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 This research focused on the development and evaluation of machine learning 

algorithms for aroma classification using sensor data, implemented within the 

e-Trainose system. Various algorithms, including Neural Network, Support 

Vector Machines, and Random Forest, were tested to determine their 

effectiveness in distinguishing between different aroma samples, namely 

alcohol, coffee, and tea. The study utilized an array of metal oxide 

semiconductor sensors to capture the volatile organic compounds associated 

with each aroma. The features tested included sensor responses such as 

resistance changes and Gaussian smoothing of sensor data. Among the 

algorithms tested, Neural Network demonstrated the highest accuracy 

(98.89%), precision (99.10%), recall (99.10%), and F1 score (99.10%), 

making it the most reliable model for this task. These results highlight the 

potential of using machine learning with e-Trainose for real-time aroma 

detection and classification. The research paves the way for future 

advancements in the field, including the development of hybrid models and 

further optimization of sensor-based classification systems. 
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1. INTRODUCTION  

To remain competitive, cover current markets, explore new areas, and satisfy important consumer 

demands, food companies worldwide must continuously produce new products. This continuous advancement 

imposes significant requirements for excellence across all dimensions, especially for food safety, integrity, 

quality, nutrition, and other health impacts [1]. Artificial systems that detect sensory criteria such as aroma, 

taste, and external appearance would facilitate objective assessment of food quality, presenting a significant 

opportunity for the food business [2]. Every food possesses a distinct aroma determined by its composition, 

influenced by origin, processing, storage, and level of deterioration [3]. In the food business, the electronic 

nose has been used to assess meat quality, fruit quality, and spices, and to analyze coffee and wine, as well as 

to detect fragrance changes during dough fermentation or pastry aging [4], [5], [6]. 

 In 1982, Persaud and Dodd published the first electronic nose (E-nose) design based on chemical 

sensors and pattern recognition. An e-nose is a device that consists of a series of reversible but only semi-

selective gas sensors connected to a pattern recognition algorithm [7]. The instrument's selectivity is obtained 

by applying pattern recognition algorithms to the sensor array's responses [8]. Despite significant 

advancements in electronic nose technology, its promotion and use remain constrained by the development of 

gas-sensitive materials, sensor fabrication procedures, data processing, and pattern recognition methodologies. 

Conventional gas sensors are bulky and cumbersome, exhibit high power consumption, lack integration, and 

are limited to single detection capabilities [9].  
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 Previous research by Tayagornkul and Numsek [10] successfully proves the efficacy of e-nose 

technology in detecting chicken flesh deterioration. Utilizing seven sensors improves detection capabilities, 

with PCA validating different alterations in odor patterns across time. Even though the study shows 

encouraging findings, future research should concentrate on fixing sensor drift difficulties, comparing the 

system to existing detection techniques, and scaling it for industrial usage. Zhang and Tai [11], on the other 

hand, concentrated on the theoretical aspects of data preprocessing techniques for electronic nose systems and 

emphasized their significance in enhancing gas categorization accuracy. The analysis is enlightening; 

nonetheless, subsequent research should prioritize experimental validation, sensor performance assessment, 

and hybrid algorithm methodologies to improve the dependability of e-nose systems in practical applications. 

Liu and Tang's study [12] successfully introduces the MDIP (Minimum Distance Inliers Probability) feature 

selection method, which improves gas classification in e-nose systems by removing unneeded features and 

increasing accuracy. The method is computationally efficient and enhances pattern separation. However, more 

study is needed to assess its usefulness in real-world scenarios, compare it to other feature selection strategies, 

and broaden its applicability to various gas classifications. These previous studies highlight the potential of e-

nose technology in gas classification but also underscore key challenges such as sensor drift, data processing 

limitations, and the need for more robust AI-driven methodologies. This research aims to bridge these gaps 

through the development of e-Trainose. 

 Unlike conventional e-nose systems, which can be bulky and complex, e-Trainose is designed to be a 

high-performance, AI-driven training tool for educational and research applications. By integrating AI-driven 

aroma analysis with an intuitive interface, e-Trainose enhances accessibility for students and researchers 

exploring advanced gas classification techniques. While e-nose technology has been widely applied in food 

quality assessment, its use in coffee aroma classification remains challenging due to variations in humidity, 

temperature sensitivity, and the difficulty of distinguishing subtle differences between similar coffee varieties. 

Addressing these challenges requires a robust AI-driven approach capable of accurately identifying and 

classifying complex aroma profiles. 

 According to the International Coffee Organization (ICO), Indonesia is one of the world’s largest 

coffee exporters, ranking fourth globally between 2022 and 2024 [13]. Coffee consumption has steadily 

increased, with annual growth rates of 2% in consumption and 17% in coffee bean production in recent years 

[14]. Global coffee production is dominated by two species: Robusta coffee (Coffea canephora var. Robusta), 

which accounts for 30%, and Arabica coffee (Coffea arabica), which makes up the remaining 70% [15]. 

Robusta is generally more heat-resistant but more susceptible to low temperatures than Arabica. 

Electronic nose technology has become increasingly important for aroma analysis across various 

industries, such as food quality control, beverage authentication, and environmental monitoring. The key 

advantages of e-nose systems include fast response times, low power consumption, and exceptional sensitivity 

to odors [16]. The signals generated by the e-nose system correspond to distinct patterns, which can be 

classified based on their recognized characteristics [17]. 

 This research addresses traditional e-nose systems’ limitations by developing e-Trainose, a user-

friendly and cost-effective trainer kit. The novelties of this research include: 

• Development of e-Trainose, a high-performance trainer kit that simplifies the integration of e-nose 

technology with AI for educational purposes. 

• Interactive and user-friendly design that bridges the gap between theoretical learning and practical 

application. 

• Incorporation of gas sensors, AI algorithms, and an intuitive interface, making it accessible to both 

students and researchers. 

• The integration of AI-driven aroma analysis to provide hands-on learning and research opportunities 

in the rapidly advancing field of AI-based sensory technologies. 

An overview of the e-Trainose system design and its functionality can be seen in Figure 1. Section 2 

provides a literature review on existing sensing systems and artificial intelligence models (such as SVM, NN, 

and Random Forest) in aroma classification. Section 3 outlines the research methodology, including the 

proposed model, system block diagram, sensors used in this research, dataset details, data preprocessing, 

feature extraction, and the evaluation metrics used for performance assessment. Section 4 presents the results 

and discussion, focusing on the application of the models and the evaluation of performance based on the 

metrics results. 

 

2. LITERATURE REVIEW 

2.1. Sensing System 

Aroma sensing technology, particularly in electronic nose (e-nose) systems, often relies on 

semiconducting gas sensors. Gas sensors are designed to detect specific gases or groups of gases. There are 

several types, including electrochemical, semiconductor (metal oxide), and infrared (IR) sensors. 
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Electrochemical sensors detect gases through chemical reactions that generate an electrical signal proportional 

to gas concentration. These sensors are widely used in environmental monitoring, industrial safety, and medical 

diagnostics, detecting compounds such as carbon monoxide (CO), hydrogen sulfide (H2S), nitrogen dioxide 

(NO2), and oxygen (O2) [18]. MOS sensors operate based on changes in electrical conductivity when exposed 

to gases. They are cost-effective, highly responsive, and capable of detecting a broad range of volatile organic 

compounds (VOCs), including methane, propane, and ethanol [19]. However, they suffer from cross-reactivity, 

meaning they respond to multiple gases simultaneously, reducing selectivity.  

To address these limitations, researchers have explored hybrid sensor arrays, combining MOS and 

electrochemical sensors to enhance accuracy. For instance, Chowdhury et al. [20] demonstrated that a hybrid 

e-nose system for black tea aroma classification significantly improved accuracy, highlighting the benefits of 

multi-sensor integration. Despite these advances, calibration complexity, environmental sensitivity, and sensor 

aging remain challenges that need further research. 

Electronic nose technology has been widely applied in food quality assessment, environmental 

monitoring, and industrial safety. Various studies have explored different sensor configurations, ranging from 

6 to 15 gas sensors, to detect and classify aroma profiles in applications such as liquor identification, gas 

detection, and meat spoilage monitoring [10], [12], [21], [22].  

Feature selection techniques like Minimum Distance Inliers Probability (MDIP) have been used to 

refine the most relevant sensor inputs, improving model efficiency and accuracy [12]. Additionally, Principal 

Component Analysis (PCA) has been employed for dimensionality reduction, with key components capturing 

over 95% of data variance, helping improve classification performance [10]. Table 1 compares these studies, 

summarizing the sensor configurations, dataset size, and performance results. 

Table 1. Comparison of Previous Studies 

Title Sensor Used 
Number of Data 

Samples 
Key Results 

“A Novel Olfactory Neural Network for 

Classification of Chinese Liquors Using 
Electronic Nose” 

6 gas sensors 50 measurements 

(10 per liquor type) 

Classification accuracy: 

- 94% (olfactory neural network) 

- 84% (traditional methods) 

“High-Performance Sensing Application 

of FPGA-based Winograd CNN 

Accelerator in Electronic Nose Systems” 

15 metal oxide 

gas sensors 

150 measurements 

(10 per gas type, 15 

times each) 

Classification accuracy: 

- 99.78% (full precision) 

- 99.5% (quantized model) 

“Analysis of Chicken Meat Degradation 
Using Electronic Nose Technology” 

7 gas sensors 
(including 

TGS825, 

TGS826, and 
TGS2602) 

Measurements taken 
every 6 hours over 

48 hours 

PCA variance: 
96.98% (PC1: 87.24%, PC2: 9.74%) 

“A Minimum Distance Inliers Probability 

(MDIP) Feature Selection Method to 
Enhance Gas Classification for an 

Electronic Nose System” 

8 gas sensors 

(TGS2611, 
TGS2612, 

TGS2610, 

TGS2602) 

5 replicates per gas 

type (ethanol, 
methane, ethylene, 

CO) 

Classification accuracy: 

- Without MDIP: 68%-99% 

- With MDIP: 79%-100% 

 

While earlier studies have shown that e-nose systems are feasible for classifying aromas, a number of 

issues still need to be addressed. First, many studies rely on small or controlled datasets, restricting their 

applicability in real-world conditions. Models based in Convolutional Neural Network (CNN), for example, 

require large labeled datasets for optimal performance, but collecting and labeling gas data is often time-

consuming and costly [23]. 

Second, MOS sensors suffer from sensor drift and cross-reactivity, reducing long-term reliability. 

Sensor drift occurs when a sensor's response gradually changes over time, leading to inconsistent readings, 

while cross-reactivity makes it difficult to distinguish similar compounds [24]. These challenges highlight the 

need for AI models that can dynamically compensate for sensor instability. 

Lastly, hybrid sensor arrays have been proposed to enhance selectivity and sensitivity, but their real-

time application remains underexplored. While laboratory studies have confirmed their effectiveness, industrial 

and environmental applications still require further research. This underscores the importance of developing 

advanced calibration techniques and robust machine-learning frameworks to ensure stability and accuracy in 

dynamic conditions [25]. 

Despite the advancements in sensor technology, accurately classifying aroma profiles remains 

challenging due to sensor drift, cross-reactivity, and variations in environmental conditions. To address these 

limitations, machine learning models play a crucial role in enhancing the reliability and precision of e-nose 

systems. 
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2.2. Artificial Intelligence Model 

The roast level of coffee beans significantly influences their flavor profile, chemical composition, and 

consumer appeal. The e-nose, capable of identifying variations in aroma, provides an accurate chemical profile 

of the coffee roast. Its application provides a fascinating, efficient, and less resource-intensive analysis 

procedure than standard methods. However, the complex data collected by the e-nose requires the application 

of machine learning methods. Machine learning techniques find patterns within this data to maximize its value. 

Combining e-nose and machine learning simplifies and enhances the analysis of coffee roast fragrance [26], 

[27]. 

By applying machine learning techniques, researchers can enhance data interpretation, pattern 

recognition, and predictive accuracy in aroma classification tasks. Integrating machine learning with e-nose 

systems not only improves aroma analysis efficiency but also allows for more precise differentiation between 

similar aroma profiles. Among the various machine learning techniques available, Support Vector Machines 

(SVM), Neural Network (NN), and Random Forest are widely used for their robustness and effectiveness in 

aroma classification tasks. These models were chosen over alternatives such as K-Nearest Neighbors (KNN) 

and deep learning architectures for their adaptability to small and medium-sized datasets and computational 

efficiency, and they demonstrated success in previous research. 

Support Vector Machine (SVM) is a supervised learning algorithm that finds the optimal hyperplane 

to separate different data classes while maximizing the margin between them. This makes SVM highly effective 

in high-dimensional spaces, essential for tasks like text classification and image recognition [28]. Distante et 

al. [29] have demonstrated that SVMs are suitable for distinguishing subtle differences in volatile compounds, 

as evidenced by their widespread use in odor recognition. This is due to their capacity to manage complex, 

non-linear patterns in olfactory signal data. In another scent identification research by Kim et al. [30], SVM 

models classified four distinct fragrance samples across three concentration levels, proving their resilience to 

changes in concentration and aroma.  

Neural Network, particularly deep learning models, are increasingly popular in aroma classification 

due to their ability to model non-linear relationships and capture complex patterns in data. NNs consist of an 

input layer, multiple hidden layers, and an output layer, with each layer learning from the weighted connections 

between them. NN have proven highly effective in aroma classification, especially when integrated with 

semiconductor gas sensors, enabling precise aroma recognition [31]. Furthermore, artificial neural network 

have been used to forecast scent quality and threshold values of pyrazine derivatives, with a classification 

accuracy of 93.7% for three separate olfactory impressions [32]. This illustrates NN's efficacy in modelling the 

complex connections between chemical composition and perceived scent. 

Conversely, Random Forest has been utilized in numerous aroma categorization investigations due to 

its resilience to noise and overfitting. Researchers utilized Random Forest models to categorize 98 pyrazine 

derivatives into three aroma classifications—Green, Nutty, and Bell-Pepper—demonstrating Random Forest's 

capacity to manage intricate classification challenges associated with volatile organic molecules [33]. 

Furthermore, another study utilized Random Forest for the classification of odor emission sources based on 

molecular descriptors, demonstrating its efficacy in distinguishing between diverse odor-emitting compounds 

[34]. 

While K-Nearest Neighbors (KNN) is computationally simple, it struggles with high-dimensional 

sensor data and is highly sensitive to noise. CNN, although powerful, requires large labeled datasets and 

significant computational resources, making them quite impractical for real-time e-nose applications. In 

contrast, SVM, NN, and Random Forest balance between accuracy, efficiency, and scalability, making them 

ideal choices for aroma classification. 

 

 

3. RESEARCH METHOD 

3.1. Proposed Model 

The main goal of this project is to create a real-time system for classifying aromas by combining 

machine learning algorithms with gas sensors. This research introduces a portable e-nose prototype that utilizes 

Jetson Orin Nano for edge computing and Gaussian smoothing to enhance signal stability, in contrast to prior 

studies. This system is designed to categorize three specific aromas: alcohol, coffee, and tea, rendering it 

suitable for food quality assessment, environmental monitoring, and research training. 

The research is divided into two main phases: training and evaluation. In the training phase, aroma 

samples are collected, preprocessed, and used to train three machine learning models: Support Vector Machine 

(SVM), Neural Network (NN), and Random Forest. These models are optimized to identify the chemical 

patterns associated with each aroma. In the evaluation phase, the models are tested on unseen samples to assess 

their accuracy, precision, and robustness in real-world applications. The best-performing model is identified 

for practical deployment in aroma classification tasks. 
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Figure 1. Block Diagram System 

 

Figure 1 shows that the system prototype incorporates MOS sensors, a Jetson Orin Nano, and an 

ATMega2560 microprocessor for real-time aroma classification. The Jetson Orin Nano was selected for its 

superior GPU processing capabilities, facilitating on-device machine learning inference independent of cloud 

computing. The ATMega2560 was chosen for its proficiency in effectively managing multiple analog gas 

sensor inputs, guaranteeing stable communication between the sensor array and the AI processor. 

Before the operation, the e-Trainose undergoes a 10-minute pre-calibration phase. This step eliminates 

residual odors, ensuring that sensor measurements remain unaffected by previous samples, thereby maintaining 

data integrity. In the classification process, a pump mechanism distributes sample aroma and clean air through 

a 5/2 valve into the ATMega2560 via interconnected pipes. The system continuously exhausts air through a 

separate pipe to maintain a stable atmosphere, and the clean airflow keeps samples from becoming 

contaminated. 

The ATMega2560 microcontroller transmits real-time sensor data to the Jetson Orin Nano through 

serial connection. The Jetson Orin Nano processes this data utilizing the trained machine learning models 

(SVM, NN, Random Forest) and classifies the aroma in real time. A dongle facilitates the connection of a 

keyboard and mouse, enabling user interaction with the system. The categorization outcomes are presented on 

a 22-inch display, offering real-time feedback and enhancing the system's usability in educational and industrial 

contexts. 

 

3.2. Sensors 

In this research, various sensors have been selected to detect different gases associated with specific 

aroma profiles. These sensors can detect various gases useful for applications in environmental monitoring, 

safety systems, and consumer electronics. By utilizing these sensors, we can capture the diverse chemical 

signatures present in various substances, facilitating more accurate aroma classification. 

 

Table 2. Sensor Array Specifications List 
No. Sensor Description 

1 TGS2600 Ammonia (𝑁𝐻3) 

2 TGS2602 Hydrogen (𝐻2) and other combustible gases 

3 TGS816 Carbon Monoxide (𝐶𝑂) 

4 TGS813 Methane (𝐶𝐻4) 

5 MQ8 Methane (𝐶𝐻4) 

6 TGS2611 Methane (𝐶𝐻4) and Liquefied Petroleum Gas (𝐿𝑃𝐺) 

7 TGS2620 Alcohol (𝐸𝑡ℎ𝑎𝑛𝑜𝑙) and Carbon Monoxide (𝐶𝑂) 

8 TGS822 Alcohol (𝐸𝑡ℎ𝑎𝑛𝑜𝑙) and other organic solvents 

9 MQ135 
Ammonia (𝑁𝐻3), Benzene (𝐶3𝐻6),  Alcohol (𝐶2𝐻5𝑂𝐻) , and 

smoke 

10 MQ3 Alcohol (𝐸𝑡ℎ𝑎𝑛𝑜𝑙) 

 

 

Table 2 summarizes the sensors used in this study and the gases each sensor is designed to detect. 

These sensors form the core of the e-Trainose system, allowing it to recognize and classify various aromas 

based on the volatile organic compounds (VOCs) they emit. By utilizing these sensors, the system can 

Reference 

Sample 

ATMega2560 

Exhaust Keyboard Mouse 

22” Display 

Screen 

Jetson Orin 

Nano 



IJEEI  ISSN: 2089-3272  

 

Trainer Kit for Aroma Classification Using Artificial Intelligence (Jazi Eko Istiyanto et al) 

299 

efficiently capture the chemical signatures of alcohol, coffee, and tea aromas, contributing to accurate aroma 

classification. 

 

3.3. Dataset 

The dataset used in this study consists of sensor readings collected during a series of inhaling and 

flushing cycles. As Figure 2 shows, in one completed cycle of inhale and flush, the system records 156 sensor 

value readings. Each line represents the sensor’s response to the air during either the inhaling or flushing phase. 

During the inhaling phase, the system draws in the sample aroma to the sensing chamber, allowing the sensors 

to register the VOCs associated with the specific aroma. During the flushing phase, the system draws in neutral 

air to neutralize the system and ensure that sensor readings are not affected by residual aromas from the 

previous cycle. This ensures that the sensing chamber only measures the new sample aroma when it is inhaled. 

 

 
Figure 2. Sensor Response 

 

 Each aroma is further divided into specific types of categories, with each type associated with different 

brands. These brands were selected because they are quite diverse and readily available on the market. For the 

coffee category, there are three different types of coffee: Kapal Api, Good Day, and Nescafé. Each type of 

coffee was sampled with a total of 900 cycles for the coffee category. Similarly, for the tea category, there are 

three different brands: Teh Sosro, Teh Tong Tji, and Teh Sari Wangi, each sampled with a total of 900 cycles 

for the tea category. For the alcohol category, two types of alcohol were chosen: Alkohol 70% Ika and Alkohol 

70% Dixol. Each type of alcohol was sampled with a total of 900 cycles for the alcohol category. In total, the 

dataset consists of 2,700 cycles, with 900 cycles for each of the three aroma categories. Each cycle includes 

156 sensor value readings collected during both the inhaling and flushing phases, resulting in a total of 421,200 

data. 

 

3.4. Data Preprocessing 

Preprocessing is the first step in analyzing sensor response data. This stage involves reducing factors 

like noise and irrelevant readings that can interfere with sensor data, making it easier to extract meaningful 

features [35]. The method applied in data preprocessing involves transforming the sensor response 𝑋𝑖𝑗(𝑡), 

which is relative to the baseline or minimum value, denoted as 𝑋𝑖𝑗(0), where 𝑖 represents the sensor and 𝑗 

represents the aroma sample. 

 

𝑌𝑖𝑗(𝑡) = 𝑋𝑖𝑗(𝑡) − 𝑋𝑖𝑗(0)    (1) 

 

 The sensor response 𝑌𝑖𝑗(𝑡), after preprocessing using the difference method as shown in equation (1), 

helps minimize errors such as additive noise, leading to a clearer signal in both the reference and the sensor 

response signals [36]. 

This study applies Gaussian smoothing as part of the data preprocessing to reduce noise and 

fluctuations in the sensor readings, ensuring a clearer and more consistent signal for analysis. The raw sensor 

data often contains high-frequency noise caused by environmental factors or sensor variability, which can 

obscure the underlying patterns essential for aroma classification. Gaussian smoothing mitigates this issue by 

applying a Gaussian function to the data, emphasizing the central values while gradually reducing the weight 

of surrounding data points. The Gaussian function is defined as: 

 

𝐺(𝑥) =  
1

√2𝜋𝜎2
𝑒

−
𝑥2

2𝜎2   (2) 
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Where 𝐺(𝑥) represents the value of the Gaussian function at point 𝑥, and 𝜎 is the standard deviation, 

which controls the spread of the Gaussian curve. In the smoothing process, the raw data is convolved with the 

Gaussian function to computer the smoothed signal: 

 

𝑆𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑥) = ∑ 𝑆(𝑥 + 1)𝐺(𝑖)𝑛
𝑖=−𝑛  (3) 

 

 Here, 𝑆(𝑥) represents the original sensor data at point 𝑥 and 𝑆𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑(𝑥) is the resulting smoothed 

value. The parameter 𝑛 defines the range of the window applied during smoothing, which is determined based 

on the data characteristics. 

 
Figure 3. Raw Data of TGS2620 Sensor 

 

 
Figure 4. Preprocessed Data of TGS2620 using Gaussian Smoothing 

 

The application of Gaussian smoothing significantly reduces noise while preserving the important 

trends in the sensor responses. Figure 3 illustrates the raw sensor data for a single aroma sample from the 

TGS2602 sensor during an inhaling/flushing cycle, showing significant fluctuations and noise. In contrast, 

Figure 4 shows the data after it has been preprocessed with Gaussian smoothing, revealing a much smoother 

and more consistent signal. The smoothed data makes it easier to extract meaningful features and enhances the 

classification accuracy by reducing the impact of irrelevant fluctuations in the sensor readings. 

 

3.5. Feature Extraction 

Feature extraction in an electronic nose is a technique used to identify the key characteristics of sensor 

responses by eliminating irrelevant information from the pattern recognition system [36]. During this process, 

the sensor response, once its features are extracted, becomes independent of time, as represented by equation 

(4). 

𝑋𝑖𝑗(𝑡) → 𝑋𝑖𝑗   (4) 

 

Table 3. Feature Extraction Method Based on Statistical Analysis 
No. Method Description Formula 

1 Mean Average of all values in a dataset. 
𝑀𝑒𝑎𝑛 =  

(∑ 𝑥)

𝑛
 

2 Skewness Inclination or the slope of a curve as seen from 

the difference in the location of the mean, 
median and mode. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
3(�̅�  − �̃�)

𝑠
 

3 Kurtosis Sharpness or steepness of the peak of the data 
distribution. 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  

∑(𝑥𝑖  − �̅�)4

𝑁. 𝜎4
 

4 Maximum Value Highest value in the data. - 

5 Minimum Value Lowest value in the data. - 
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Table 3 summarizes the feature extraction methods used in this research, which are based on statistical 

analysis of the sensor data. These methods are crucial for transforming raw sensor readings into meaningful 

features that can be used for machine-learning models in aroma classification. Each method focuses on 

extracting specific characteristics from the data, such as mean, skewness, and kurtosis, which provide insights 

into the sensor response data's distribution, variability, and shape. 

 

3.6. Model 

With the SVM model, the data is first cleaned by handling any missing values, ensuring that all 

features are properly prepared for training. The data is then divided into two parts: one for training the model 

and the other for testing it. When the SVM classifier is used, it learns to separate the different categories in the 

data by finding the best boundary between them (hyperplane). The model uses a linear kernel to create this 

optimal separating hyperplane in high-dimensional space, maximizing the margin between classes. Through 

the pipeline, the data is automatically standardized (scaled to mean = 0, variance = 1) before training, which is 

crucial for SVM's performance. The model is trained on the training data and evaluated through 5-fold cross-

validation to estimate its overall performance, with probability estimates enabled for confidence scoring. 

Using the Neural Network model, the data is first loaded and processed by handling any missing 

values. The dataset is then split into features and labels, with the labels being encoded into numerical values. 

The data is further divided into training and test sets. After that, the features and labels are converted into 

PyTorch tensors, which are required for training the neural network. A neural network model is defined as 

three connected hidden layers (with 256, 128, and 64 neurons for each respective layer), using ReLU activation 

functions for introducing non-linearity. A dropout rate of 30% is applied after each hidden layer to prevent 

overfitting by randomly disabling neurons during training. The model uses an Adam optimizer with a learning 

rate of 0.0005 for stable gradient updates and is trained for 50 epochs with a batch size of 64, balancing 

computational efficiency and gradient estimation accuracy. During training, gradient clipping is applied to 

avoid issues with exploding gradients. After each epoch, the model is evaluated on the test set to check its 

accuracy, and the best model (with the highest accuracy) is saved using early stopping. 

Lastly, in the Random Forest model, the data is loaded and processed by separating the features and 

labels. The labels are then encoded into numerical values using a label encoder. A Random Forest classifier is 

defined with 100 decision trees, where each tree is built using a random subset of the training data and considers 

only a random subset of features at each split. This ensemble approach reduces variance and improves 

generalization compared to a single decision tree. The trees are grown to their maximum depth (unless nodes 

become pure or contain fewer than two samples) and their predictions are combined through majority voting 

for classification. The model is trained on the full dataset and evaluated through 5-fold cross-validation to 

assess its robustness. After training and evaluation, the generated label encoder from each model is saved for 

usage in predicting aroma samples, along with the trained Random Forest model which maintains its ability to 

provide feature importance scores for interpretability. 

 

3.7. Metrics 

Metrics are quantitative measures used to evaluate the performance of a machine learning model. In 

classification tasks, metrics provide insight into how well a model predicts and classifies data. Four key 

classification metrics are employed to assess the performance of the machine learning models in this study: 

accuracy, precision, recall, and F1-score. These metrics comprehensively evaluate the classification models by 

measuring their ability to correctly classify aroma samples while balancing both correct predictions and errors. 

The choice of these metrics is supported by Sokolova and Lapalme [37], who emphasized that combining these 

evaluation measures offers a well-rounded assessment, particularly in multi-class classification tasks such as 

aroma recognition. 

Accuracy is one of the simplest and most used metrics, representing the proportion of correct 

predictions made by the model out of all predictions. While accuracy provides a general performance overview, 

it can be misleading in imbalanced datasets, where one class dominates the predictions [38]. It is calculated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
  (5) 

 

Precision measures the proportion of true positive predictions out of all the instances predicted as 

positive. High precision indicates that when the model predicts a sample to be positive, will likely to be correct. 

This metric is handy when false positives must be minimized, such as in fraud detection or medical diagnostics 

[37]. It is computed as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (6) 

 

Recall, also known as sensitivity or True Positive Rate, measures the proportion of actual positives 

that were correctly identified by the model. This metric is essential in applications where missing a positive 

case is costly, such as anomaly detection or medical diagnosis [39], where failing to detect an issue could have 

serious consequences. The formula for recall is: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (7) 

 

Since precision and recall often exhibit a trade-off, the F1-score balances the two. The F1-score is the 

harmonic mean of precision and recall, making it particularly effective when dealing with datasets where class 

distributions are slightly imbalanced [40]. A higher F1-score indicates better classification performance, 

ensuring that neither false positives nor false negatives disproportionately affect the results. It is defined as: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (8) 

 

While other evaluation metrics, such as ROC-AUC (Receiver Operating Characteristic - Area Under 

the Curve) and Matthews Correlation Coefficient (MCC), could provide additional insights, they were not 

selected for this study. ROC-AUC is more suitable for binary classification problems, as it evaluates the trade-

off between true positive and false positive rates across different classification thresholds, making it highly 

effective for imbalanced binary tasks [41]. However, since this research involves a multi-class classification 

problem, ROC-AUC was deemed less applicable. Similarly, MCC is often preferred for highly imbalanced 

datasets because it accounts for all four confusion matrix elements (true positives, false positives, true 

negatives, and false negatives), providing a single-score performance measure [42][43]. MCC was not 

considered necessary since the dataset used in this study maintains a relatively balanced number of samples 

across the three aroma categories. 

By integrating accuracy, precision, recall, and F1-score, this research ensures a rigorous and well-

rounded evaluation of aroma classification models. Accuracy provides a general correctness measure, precision 

ensures classification reliability, recall accounts for missed detections, and F1-score balances precision and 

recall. This selection allows for a comprehensive analysis of classification performance, ensuring that the 

system is effective and robust for real-world aroma classification applications. 

 

 

4. RESULTS AND DISCUSSION  

  The development of e-Trainose was aimed at creating a high-performance trainer kit that simplifies 

the integration of e-nose technology with AI for educational purposes. Our evaluation of Neural Network (NN), 

Support Vector Machines (SVM), and Random Forest (RF) directly supports this goal by assessing their 

effectiveness in AI-driven aroma analysis. 

  The performance of the Neural Network (NN), Support Vector Machine (SVM), and Random Forest 

models was evaluated using accuracy, precision, recall, and F1 score. Overall, all three models performed well, 

with some notable differences, as shown in Table 4. 

 

Table 4. Comparison Table 

 Accuracy Precision Recall F1-Score 

Neural Network 98.89% 99.10% 99.10% 99.10% 

SVM 94.78% 95.03% 94.78% 94.77% 

Random Forest 97.67% 97.67% 97.67% 97.67% 

Threshold-based 80.12% 81.34% 79.89% 80.10% 
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Figure 5. Comparison Chart 

 

Neural Network achieved the highest accuracy of nearly 99%, with both precision and recall reaching 

about 99%. This excellent performance is likely due to the NN’s ability to model complex, non-linear 

relationships in the data. The NN model achieved optimal classification performance by learning these patterns 

during training. Its balanced precision and recall indicate that the model successfully avoided both false 

positives and false negatives, providing a reliable classification for each aroma sample. 

Random Forest performed closely behind NN, with an accuracy of approximately 97% and similarly 

high precision and recall values. The ensemble nature of Random Forest, which combines multiple decision 

trees, allows it to reduce overfitting and increase robustness. Although its accuracy was slightly lower than 

NN’s, Random Forest is particularly effective at handling high-dimensional feature spaces and robustly dealing 

with variability in the data, making it a highly reliable model for aroma classification. 

Support Vector Machine had the lowest performance among the three models, with an accuracy of 

approximately 94%. SVM relies on finding a hyperplane that separates classes. However, its linear decision 

boundary might not have been optimal for the inherent complexity of aroma data, resulting in higher 

misclassification rates and a slightly reduced balance between false positives and negatives. 

The confusion matrix is presented to provide a more detailed evaluation of the models' performance. 

By examining the confusion matrix, it is possible to identify the overall accuracy and the specific 

misclassifications made by each model, such as false positives and false negatives. The following confusion 

matrices illustrate the performance of each model in terms of true positives, false positives, true negatives, and 

false negatives for the aroma classification task. 

 
Figure 6. Confusion Matrix of Neural Network 

 

Figure 6 presents the confusion matrix of the model or algorithm with the highest accuracy, the NN 

model with accuracy of 98.89%. To make AI and e-nose learning more accessible, we developed a trainer kit, 

e-Trainose, which simplifies AI training and sensor analysis. Figure 7 presents the physical design of the e-

Trainose trainer kit, showcasing its compact form, integrated gas sensors, and essential components for aroma 

identification. This trainer kit provides a hands-on approach for users to interact with gas sensors and AI 

models, making it suitable for both educational and research purposes.  
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Figure 7. The e-Trainose Trainer Kit 

 

In addition to its hardware design, e-Trainose is equipped with an interactive user interface (UI) 

developed using PyQt and Python. The UI provides an intuitive and user-friendly experience for researchers 

and students, allowing seamless interaction with the AI model and real-time sensor data. Figure 8 and Figure 

9 illustrate the UI layout and its interactive components, enabling users to navigate through different 

functionalities with ease. 

 

 

 
Figure 8. Startup Screen of The e-Trainose UI 

 

 
Figure 9. UI Layout During Operation. 

 



IJEEI  ISSN: 2089-3272  

 

Trainer Kit for Aroma Classification Using Artificial Intelligence (Jazi Eko Istiyanto et al) 

305 

 In this study, the performance of each algorithm can be analyzed through evaluation metrics, allowing 

researchers to gain deeper insights into how each algorithm operates. Additionally, the findings from this 

research may provide strategies for improving the algorithms, which can be applied in future studies. 

 

 

5. CONCLUSION  

This study addressed the challenge of accurately classifying aroma samples using sensor-based data, 

proposing e-Trainose as an AI-driven solution. The system was developed to enhance aroma classification by 

integrating machine learning algorithms, namely Neural Network (NN), Support Vector Machine (SVM), and 

Random Forest. It was compared against a simpler threshold-based method. 

Experimental results demonstrated that the Neural Network model achieved the highest classification 

performance, with an accuracy of 98.89%, precision of 99.10%, recall of 99.10%, and F1-score of 99.10%. 

The Random Forest model was followed closely, with an accuracy of 97.67%, indicating its strong 

generalization capability. Meanwhile, the SVM model exhibited lower performance with an accuracy of 

94.78%, highlighting its limitations in handling complex aroma data patterns. In contrast, despite its simplicity, 

the threshold-based method achieved only 80.12% accuracy, confirming the significant advantage of AI-based 

approaches in aroma classification. 

These findings underscore the effectiveness of AI-driven classification, particularly Neural Network, 

in improving the accuracy and reliability of aroma detection systems. Future research may focus on optimizing 

algorithmic performance, developing hybrid models, and addressing environmental factors such as temperature 

and humidity variations to enhance the robustness of e-Trainose further. 
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