering.

• It introduces a practical and scalable deep learning-based IDS framework capable of supporting real-time
network protection through early detection and accurate classification of DDoS threats.

The remainder of this paper is structured as follows: Section 2 reviews existing literature relevant
to this study. Section 3 outlines the proposed research methodology. Section 4 presents and analyzes the
experimental results. Lastly, Section 5 concludes the paper and suggests directions for future research.

2. RELATED WORKS
The application of deep learning in detecting DDoS attacks has led to notable progress in the field.

These advanced techniques have shown considerable promise in recognizing intricate attack behaviors and
boosting the performance of intrusion detection systems (IDS). Several recent studies illustrate the variety of
strategies and developments that have emerged in this area.

Liu and Patras [5] proposed NetSentry, an advanced intrusion detection system that utilizes a Bidi-
rectional Asymmetric LSTM (Bi-ALSTM) network to detect early signs of large-scale network attacks. This
model was specifically designed to recognize subtle attack patterns over time, making it particularly effective
for detecting incipient DDoS attacks. The study found that by considering temporal dependencies in attack
data, NetSentry outperformed traditional signature-based systems, achieving an improvement of over 33% in
F1 scores compared to other IDS methods. This highlights the significance of real-time detection for large-scale
attacks in modern network infrastructures.
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Alfatemi et al. [6] addressed the problem of class imbalance in DDoS detection datasets by integrating
Deep Residual Neural Networks (ResNets) with the Synthetic Minority Over-sampling Technique (SMOTE).
This hybrid method was applied to the CICIDS dataset and yielded an impressive accuracy of 99.98%. By
incorporating data augmentation, their approach mitigated training bias and significantly enhanced the model’s
ability to detect infrequent attack types effectively overcoming a major challenge in DDoS detection systems.

Doriguzzi-Corin and Siracusa [7] introduced FLAD, an adaptive federated learning framework de-
signed for distributed IDS systems. The key feature of this model is that it enables the collaborative training of
IDS models across multiple devices or servers without the need to share sensitive data. FLAD dynamically ad-
justs the computational resources allocated for training based on the complexity of the attack profiles detected.
This model significantly reduced the convergence time of federated learning while maintaining high detection
accuracy.

Silivery et al. [8] proposed an advanced multi-phase deep learning model to classify both Denial of
Service (DoS) and DDoS attacks across multiple classes. Their approach integrated Deep Convolutional Gen-
erative Adversarial Networks (DCGAN) for data balancing, ResNet-50 for feature extraction, and an optimized
AlexNet classifier. Tested on the CCIDS2019 and UNSW-NB15 datasets, the model achieved over 99.3% ac-
curacy and outperformed previous methods in terms of multi-class attack detection. This study emphasizes the
importance of hybrid deep learning models and data balancing in improving detection accuracy for varied and
sophisticated DDoS attack types.

Shaikh et al. [9] proposed a hybrid deep learning framework that integrates Convolutional Neural
Networks (CNN), Principal Component Analysis (PCA), and Vision Transformers (ViT) to improve DDoS
attack detection. In this approach, CNNs were employed to extract key features, PCA was used to reduce data
dimensionality, and ViTs provided attention-based learning capabilities. Tested on the CICDDoS2019 dataset,
the model reached a high accuracy of 99.99%. The study underscores the effectiveness of combining multiple
deep learning methods to capture both spatial and temporal characteristics of network traffic in the context of
DDoS mitigation.

Alanazi et al. [10] introduced an advanced intrusion detection system that combines Deep Neural
Networks (DNN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) networks
to effectively detect DDoS attacks. Their approach integrated data preprocessing with a deep learning-based ar-
chitecture, resulting in significant gains in detection speed and accuracy when evaluated on the CIC-DDoS2019
dataset. The hybrid model, capable of learning both spatial and sequential patterns in network traffic, proved
effective in enhancing DDoS detection performance in real-time operational settings.

Kumari and Mrunalini [11] proposed a model which focused on capturing sequential dependencies in
network traffic, which is crucial for detecting evolving DDoS attacks that may not show immediate signs of
malicious behavior. Trained on the CICDDoS2019 dataset, this LSTM model achieved an accuracy of 98% and
showed promise in real-time intrusion detection by automatically recognizing traffic patterns typical of DDoS
attacks, even in the presence of background noise.

Dhanya et al. [12] explored the application of Long Short-Term Memory (LSTM) networks for detect-
ing DDoS attacks by leveraging the temporal characteristics of network traffic. Trained on the CICDDoS2019
dataset, their model achieved an accuracy of up to 98%, underscoring the strength of LSTMs in identifying
threats that develop over time. Compared to traditional signature-based intrusion detection systems, which
often fail to recognize novel or evolving attacks, the LSTM-based method showed superior adaptability. This
work emphasizes the value of sequential deep learning models for enhancing real-time threat detection capa-
bilities. Alshra’a et al. [13] developed a hybrid intrusion detection model that integrates Deep Convolutional
Neural Networks (DCNN) for extracting relevant features with Bidirectional Long Short-Term Memory (BiL-
STM) networks to capture sequential relationships in network data. The model was evaluated using datasets
such as CICIDS2018 and Edge IIoT, achieving detection accuracies of up to 100%. This approach highlights
the effectiveness of combining CNNs for spatial feature analysis with BiLSTMs for understanding temporal
dynamics, resulting in enhanced performance in identifying both DDoS and DoS attacks with high precision
and responsiveness. Salmi and Oughdir [14] conducted a comparative analysis of various deep learning mod-
els for identifying Denial of Service (DoS) attacks within wireless sensor networks (WSNs). Their findings
showed that deep learning approaches particularly Convolutional Neural Networks (CNNs) outperformed tra-
ditional detection techniques in terms of accuracy and adaptability to emerging attack patterns. This research
is especially noteworthy for demonstrating the viability of deep learning in resource-constrained environments
like IoT and WSNs, where swift and accurate threat detection is vital for maintaining network security.

DDoS Attacks Detection based DL... (W.B.Rhouma, H.Hayouni)



350 ❒ ISSN: 2089-3272

Oyucu et al. [15] introduced an ensemble-based deep learning framework designed to detect DDoS
attacks within Software-Defined Networking (SDN) environments, particularly in SCADA systems. By com-
bining the strengths of multiple deep learning classifiers, the proposed system improved both the accuracy and
resilience of intrusion detection. The study demonstrated that this ensemble approach not only increased de-
tection rates but also provided adaptive capabilities to counter evolving DDoS threats, positioning it as a strong
candidate for enhancing cybersecurity in industrial and critical infrastructure networks. Gankotiyace et al. [16]
investigated the application of Deep Convolutional Neural Networks (DCNNs) for identifying DDoS attacks
within Wireless Mesh Networks (WMNs). Their work introduced a novel cross-layer detection methodology
that examines traffic across various layers of the network protocol stack, enabling the system to uncover attack
patterns that might be missed when analyzing layers individually. Utilizing the automatic feature extraction ca-
pabilities of DCNNs, the proposed model effectively identified both subtle and complex anomalies in network
behavior. The study demonstrated that this cross-layer deep learning strategy significantly enhanced detec-
tion accuracy and system resilience, offering a practical solution for real-time intrusion monitoring in dynamic
and resource-limited WMN environments. It underscores the growing role of deep learning in fortifying the
security of next-generation wireless networks.

Table 1 presents a detailed overview of various studies related to DDoS detection using deep learning
models

It outlines the models used, datasets applied, key findings, reported accuracy, and the main contribu-
tions of each work. These studies leverage a variety of advanced techniques including LSTM, CNN, ResNet,
Vision Transformers (ViT), and hybrid models to detect and classify DDoS attacks with high accuracy, often
exceeding 98%. Some works, such as those by Shaikh et al. and Alshra’a et al., report near-perfect accuracy
using deep and hybrid architectures, while others like Doriguzzi-Corin and Siracusa explore privacy-aware
models like federated learning. Despite the promising results, several limitations can be observed across these
solutions. For example, Liu and Patras [5] propose an LSTM-based method focused on early detection, but do
not report standard accuracy metrics, which makes it difficult to directly compare with other works. Similarly,
Alanazi et al. [10] introduce a hybrid model combining DNN, CNN, and LSTM, yet omit detailed evaluation
results such as precision or recall, limiting the assessment of their model’s robustness. Doriguzzi-Corin and Sir-
acusa [7] present a federated learning approach, which is innovative in terms of privacy, but their model’s effec-
tiveness is not quantified through clear accuracy metrics. Moreover, while Alfatemi et al. [6] achieve extremely
high accuracy using ResNet and SMOTE, their reliance on heavy data preprocessing and class balancing raises
concerns about scalability and real-time applicability. Models such as those from Kumari and Mrunalini [11],
while effective in detecting sequential patterns, are limited to specific datasets like CICDDoS2019, which may
not capture the evolving nature of attacks in real-world settings. Additionally, many models depend heavily on
public datasets (e.g., CICIDS, CICDDoS2019), which may not fully reflect real-time, heterogeneous network
traffic. This introduces a risk of overfitting and limited generalizability. Computational complexity is another
common issue models combining CNN, LSTM, and ViT (e.g., Shaikh et al. [9]) offer high performance but may
not be deployable on low-resource or latency-sensitive environments like IoT or edge devices. Finally, most
models lack explainability, meaning that although they perform well in classification tasks, they provide little
insight into how decisions are made, which is a critical issue in cybersecurity contexts where interpretability is
essential for trust and validation.

3. PROPOSED RESEARCH METHODOLOGY AND CLASSIFICATION MODEL
To tackle the growing complexity of cyber threats, our research focuses on designing robust intrusion

detection systems (IDS) powered by deep learning. Central to our approach is the utilization of the CIC-
DDoS-2019 dataset, a highly detailed benchmark provided by the Canadian Institute for Cybersecurity, which
reflects realistic DDoS attack scenarios and various patterns of malicious traffic. Our experimental workflow
is structured around three separately preprocessed subsets of this dataset, each tailored to evaluate different
aspects of DDoS detection and traffic classification. For the first two subsets, we implemented and tested
four deep learning architectures: LSTM, DNN, CNN, and MLP. Each architecture was integrated with an
autoencoder layer to facilitate dimensionality reduction and extract significant features from the input data,
enhancing the classification accuracy. The third dataset (Data 3), focused on multi-class classification of 13
distinct traffic types, required more refined models. To this end, we applied a specialized LSTM model for
learning temporal dependencies in traffic sequences, a hybrid DNN-CNN architecture to leverage both spatial
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Table 1. Comparison of Related Works on DDoS Detection
Paper Model/ Method-

ology
Dataset Key Findings Accuracy Contribution

Liu and Patras [5] Bidirectional
Asymmetric
LSTM (Bi-
ALSTM)

Large-scale net-
work traffic

Improved F1
score by 33%
for early DDoS
detection

N/A Introduced a time-
sensitive, LSTM-based
model for early detection
of large-scale attacks.

Alfatemi et al. [6] Deep Residual
Neural Networks
(ResNet) &
SMOTE

CICIDS dataset Achieved 99.98%
accuracy using
ResNet and data
augmentation

99.98% Combined deep learning
with SMOTE for enhanced
DDoS detection accuracy.

Doriguzzi-Corin
and Siracusa [7]

Federated Learn-
ing

Multiple dis-
tributed devices

Reduced conver-
gence time and
high accuracy

N/A Introduced federated
learning for privacy-
preserving DDoS detec-
tion.

Silivery et al. [8] DCGAN,
ResNet-50,
AlexNet

CCIDS2019,
UNSW-NB15

Achieved 99.3%
accuracy for
multi-class clas-
sification

99.3% Combined multiple deep
learning techniques for ef-
fective multi-class DDoS
attack detection.

Shaikh et al. [9] CNN, PCA,
Vision Trans-
formers (ViT)

CICDDoS2019 Achieved 99.99%
accuracy

99.99% Introduced a hybrid model
for improved DDoS de-
tection combining CNN,
PCA, and ViT.

Alanazi et al.
[10]

DNN, CNN,
LSTM

CIC-DDoS2019 Demonstrated
improvement in
real-time DDoS
detection with
hybrid models

N/A Focused on the real-time
DDoS detection and fea-
ture extraction.

Kumari and
Mrunalini [11]

LSTM CICDDoS2019 Achieved up to
98% accuracy
in detecting se-
quential attack
patterns

98% Used LSTM for detect-
ing evolving DDoS attacks
over time.

Dhanya et al.
[12]

LSTM CICDDoS2019 Achieved 98%
accuracy

98% Focused on LSTM for se-
quential DDoS attack de-
tection.

Alshra’a et al.
[13]

DCNN & BiL-
STM

CICIDS2018,
Edge IIoT

Achieved up to
100% accuracy in
detection

100% Developed a hybrid model
combining CNN and BiL-
STM for real-time detec-
tion.

Salmi and
Oughdir [14]

CNN Wireless sensor
network data

Deep learning
outperforms tra-
ditional methods
in detection accu-
racy

N/A Applied deep learning to
improve DoS detection in
IoT networks.

Oyucu et al. [15] Ensemble Learn-
ing

SCADA systems
(SDN)

Enhanced ro-
bustness and
detection ac-
curacy with
ensemble models

N/A Introduced an ensemble
approach for DDoS detec-
tion in SDN environments.

Gankotiyacet al.
[16]

DP-K-means
clustering &
ERL-AlexNet

SDN traffic data Achieved effi-
cient detection
and mitigation
of DDoS in real-
time

97% Hybrid clustering and
deep learning for DDoS
detection in SDN.

and sequential characteristics of the data, and a standalone MLP network tailored for handling multi-class
outputs with high computational efficiency.

The flowchart for the proposed system is shown in Figure 1.

DDoS Attacks Detection based DL... (W.B.Rhouma, H.Hayouni)
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Figure 1. Flow chart of the proposed methodology.

Figure 2 presents the architecture of the proposed deep learning-based intrusion detection system,
which integrates three main neural network components: Convolutional Neural Network (CNN), Long Short-
Term Memory (LSTM), and Multi-Layer Perceptron (MLP). The process begins with the preprocessing of raw
network traffic data, which is then input into the model pipeline. The CNN module first extracts local spatial
features, followed by the LSTM layer, which captures sequential dependencies and temporal characteristics in
the data. These processed features are subsequently passed to the MLP, which performs the final classification.
This hybrid architecture supports both binary and multi-class classification, enabling it to distinguish between
normal traffic and various DDoS attack categories. By combining spatial, temporal, and high-level feature
analysis, the system improves its ability to detect complex attack patterns with high accuracy and resilience.

Figure 2. Flow chart of the proposed methodology.

3.1. Strategic Design and Deployment of Deep Learning Models for DDoS Traffic Classification
To enhance our classification performance, we partitioned the CIC-DDoS2019 dataset into three tai-

lored subsets, each corresponding to a specific classification challenge binary, medium-scale multi-class, and
fine-grained multi-class detection. We paired each subset with a set of carefully selected deep learning models,
enhanced by autoencoders. These unsupervised neural layers perform automatic feature learning and dimen-
sionality reduction.

• Subset 1 – Binary Classification (Benign vs. Attack): This subset targets the fundamental task of de-
termining whether network traffic is normal (BENIGN) or malicious (Attack). We merged training and
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test datasets into a unified format, simplifying data preprocessing and streamlining the classification
pipeline. The objective is to provide a baseline evaluation of model performance in distinguishing clean
traffic from any DDoS variant.

Models Applied: CNN-DNN, RNN-LSTM, and MLP, each equipped with an autoencoder layer for pre-
processing.

Purpose: Establish the core ability of deep learning models to perform basic intrusion detection low false
alarm rates.

• Subset 2 – Seven-Class Classification (1 Benign + 6 Attack Types): This intermediate subset was designed
to evaluate the capacity of our models to differentiate between multiple DDoS attack types, while still
identifying benign traffic.

Categories: BENIGN, and six attack types such as UDP, SYN, TFTP, MSSQL, LDAP, and PortMap.

Approach: The use of autoencoders in this scenario is especially vital, as the inter-class similarities
between different attack types can reduce the separability of features.

Goal: Assess model performance in handling a moderate degree of class complexity where attack types
share common temporal or protocol-level features.

• Subset 3 – Thirteen-Class Classification (1 Benign + 12 DDoS Variants): This subset represents the most
challenging classification scenario, requiring the model to identify traffic associated with 12 distinct types
of DDoS attacks in addition to benign flows.

Classification Categories Include: BENIGN, SNMP, NetBIOS, SSDP, UDP, SYN, TFTP, MSSQL, LDAP,
NTP, DNS, and PortMap.

Model Enhancement: Before training the deep learning models, we utilized the ExtraTreesClassifier a
robust ensemble-based technique for feature selection. This method helped identify the most informative
and class-relevant features, allowing us to filter out less significant attributes. By retaining only the most
predictive inputs, the model training process became more efficient, leading to improved accuracy and
reduced noise in the data.

Deep Learning Architectures Used: The proposed system incorporates multiple deep learning models to
address the complexity of network traffic analysis. A MLP is employed for its effectiveness in handling
multiclass classification tasks. LSTM networks are utilized to model long-range temporal dependencies
within traffic sequences. Additionally, a hybrid model combining DNN with CNN is implemented to
capture both spatial and sequential patterns, enhancing the system’s overall detection capability.

Purpose: Demonstrate the capability of advanced architectures in fine-grained attack classification, a
critical step for proactive network defense and threat attribution.

This layered classification strategy progressing from binary to multi-class with increasing granularity,
offers a comprehensive evaluation of deep learning models under varied levels of complexity. It also mirrors
real-world use cases where intrusion detection systems must not only flag anomalies but also categorize them
precisely to trigger the appropriate mitigation strategy. The integration of autoencoders and feature selection
techniques ensures high model efficiency and generalization performance, making the proposed framework
adaptable for deployment in practical cybersecurity environments.

Table 2 provides a structured overview of the deep learning-based classification strategy applied to the
CIC-DDoS2019 dataset, highlighting the division of the dataset into three subsets, each tailored for a specific
classification goal. These subsets reflect increasing levels of complexity in network traffic classification and
demonstrate the adaptability of deep learning models across different scenarios. Subset 1 focuses on a binary
classification task, distinguishing between benign traffic and any type of DDoS attack grouped under a single
”Attack” label. This scenario is used to establish a baseline performance using models like CNN-DNN, RNN-
LSTM, and MLP, all integrated with autoencoders to enhance feature extraction and reduce data dimensionality.
The dataset is merged into a unified file to streamline the classification process. Subset 2 addresses a 7-class
classification problem, where traffic is categorized into one benign type and six distinct DDoS attack types,
including UDP, SYN, TFTP, MSSQL, LDAP, and PortMap. The inclusion of autoencoders in this setting is
crucial for improving class discrimination, as some attack types share overlapping traffic features. This allows
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the deep learning models to learn subtle distinctions between attack types with greater precision. Subset 3
represents the most granular classification challenge, consisting of 13 classes 12 individual DDoS attack types
and one benign category. To tackle this complex task, a combination of MLP, LSTM, and a hybrid DNN-CNN
architecture was employed. Furthermore, ExtraTreesClassifier was used as a feature selection mechanism to
isolate the most relevant attributes for each attack type, thereby improving model efficiency and performance.

Table 2. Overview of Deep Learning-Based Classification Strategies used in our proposed model
Subset Classification

Type
Class Categories Deep Learning Models

Used
Special Techniques Applied

Subset 1 Binary Classifica-
tion

BENIGN vs. Attack
(all types merged)

CNN-DNN, RNN-LSTM,
MLP (with Autoencoder)

Dataset merged into one CSV;
Autoencoder used for feature
reduction and noise filtering

Subset 2 7-Class Multi-class
Classification

BENIGN, UDP,
SYN, TFTP, MSSQL,
LDAP, PortMap

CNN-DNN, RNN-LSTM,
MLP (with Autoencoder)

Autoencoder improves inter-
class feature separability and
enhances classifier accuracy

Subset 3 13-Class Fine-
Grained Classifica-
tion

BENIGN + 12 DDoS
variants (e.g., NTP,
DNS, SSDP, Net-
BIOS, etc.)

MLP, LSTM, DNN-CNN
Hybrid

ExtraTreesClassifier used for
feature selection; Multi-class
adaptation of deep learning
models

3.2. Proposed Hybrid CNN-LSTM Model Architecture
In this study, we introduce a hybrid deep learning model that integrates Convolutional Neural Net-

works (CNNs) and Long Short-Term Memory (LSTM) networks to detect Distributed Denial of Service (DDoS)
attacks, utilizing the CIC-DDoS2019 dataset for evaluation. The core objective of this architecture is to com-
bine the strengths of spatial feature extraction and temporal pattern recognition to accurately distinguish be-
tween benign and malicious network traffic. As shown in Figure 3, the model incorporates CNN, LSTM, and
MLP components, forming a powerful framework for detecting DDoS threats. CNNs are particularly suited for
identifying spatial characteristics in the data, such as packet sizes and traffic flow metrics, while LSTMs are
adept at capturing sequential dependencies, which are essential for identifying attack behaviors that develop
over time. This synergy enables the system to detect even subtle or evolving attack patterns with high precision.

Table 3 presents the detailed breakdown of the architecture of the proposed CNN-LSTM-MLP hybrid
model.

Table 3. Proposed CNN-LSTM Hybrid Model Architecture
Layer Type Details Purpose
Input Layer Feature vector from CIC-DDoS2019 Accepts preprocessed network traffic data

Convolutional Layer 1 64 filters, kernel size 3, ReLU activation Extracts local spatial patterns
Convolutional Layer 2 64 filters, kernel size 3, ReLU activation Refines feature maps

Max Pooling Pool size 2x2 Reduces dimensionality and computation
Dropout Rate = 0.3 Prevents overfitting

LSTM Layer 128 units Captures long-term temporal dependencies
Dense Layer 1 128 neurons, ReLU activation Learns high-level abstract features
Dense Layer 2 64 neurons, ReLU activation Further refines learned features
Output Layer Softmax (multi-class) or Sigmoid (binary) Provides final prediction output

3.2.1. Input Layer
Purpose: The input layer receives a feature vector derived from the preprocessed CIC-DDoS2019

dataset, which contains a range of network traffic attributes such as flow duration, packet size, and packet
count. These features play a key role in identifying whether the traffic is benign or associated with a DDoS
attack. Each traffic instance is encoded as a numerical vector, enabling the model to distinguish between
different traffic types. This input is then forwarded through the network’s layers for further feature extraction
and classification.

3.2.2. Convolutional Layers
Purpose: The convolutional layers are designed to extract local spatial patterns from the network

traffic data. These layers are particularly effective at identifying structural relationships such as packet size
distributions, interactions between source and destination addresses, and flow-level statistics which are crucial
for detecting both legitimate and malicious activity.
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• Convolutional Layer 1: This initial layer includes 64 filters with a kernel size of 3, targeting low-level
spatial features within the input data. It focuses on detecting basic patterns in packet attributes and flow
behavior. The ReLU activation function is applied to introduce non-linearity, enhancing the model’s
capacity to learn complex data representations.

• Convolutional Layer 2: The second convolutional layer, also composed of 64 filters, builds on the out-
put of the first layer by identifying more sophisticated patterns and deeper inter-feature relationships.
This refinement step strengthens the model’s sensitivity to subtle deviations in traffic, which is vital for
accurately detecting anomalies and potential DDoS activities.

3.2.3. Max Pooling
Purpose: Following the convolutional layers, a max-pooling layer is employed to reduce the spatial

size of the feature maps. This operation helps in minimizing computational complexity and mitigating over-
fitting by retaining only the most dominant features. A pooling filter is applied to downsample the input,
selecting the highest value within each region. This ensures that critical spatial information is preserved while
less relevant data is discarded.

3.2.4. Dropout Layer
To further prevent overfitting, a dropout mechanism is integrated into the model. During training,

30% of the neurons are randomly deactivated in each iteration. This randomness forces the model to generalize
better by learning robust patterns through multiple independent pathways rather than depending heavily on
specific neurons. As a result, the model becomes more effective in handling unseen data.

3.2.5. LSTM Layer
The LSTM component plays a vital role in capturing temporal dynamics in network traffic. Since

DDoS attacks often exhibit time-based patterns such as gradual increases in request rates or sustained bursts of
activity the LSTM layer enables the model to detect these evolving behaviors. Comprising 128 units, this layer
is capable of learning long-range dependencies and retaining important contextual information from earlier
time steps, allowing it to track how traffic features develop over time and identify suspicious trends.

3.2.6. Dense Layers
Purpose: The fully connected (dense) layers serve to synthesize the features extracted by the preceding

CNN and LSTM layers, transforming them into higher-level representations for final decision-making.

• Dense Layer 1: Composed of 128 neurons and using the ReLU activation function, this layer processes
the fused spatial-temporal features and facilitates the learning of non-linear patterns without the vanishing
gradient problem.

• Dense Layer 2: With 64 neurons, this layer further refines the learned features, enhancing the model’s
ability to generate more precise predictions by integrating abstract knowledge from earlier layers.

3.2.7. Output Layer
The output layer generates the final classification result. For binary classification tasks, such as dis-

tinguishing between normal and attack traffic, a sigmoid activation function is utilized, outputting a probability
score between 0 and 1. In multi-class scenarios where the model differentiates among multiple attack cate-
gories a softmax activation function is applied, producing a probability distribution over all possible classes
and selecting the most likely one as the prediction.

3.3. Hybrid CNN1D-DNN Framework for Enhanced Intrusion Detection
Figure 3 illustrates the architecture of the proposed CNN1D-DNN model, which is a central element

of our deep learning-based intrusion detection framework. This model is specifically optimized for the 13-class
classification task posed by the CIC-DDoS2019 dataset. By combining one-dimensional convolutional layers
with deep dense networks, the architecture effectively captures both local patterns and high-level abstractions
in the traffic data, significantly improving classification performance.

In our overall methodology, we designed and evaluated different deep learning architectures for three
distinct dataset subsets:

- Binary classification (Subset 1): BENIGN vs. ATTACK
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- 7-class classification (Subset 2): BENIGN + six DDoS variants
- 13-class classification (Subset 3): BENIGN + twelve DDoS attack types
Among these, Subset 3 presents the highest complexity, requiring a model capable of identifying

subtle differences among multiple attack types. The CNN1D-DNN hybrid model shown in the figure was
specifically designed for this purpose. It combines Convolutional Neural Networks (CNN) and Deep Neural
Networks (DNN) to capture both spatial dependencies (via CNN layers) and high-level abstract features (via
DNN layers).

- The Conv1D and MaxPooling1D layers at the input stage are responsible for capturing local patterns
and reducing the temporal dimension.

- The Flatten operation transforms the output into a vector suitable for dense processing.
- Dense layers with ReLU activations learn deeper non-linear combinations of features.
- Batch Normalization is integrated after dense layers to stabilize learning and accelerate convergence.
- Dropout layers are used at multiple stages to reduce overfitting by randomly dropping neurons during

training.
- The final Dense layer with Softmax activation produces the probability distribution over the 13

classes.

Figure 3. The CNN1D-DNN model used for 13-class classification

This architecture is critical to the global model as it provides a robust baseline for evaluating complex,
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real-world DDoS attack types, a modular design that can be extended or embedded into a larger, ensemble-
based detection system,a nd a high classification performance with low false-positive rates due to its balanced
design and regularization strategies. The CNN1D-DNN model plays a pivotal role in validating the scalability
and effectiveness of our deep learning-based IDS framework. It was selected as the best fit for the most
granular classification level due to its high performance in multiclass environments and ability to generalize
across diverse attack patterns. Its performance also serves as a benchmark for comparing other models like
LSTM or hybrid DNN-CNN setups used in Subsets 1 and 2.

Table 4 provides a comprehensive summary of the dense (fully connected) segment of the proposed
CNN1D-DNN model used for 13-class classification of network traffic in the context of DDoS detection. This
architecture represents the final stage of the deep learning pipeline, following the convolutional and pooling
layers responsible for feature extraction. The model begins with a dense layer of 192 neurons, which receives
the flattened output from the CNN component and transforms it into a richer representation suitable for classifi-
cation. A dropout layer follows to prevent overfitting by randomly deactivating certain neurons during training,
improving generalization. Subsequently, a second dense layer with 96 neurons further processes the features,
refining the representation for more precise predictions. Another dropout layer is included at this stage for
regularization. Finally, the output layer is composed of 13 neurons, each corresponding to a specific class in
the dataset (twelve attack types and one benign class), using a softmax activation function to output the proba-
bility distribution across all classes. The model is composed entirely of trainable parameters (23,821 in total),
indicating that all layers contribute to the learning process. The absence of non-trainable parameters confirms
that no layers were frozen or fixed during training. Overall, this table complements the architectural diagram
by providing a clear, layer-by-layer overview of how the model processes extracted features and performs clas-
sification, illustrating the depth and efficiency of the proposed CNN1D-DNN architecture in handling complex
multi-class DDoS detection tasks.

Table 4. Architecture of CNN1D-DNN Model for 13-Class DDoS Classification
Layer Type Output Shape Parameters
Conv1D (filters=32, kernel=3) (None, 18, 32) -
MaxPooling1D (pool size=2) (None, 9, 32) -
Flatten (None, 288) -
Dense (ReLU) (None, 256) -
BatchNormalization (None, 256) -
Dropout (rate=0.3) (None, 256) -
Dense (ReLU) (None, 128) -
BatchNormalization (None, 128) -
Dropout (rate=0.3) (None, 128) -
Dense (ReLU) (None, 64) -
BatchNormalization (None, 64) -
Dropout (rate=0.3) (None, 64) -
Dense (Softmax, 13 classes) (None, 13) -
Total Trainable Parameters 23,821
Non-Trainable Parameters 0

3.4. Hybrid LSTM Framework for Enhanced Intrusion Detection
Figure 4 presents the model which integrated as part of the comprehensive framework developed in

our research, focusing particularly on Subset 3, which involves classifying 13 distinct classes: twelve DDoS
attack types and one benign class. The model is constructed using a sequential stack of layers optimized for
capturing temporal dependencies inherent in network traffic data. The architecture starts with an LSTM layer
comprising 8 memory units, which reads sequential input data and retains contextual information over time.
This capability is essential for identifying patterns in time-series data typical of evolving network behaviors
during DDoS attacks. The output of this layer retains the temporal dimension, producing a sequence of shape
(None, 1, 8).

To prevent overfitting and ensure better generalization, a Dropout layer follows the first LSTM layer,
randomly dropping certain neurons during training. A second LSTM layer is then applied, also with 8 units,
allowing the model to learn higher-order temporal features. The softmax function ensures the outputs sum
to one, providing a clear probabilistic interpretation for each class. The second part of the figure presents
a tabulated summary of the model layers, output shapes, and the number of trainable parameters. The first
LSTM layer contains 928 parameters, accounting for input weights, recurrent weights, and biases. The second
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LSTM layer adds another 544 parameters, while the Dense layer contributes 117 parameters. The total number
of trainable parameters in this model is 1,589, making it compact and efficient in terms of computational
overhead. This is particularly advantageous for real-time intrusion detection systems deployed in environments
with constrained resources. The model’s simplicity, combined with its temporal modeling capability, makes it
a strong candidate for tasks requiring continuous monitoring of network data. Moreover, its integration into the
broader IDS framework complements other models such as CNN1D-DNN, which focus on spatial patterns and
static data representation. By capturing the dynamic evolution of traffic over time, the LSTM model enhances
the system’s ability to detect complex and evolving DDoS behaviors, thereby contributing to a more accurate
and resilient intrusion detection architecture. This design aligns with the goal of building a scalable, modular,
and interpretable deep learning-based IDS capable of handling a variety of attack scenarios.

Figure 4. LSTM for 13-Class Classification

3.5. Hybrid MLP Framework for Enhanced Intrusion Detection
Within our proposed deep learning-based Intrusion Detection System (IDS), the Multilayer Perceptron

(MLP) architecture (Figure 5) plays a pivotal role, particularly in the context of Subset 3, which involves
13-class classification of various types of network traffic, including 12 distinct DDoS attack types and one
benign class. The inclusion of the MLP model is part of our strategy to combine the strengths of different
deep learning paradigms temporal sequence modeling with LSTM, spatial pattern extraction with CNN1D,
and dense non-linear classification with MLP to construct a robust and adaptable detection system. The CIC-
DDoS2019 dataset has been carefully preprocessed and filtered using techniques such as ExtraTreesClassifier,
which identifies the most relevant features for distinguishing between different types of attacks. Following
the input layer, the MLP includes multiple dense hidden layers, typically structured in a decreasing pattern of
neurons such as 256, 128, and 64 to gradually compress the data representation.

In the broader architecture of our system, the MLP complements the LSTM-based models, which are
more adept at capturing temporal dependencies in traffic flow, and the CNN1D-DNN hybrid models, which
are particularly strong at spatial pattern recognition from packet structures and payloads. The MLP fills a
crucial role by acting as a computationally efficient classifier, especially useful when the dataset is already
well-structured or feature-selected. While LSTMs may excel at scenarios requiring context from previous time
steps (e.g., slow-rate DDoS detection), and CNNs are effective in recognizing repetitive patterns within traffic
data, the MLP provides a baseline yet powerful approach that leverages learned abstract features for fast and
accurate classification. It is particularly suited for deployment in edge environments where computational
resources are limited, and real-time response is critical. The combination of these models each specialized yet
complementary ensures that our proposed IDS framework can handle a wide spectrum of attack types and data
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formats, achieving a balance between detection accuracy, inference speed, and generalization to unseen attack
variants.

Figure 5. MLP for 13-Class Classification

Table 5 presents the architectural design of the proposed Multilayer Perceptron (MLP) model imple-
mented for 13-class DDoS attack classification using the CIC-DDoS2019 dataset. The model begins with an
input layer that receives pre-processed and selected features from the dataset features identified as most rele-
vant through feature selection techniques like ExtraTreesClassifier. Following the input layer, the architecture
includes three sequential dense (fully connected) layers consisting of 256, 128, and 64 neurons, respectively.
Each of these layers uses the ReLU activation function, chosen for its effectiveness in handling non-linear
relationships and mitigating the vanishing gradient problem. To further improve generalization and reduce
overfitting, dropout layers are inserted after each dense layer, with progressively decreasing dropout rates of
0.5, 0.3, and 0.2. These dropout mechanisms help the model avoid over-reliance on specific neurons by ran-
domly deactivating a subset during training.

Table 5. Architecture of the Proposed MLP Model for 13-Class DDoS Detection
Layer No. Layer Description Number of Neurons Activation / Function

1 Input Layer (Selected Features) Depends on Feature Selection -
2 Dense Layer 1 256 ReLU
3 Dropout Layer 1 - Dropout Rate = 0.5
4 Dense Layer 2 128 ReLU
5 Dropout Layer 2 - Dropout Rate = 0.3
6 Dense Layer 3 64 ReLU
7 Dropout Layer 3 - Dropout Rate = 0.2
8 Output Layer (Classification) 13 Softmax
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In our proposed intrusion detection framework, we strategically combine three complementary deep
learning architectures: MLP, LSTM, and CNN1D to enhance the detection and classification of Distributed
Denial-of-Service (DDoS) attacks, leveraging the CIC-DDoS2019 dataset for evaluation. Each model com-
ponent is selected based on its individual strengths and tailored to address specific challenges in analyzing
complex network traffic. The MLP is primarily employed for 13-class classification tasks due to its proficiency
in handling structured, non-sequential input data. It consists of multiple dense layers activated using ReLU
functions, interleaved with dropout layers to mitigate overfitting. This architecture is particularly well-suited
for extracting non-linear relationships among features and has demonstrated outstanding performance in multi-
class classification scenarios. The LSTM model is incorporated for binary and 7-class classification tasks, as it
excels at learning from temporal patterns and sequential dependencies in network traffic flows. By maintaining
memory over time, LSTM units can distinguish between short-term fluctuations and long-term trends, which
is crucial for identifying stealthy or evolving attack behaviors. This temporal awareness allows the LSTM
model to capture nuanced characteristics of DDoS attacks that might be missed by conventional feedforward
models. k nnnnnnbbvIn parallel, the CNN1D model is utilized to capture local patterns and spatial correlations
in the feature space. By applying 1D convolutional filters across the sequence of extracted features, CNN1D
effectively detects structural motifs and interdependencies that help to differentiate between benign and ma-
licious traffic. The CNN’s ability to reduce data dimensionality while retaining critical features makes it an
ideal pre-processing or feature extraction stage, often preceding fully connected layers or being hybridized
with DNNs for enhanced classification performance. Together, these models form a robust, multi-perspective
detection framework that adapts to varying classification granularities binary, 7-class, and 13-class. The use of
an ensemble strategy or parallel evaluation across datasets ensures comprehensive coverage of potential attack
vectors.

4. SIMULATION SETUP, EVALUATION CRITERIA, DATASET, RESULTS AND DISCUSSION
4.1. Simulation Setup

To evaluate the effectiveness of the proposed deep learning-based Intrusion Detection System (IDS),
we designed a comprehensive simulation environment. Table 6 summarizes the hardware, software, and devel-
opment tools used in our experiments. Each model (CNN, LSTM, MLP, and hybrid CNN-DNN) was trained
using the same data preprocessing pipeline and hyperparameters for a fair evaluation. Techniques such as early
stopping and dropout were employed to avoid overfitting. The simulation was executed using Jupyter Notebook
and VS Code, where each model (CNN, LSTM, MLP, and hybrid architectures) was trained and validated using
the same preprocessing pipeline and hyperparameter configuration for fair comparison. The training process
included early stopping and dropout layers to mitigate overfitting.

Table 6. Simulation Environment Configuration
Component Specification
Processor Intel Core i7 (8th Gen), 2.6 GHz
RAM 16 GB DDR4
GPU (optional) NVIDIA GTX 1660 Ti
Operating System Windows 11, 64-bit
Python Version Python 3.10
IDE/Environment Jupyter Notebook, VS Code
Libraries Used TensorFlow 2.12, Keras, Scikit-learn, Pandas, Matplotlib
Dataset CIC-DDoS2019 (Canadian Institute for Cybersecurity)
Preprocessing Tools NumPy, Scikit-learn, MinMaxScaler
Model Types CNN, LSTM, MLP, CNN-DNN Hybrid

4.2. Evaluation Criteria
Performance evaluation involves assessing the effectiveness of a classification model by analyzing

how accurately it categorizes data instances into their respective predefined classes. To gauge the model’s
quality, several standard metrics are employed, such as accuracy, precision, recall, F1-score, ROC-AUC and
the confusion matrix [16]. These evaluation criteria are defined as follows:

• Accuracy: measures the proportion of correct predictions out of the total number of predictions. It is
commonly used to evaluate classification models.

IJEEI, Vol. 13, No. 2, June 2025: 347-367



IJEEI ISSN: 2089-3272 ❒ 361

The formula for accuracy is given by:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(1)

Or, in terms of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Where, TP is the True Positives, FP is False Positives, TN is True Negatives, and FN is False Negatives.

• Recall: Recall is a performance metric that evaluates the model’s effectiveness in identifying all true
positive cases. It is calculated as the ratio of true positives (TP) to the sum of true positives and false
negatives (TP + FN). In the context of DDoS detection, recall indicates how well the model captures all
actual DDoS attack instances, reflecting its sensitivity to identifying attacks.

Recall =
TP

TP + FN
(3)

• Precision: Precision measures the model’s accuracy in predicting positive instances. It is defined as the
ratio of true positives (TP) to the total number of instances predicted as positive (TP + FP). In the context
of DDoS detection, precision reflects the proportion of actual attacks among all the cases the model has
labeled as attacks, indicating how reliable the model is when it raises an alert.

Precision =
TP

TP + FP
(4)

• F1-Score: The F1-score is the harmonic mean of precision and recall, offering a balanced metric that
considers both false positives and false negatives. It is particularly valuable in scenarios with imbalanced
datasets, as it prevents the evaluation from being skewed toward either precision or recall alone.

F1-Score = 2× Precision × Recall
Precision + Recall

(5)

• Receiver Operating Characteristic (ROC) Curve: The ROC curve demonstrates the balance between
the True Positive Rate (TPR) and the False Positive Rate (FPR) as the threshold for classification changes.
The Area Under the Curve (AUC) measures the model’s overall ability to correctly distinguish between
classes. A higher AUC value indicates superior model performance.

TPR =
TP

TP + FN
(6)

FPR =
FP

FP + TN
(7)

• Confusion Matrix: is a key evaluation tool used in classification problems, especially for machine
learning models. It summarizes the performance of a classification algorithm by showing the counts of
correct and incorrect predictions, broken down by each class [17]

4.3. Dataset
The dataset employed in our study is the CIC-DDoS2019 dataset [18,19], made available by the Cana-

dian Institute for Cybersecurity. This dataset was chosen due to its realistic representation of Distributed Denial
of Service (DDoS) attacks in modern network environments. It includes more than 50 million traffic records,
encompassing a diverse range of DDoS attack types, such as volumetric and protocol-based attacks.

For the purpose of our experimentation and to evaluate model performance across different classifica-
tion complexities, the dataset was divided into three distinct subsets (Table 7)
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• Subset 1: Binary classification (BENIGN vs Attack)

• Subset 2: 7-class classification (BENIGN + 6 DDoS attack types)

• Subset 3: 13-class classification (BENIGN + 12 detailed DDoS attacks)

Each subset underwent preprocessing steps such as feature scaling, missing value treatment, label
encoding, and dimensionality reduction (using autoencoders or feature selection algorithms). These processes
ensured optimal model training and minimized noise in data input.

Table 7. Description of Dataset Subsets Used for Classification
Subset Classification Type Classes Included Total Records
Subset 1 Binary BENIGN, Attack (all) 1,500,000
Subset 2 7-Class BENIGN, DDoS-RSTFlood, DDoS-

ACKFlood, DDoS-UDP, DDoS-TCP,
DDoS-SYNFlood, DDoS-ICMP

2,100,000

Subset 3 13-Class BENIGN, DDoS-LDAP, DDoS-MSSQL,
DDoS-NTP, DDoS-UDP, DDoS-SYN,
DDoS-SMTP, etc.

3,000,000

The first subset was used for a binary classification task, distinguishing between benign and attack
traffic, offering a foundational assessment of the models’ ability to separate malicious behavior from normal
network activity. The second subset was curated for multi-class classification involving seven categories, which
include six prominent DDoS attack types alongside benign traffic. This configuration allowed us to test the dis-
criminative power of the models across similar attack vectors. The third and most complex subset involved
13 distinct classes, covering twelve specific DDoS attacks in addition to benign traffic. This subset served as
a rigorous testbed for evaluating the models’ capability to differentiate subtle patterns and behaviors among
various attack types. Each subset underwent essential preprocessing steps, including cleaning, feature scal-
ing, label encoding, and dimensionality reduction using autoencoders or feature selection methods such as
ExtraTreesClassifier. This ensured the datasets were optimized for training and evaluating the deep learning
architectures. The diversity and richness of this dataset, combined with our structured segmentation, provide a
robust foundation for developing and benchmarking intrusion detection systems in high-threat environments.

4.4. Results and Discussion
To comprehensively evaluate the strength of our architecture, we compared our proposed hybrid model

(CNN1D-DNN with Autoencoder) against traditional deep learning models including MLP, CNN, and LSTM,
across the 13-class DDoS classification task using the third subset of the CIC-DDoS2019 dataset. Our proposed
model introduces a feature extraction phase using an Autoencoder, followed by a 1D Convolutional Neural
Network (CNN1D) to capture local temporal dependencies, and then a fully connected DNN block for final
classification. This integration of layers and preprocessing enhances the model’s ability to learn both spatial and
abstract feature hierarchies effectively. This design proves to be especially beneficial in complex multi-class
environments like ours, where subtle variations exist among different DDoS attack types.

Table 8 provides a comparative analysis of four deep learning models evaluated on a 13-class DDoS
classification task. The proposed CNN1D-DNN model, which incorporates an Autoencoder for dimensionality
reduction and enhanced feature extraction, stands out across all key evaluation metrics. With an accuracy of
99.74%, it slightly surpasses the MLP model (99.62%), indicating a higher overall correctness in classifying
network traffic. The precision of 99.78% reflects the model’s ability to minimize false positives, a critical factor
in intrusion detection systems where mistakenly flagging legitimate traffic can lead to unnecessary disruptions.
Furthermore, the recall score of 99.68% confirms that the model is highly effective in detecting actual attack
instances, significantly reducing false negatives. The F1-score of 99.73%, which balances precision and recall,
confirms the robustness of the proposed model across all DDoS categories. Additionally, its ROC-AUC score
of 0.999 demonstrates near-perfect discrimination between classes, even under varying threshold conditions,
which is especially beneficial for security applications that must adapt to evolving attack strategies. In compar-
ison, the traditional CNN model shows solid but lower performance (Accuracy: 98.85%, ROC-AUC: 0.993),
which may be due to its limitations in capturing long-term dependencies and the lack of specialized feature
reduction. The LSTM model, while effective at handling sequential data, trails behind with 98.21% accuracy
and a ROC-AUC of 0.990, likely due to higher computational complexity and longer convergence times. The
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MLP model, while powerful and efficient, does not leverage spatial or temporal relationships in the same way
as the proposed hybrid CNN1D-DNN architecture, which integrates the strengths of both. Overall, the detailed
performance metrics illustrate that the proposed model achieves a superior balance of speed, precision, and
detection capability, making it an ideal candidate for real-world, multi-class intrusion detection systems.

Table 8. Performance comparison of different models
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC
Proposed CNN1D-DNN 99.74 99.78 99.68 99.73 0.999
MLP 99.62 99.70 99.50 99.60 0.998
CNN 98.85 98.91 98.76 98.83 0.993
LSTM 98.21 98.34 97.95 98.14 0.990

The performance of our proposed model, particularly the CNN1D-DNN architecture integrated with
an autoencoder, has been rigorously validated using Receiver Operating Characteristic (ROC) curves and ac-
curacy/loss progression plots during both the training and validation phases. The ROC curve visualizes the
trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) across different classification
thresholds. In our analysis, the ROC curve for the proposed model closely follows the top-left corner of the plot,
indicating excellent classification performance across all 13 classes. Each class in the multi-class classification
task (12 attack types + 1 benign) was evaluated independently, and their respective ROC curves consistently
exhibited high separability. This demonstrates that the model is not only effective in aggregate but also excels
at distinguishing specific DDoS attack types, such as SYN flood, UDP flood, and DNS-based attacks. Figure 6
presents the ROC curve, which visually depicts the model’s performance across multiple categories, including
both benign traffic and various DDoS attack types. The ROC curve plots the True Positive Rate (TPR) against
the False Positive Rate (FPR), serving as a key tool for assessing the model’s ability to distinguish between
classes. Each curve in the figure represents a specific class, such as BENIGN traffic or specific DDoS attack
types like DDoS-UDP, DDoS-SYN, and DDoS-NTP. A diagonal line is included as a baseline, representing a
random classifier with no discriminative power. The closer the curves are to the top-left corner, the better the
model’s ability to identify positive instances while minimizing false positives. A standout feature of this ROC
curve is the exceptionally high AUC (Area Under the Curve) value of 0.999, reflecting near-perfect classifi-
cation performance. This indicates that the model is highly proficient at distinguishing between normal and
malicious traffic across all categories. The ROC curves for each class tightly cluster near the top, suggesting
consistent and reliable performance across the different DDoS variants and benign traffic, highlighting the ro-
bustness of the proposed model in a multi-class intrusion detection context. Overall, the ROC analysis confirms
the exceptional capability of the classification model likely a hybrid architecture combining CNN, LSTM, and
MLP components as outlined in the proposed system, demonstrating high accuracy and reliable predictions.
This makes it particularly well-suited for real-time cybersecurity applications.

Figure 7 compares the ROC curves of four different classification models: MLP, LSTM, CNN-DNN,
and the Proposed Model. The ROC curve plots the True Positive Rate (sensitivity) against the False Positive
Rate, providing an effective measure of how well each model differentiates between classes. From the graph, it
is clear that the Proposed Model consistently outperforms the other three models across almost all thresholds.
It achieves a higher True Positive Rate for a given False Positive Rate, indicating superior classification perfor-
mance. The LSTM and CNN-DNN models follow, demonstrating moderate classification abilities, while the
MLP model shows the weakest performance, with a significantly lower curve. The superior ROC curve of the
Proposed Model suggests it possesses greater predictive power and robustness when applied to the dataset used
in this evaluation. This highlights the efficacy of the architectural choices and training strategies employed in
the proposed hybrid model. Although the area under the curve (AUC) is not explicitly labeled, it is evidently
larger for the Proposed Model, further confirming its outstanding classification performance.
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Figure 6. Receiver operating characteristic (ROC) curves of our proposed classification model

Figure 7. ROC Curve Comparison of MLP, LSTM, CNN-DNN, and the Proposed Model

Figure 8. Classification results of the proposed model. (a) Accuracy results of training and validation per
epoch, (b) loss per epochIJEEI, Vol. 13, No. 2, June 2025: 347-367
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The dataset is divided into 80% for training and 20% for testing. Attack traffic is labeled as 1, while
normal traffic is labeled as 0. We train the model for 500 epochs to analyze the impact of the checkpoint
strategy on enhancing classification accuracy.

Figure 8 visually summarizes the performance of the model across training epochs, emphasizing both
accuracy and loss metrics. In part (a), the graph illustrates the progression of training and validation accuracy
per epoch. The curves demonstrate a steady and rapid increase in accuracy during the initial epochs, indicating
that the model effectively learns the underlying patterns of the data early on. As the epochs progress, both
training and validation accuracy stabilize and converge, ultimately reaching a peak value of 99.74%, which
reflects the model’s exceptional learning capacity and strong generalization ability without significant overfit-
ting. In part (b), the figure displays the training and validation loss per epoch. This subplot shows a clear and
continuous decrease in loss values over time, supporting the notion that the model is optimizing its parameters
efficiently. The minimal gap between the training and validation loss curves further suggests that the model
is not only learning well but also generalizing effectively to unseen data. Together, both subplots confirm the
robustness and high performance of the proposed model in distinguishing between normal and attack traffic.

Figure 9 presents the confusion matrix of the classification results of our proposed model. This con-
fusion matrix provides a clear snapshot of your deep learning model’s performance in detecting DDoS attacks.
The top-left cell, with a value of 1, highlights that all actual attack instances were correctly identified, demon-
strating a perfect true positive rate. Conversely, the bottom-right cell also shows a perfect score of 1, indicating
that all normal traffic was accurately classified as normal, resulting in a perfect true negative rate. The off-
diagonal elements reveal the model’s errors: a very small false positive rate of 0.00089 suggests minimal
instances of normal traffic being incorrectly flagged as attacks, while an even smaller false negative rate of
0.00068 indicates that very few actual attacks were missed. Overall, the near-perfect scores in the true positive
and true negative cells, coupled with the extremely low false positive and false negative rates, strongly suggest
that your proposed deep learning model exhibits remarkable accuracy in distinguishing between DDoS attack
traffic and normal network behavior on the evaluated dataset.

Figure 9. Classification results of the proposed model: confusion matrix

Table 9 provides a comprehensive comparison between our proposed model and several established
classification models [20], including Logistic Model Tree (LMT), Attribute Selected Classifier (ASC), Naive-
Bayes Multinomial Text (NBMT), NaiveBayes Updateable (NBU), and Iterative Classifier Optimizer (ICO).
The evaluation is centered on key performance metrics such as the confusion matrix, accuracy, true positive rate
(TP), and false positive rate (FP), allowing us to objectively assess the effectiveness of each model in detecting
DDoS attacks. From the confusion matrices, it is evident that our proposed model demonstrates superior clas-
sification ability, with a remarkably high number of true positives (495) and a relatively low number of false
negatives (42). These values indicate that the model is highly effective at correctly identifying malicious traffic
while minimizing missed detections. In terms of accuracy, our model achieves 99.74%, significantly outper-
forming other classifiers which range from 71.33% (NBMT) to 94.01% (LMT). Moreover, the true positive rate
(TP) of 96.77% and the exceptionally low false positive rate (FP) of only 0.00089 highlight the robustness and
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reliability of our model in real-time intrusion detection environments. In contrast, other models such as NBMT
and NBU exhibit much higher FP rates (up to 0.9998), which could result in numerous false alarms. Overall,
the results strongly affirm the efficiency, precision, and robustness of the proposed MLP-based model, making
it a highly suitable solution for detecting DDoS attacks within complex network traffic.

Table 9. Comparison of proposed model with other models. Note: LMT: Logistic Model Tree,ASC: Attribute
Selected Classifier, NBMT: NaiveBayes Multinomial Text, , NBU: NaiveBayesUpdateable, ICO: Iterative

Classifier Optimizer
Criteria LMT ASC NBMT NBU ICO Proposed

Model
Confusion
Matrix [

440 38
35 220

] [
415 49
20 229

] [
319 36
21 228

] [
413 27
10 206

] [
424 46
33 215

] [
495 62
42 55

]
Accuracy 0.9401 0.9323 0.7133 0.9145 0.9254 0.9974
TP 0.9400 0.9000 0.6900 0.8900 0.8800 0.9677
FP 0.0996 0.0690 0.9998 0.8675 0.7989 0.00089

5. CONCLUSIONS AND FUTURE WORK
n this study, we propose a robust deep learning-based Intrusion Detection System (IDS) designed

specifically for detecting and classifying Distributed Denial of Service (DDoS) attacks using the CIC-DDoS2019
dataset. Our model integrates multiple deep learning architectures, including Multilayer Perceptron (MLP),
Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), and Long Short-Term Memory (LSTM),
each enhanced with an autoencoder layer to improve feature extraction and reduce data dimensionality. We
evaluated the model across three classification levels: binary, 7-class, and 13-class. Experimental results show
that our models, particularly the MLP-based variant, achieve impressive performance with an accuracy of
99.74%, a true positive rate of 97.99%, and a false positive rate of just 2.11%. ROC curve analysis and confu-
sion matrices validate the system’s high detection capability and low false alarm rates. These results confirm
the effectiveness of our approach, highlighting its robustness and scalability compared to traditional machine
learning models.

While the outcomes are promising, several potential improvements remain. One key direction is the
incorporation of online learning and continuous training to enable real-time adaptation to emerging threats.
Additionally, we plan to develop optimized lightweight versions of our models for deployment in resource-
constrained environments such as IoT or edge devices. Another significant area of focus is the integration of
explainable AI (XAI) to provide transparency in model decisions, which is crucial for security practitioners.
Furthermore, we aim to explore hybrid detection systems that combine signature-based and anomaly-based
techniques to enhance detection accuracy and resilience. Finally, leveraging advanced architectures such as
Graph Neural Networks (GNNs) could offer valuable insights by modeling relationships in complex network
traffic patterns, thus improving detection performance and threat analysis.
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