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 This study considers topical issues aimed at improving the methodology of 
early recognition of atrial fibrillation and monitoring its treatment against the 
background of other heart rhythm disorders. The task set in this study is an 
essential component of the search for solutions, whose purpose is to increase 
the efficiency of information systems for cardiac diagnostics and monitoring 
within the framework of complex research to improve the means of heart 
rhythm analysis and arrhythmia recognition. In the context of this study, a 
linear discriminant analysis approach based on the concept of K-entropy was 
proposed as a means of automating the procedure for the recognition of AF 
against the background of other rhythm disorders using a limited data sample. 
With regard to the classification of atrial fibrillation samples, the use of 
decisive rules and arrhythmia types, based on the analysis of scatterograms, is 
put forth as a solution. The results of the proposed methods for recognizing the 
presence of atrial fibrillation and its classification demonstrated superior 
performance when compared to existing methods. The proposed method 
exhibited a specificity of 98.5% and a sensitivity of 98%. The proposed 
method for determining the presence of atrial fibrillation demonstrates 
suboptimal accuracy when applied to a limited sample size. Further 
development of the method should be concentrated in this area. 
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1. INTRODUCTION  

Therapy that uses the results of biomedical research assists in forming the latest variations in the 
electronic processing of specific information and improving the methods of reliable identification of biological 
impulses [1]. Modern medical information systems can accurately determine a patient's current state and assess 
the heart rate variability (HRV), reflecting, in general, the specificity of physiological functions. Such 
noninvasive studies aimed at risk stratification and diagnostics are especially relevant for patients with diseases 
of the cardiovascular system (CVS), whose condition reflects the work of almost all body systems [2, 3]. 

The main task of automating ECG analysis in cardiac detection, monitoring, and diagnostic systems 
is to ensure reliable recognition of dangerous arrhythmias at the moment of their first signs. Most existing 
methods that solve this problem rely on spectral analysis of electrical cardiac impulses, which are limited to an 
inefficient list of classifying characteristics. Optimization of the decisive rule (their set), which guarantees the 
detection of pathological rhythms, is critical for the modernization of electronic complexes that offer 
continuous monitoring of a patient's current state [4, 5]. 

Currently, the critical issue related to the automation of research activities in cardiology is the 
identification of arrhythmias characterized by chaotic changes in the cardiac cycle duration, which is confirmed 
by the statistical fact that in more than 80% of patients, the recorded chain of cardiac cycles is spontaneous. 
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The main difficulty in creating automated atrial fibrillation (AF) diagnosis methods is the lack of effective 
mathematical models that clearly describe the nature of heartbeat disorders. 

Currently, one of the most significant challenges in the automation of cardiological studies that 
necessitates practical solutions is the identification of arrhythmias, which are characterized by random (chaotic) 
alterations in cardiac cycle duration (AF). 

The number of patients with atrial fibrillation (AF) has dramatically increased in recent years. The 
transition to automation of cardiac monitoring in patients with AF will help solve a number of problems, 
including the prevention of thromboembolic episodes, which are extremely life-threatening for patients, the 
evaluation of electrophysiological risk factors in the process of development of this disorder, the optimization 
of medical treatment tactics, and the decision on the use of artificial cardiac pacing. The advancement of theory 
and analytical techniques for identifying irregularities in cardiac rhythm, particularly those exhibiting chaotic 
behavior in their interval sequences, provides a foundation for addressing these challenges. 

In addition, in arrhythmia recognition systems, it is important to consider the interference arising 
during ECG signal processing. The solution to this problem is provided by the significant computational 
resources of modern technical means, which allow us to move to more complex and efficient preprocessing 
procedures. 

The aim of this study was to improve tools for heart rhythm analysis, arrhythmia recognition, and 
classification. Among a wide range of tasks contributing to the goal, this study is devoted to the development 
of a methodological approach to automate early AF recognition based on the description of chaotic processes, 
as well as the definition of decisive rules for detection and classification. 
 
2. FEATURES OF THE EXISTING METHODOLOGICAL APPROACHES PROVIDING 

ARRHYTHMIA RECOGNITION 
Today, many different quantitative and visual methodological approaches aim to analyze heart 

rhythms and recognize arrhythmias based on the study of various indicators that reflect their nature from 
temporal (within statistical and geometric approaches) and frequency perspectives. 

Arrhythmias are diagnosed according to their classification based on the methods of analysis and the 
degree of danger of cardiac pathologies for the patient. Atrial fibrillation is characterized by irregular changes 
in the duration of RR-intervals and the presence of atrial fibrillation waves, which are recognized in the mode 
of continuous ECG monitoring, usually by using graphical methods of rhythm analysis, including the 
construction of a scatterogram and analysis of the histogram of RR-intervals. These disorders are recognized 
by the absence of R-beats at the output of the ventricular complex detector when analyzing short ECS fragments 
(several seconds) or in cases of unstable detection [6, 7]. 

Some approaches rely on the study of rhythmograms (visual and logical investigations of wave 
structures of heart rhythms), spectral estimation, rhizomorphic estimation, the use of nonlinear dynamics 
(based on the theoretical foundations of deterministic chaoses), and variation pulsometry (estimation of 
characteristics of univariate and multivariate sequences, and determination of the secondary indicator of 
univariate distributions) [8]. 

The primary purpose of temporal analysis of HRV within a specific time domain is to assess the 
severity of existing sinus arrhythmia. The basis for statistical methods is to determine the duration of 
consecutive intervals and the exact dimensions for the sequence of normal cardiac intervals. 

As artificial intelligence (AI) continues to transform the practice of medicine, this review article 
identifies and examines specific applications of AI in the screening, diagnosis, and treatment of AF. The 
incorporation of AI algorithms has markedly enhanced the capabilities of routine digital devices and diagnostic 
technology, thereby expanding the scope of large-scale population-based screening and diagnostic assessments. 
Similarly, these technologies have affected the treatment pathway of AF, facilitating the identification of 
patients who may benefit from specific therapeutic interventions. Although the application of AI to the 
diagnostic and therapeutic pathways of AF has been remarkably successful, it is imperative to consider the 
potential shortcomings and constraints of these algorithms [9]. 

The essence of geometric methods is the construction of a density function for the distribution of 
specific histograms with subsequent analysis of the shape parameters. It is essential to consider that many 
mathematical models can be used to describe the geometric image of such a histogram, such as linear or 
triangular. Subsequently, a mandatory analysis of the parameters obtained for the developed mathematical 
model is performed. Triangular interpolation is the most widely used method [10]. 

As practical experience shows, all heart rhythm changes have a quasiperiodic character, making them 
extremely difficult to detect within a specific time domain. Various spectral analysis approaches have been 
used to study these properties. 
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The results of many studies emphasize the prospect of using the mechanism of heart rhythm regulation 
and various methodological approaches to nonlinear dynamics, in which the definition of a specific phase 
portrait, construction of spatial maps, and calculation of dimensionality and entropy play a particular role. 

The support vector machine is also a popular method for detecting AF. The detection method used the 
RR interval variability or HRV. Variability is an essential characteristic of atrial fibrillation in which the heart 
may beat with an irregular rhythm opposite to the regular rhythm characteristic of a normal heart. Thus, 
electrocardiographic rhythms are essential for the detection of AF. The findings of numerous studies have 
yielded several significant implications regarding the use of the SVM method for AF detection of atrial 
fibrillation. SVM invariants represent a robust technique for differentiating various cardiac arrhythmias. They 
effectively capture pertinent information from electrocardiogram (ECG) signals, thereby facilitating accurate 
classification into multiple categories. Although linear SVM demonstrated the most optimal performance, 
kernelized SVM exhibited superior outcomes owing to its capacity to capture random patterns, underscoring 
the necessity of selecting appropriate algorithms for the classification of arrhythmia activity [11]. 

Variations in electrocardiographic features for arrhythmia detection are essential for a good 
performance. Therefore, a variation of the two features is proposed, which can provide the best performance 
of 95.81% and 98.44% in terms of sensitivity and specificity, respectively [12]. 

Today, medicine offers several functional techniques for automated AF diagnostics, such as 
techniques based on wavelet transforms of ECG impulses, studies of abnormalities using other ECG diagnostic 
formats, and techniques related to processing separated ECG impulses. Thus, the principle of the separate 
transformation of extreme impulses obtained after excluding all QRS complexes from the working ECG was 
used in this study. The authors obtained many experimental characteristics to identify the waves transmitting 
atrial flutter. Currently, the algorithm of automated AF diagnostics demonstrates a sufficiently low 
performance of 62.92%, but the modernization of this approach continues [13, 14]. 

To improve the efficiency of AF detection, some principles of contextual analysis of complex 
impulses obtained by double differentiation of residual ECG can be used as an auxiliary tool. Using the two-
stage complex computational search procedure proposed by the authors, the detection of false waves was 
minimized. According to the results of experimental analysis, the AF detection rate exceeded 80% [15]. 

To quantitatively evaluate atrial function, we studied differentiated ECGs that had undergone several 
low-pass filtering cascades. The results obtained from a limited number of experiments showed that the known 
characteristics of f-wave morphology can provide more efficient AF detection rates of 89% [16]. 

The abovementioned methods of detailed analysis of characteristic features of f-waves of ECG cannot 
provide reliable detection of the atrial wave spectrum under the constant influence of background noise and do 
not meet the majority of modern requirements for real-time work. Specialized professionals still have no tools 
for the timely detection of these disorders. 

Practical AF detection tasks often use graphical techniques to perform rhythm analysis, based on the 
study of constructed scatterograms, histograms of any temporal impulse, and 3D scatterograms. 

Notably, the efficiency of these techniques in the analysis of beat variability is sufficiently high. 
Interval histograms are a popular tool for assessing the level of typical arrhythmias expressed by their transition 
from monomodal to multimodal forms. This study showed that modern correlative rhythmography allows us 
to classify the five main variants of these dependence curves. It opens broad prospects in standard clinical 
conditions to perform professional assessment of atrioventricular nodes to predict cardiac muscle response to 
various forms of influence, among others. This study shows that investigations of multidimensional 
scatterograms can become the basis for rhythmogram composition observations. 

Today, these techniques offer visual formats for informing the patient's cardiac muscle functioning, 
that is, they represent visual techniques for studying chains of cardiac cycles. Simultaneously, some results are 
intermediate, as they relate to the standard sinus beat, which makes the diagnosis of these diseases easier. 

The study of training artificial neural networks using preliminary wavelet transforms of heartbeat 
characteristics is also attractive. The authors noted that the analysis demonstrated good possibilities for using 
this technique in considering rhythmograms, and it is sufficiently promising [17]. 

The first technique for arrhythmia detection is to create a cascade of filters to predict future errors, 
which indicates a random change in the studied order of cardiac periods. The second technique enables the 
estimation of the conditional entropy. The study of changes in the characteristics under consideration over time 
(we are discussing the increase in the chain length of the signs representing the considered phenomenon) is 
often a highly effective tool that measures the irregularity of the operation of the systems generating this chain 
with sufficiently high accuracy. The third technique uses deterministic chaos, which allows for an approximate 
estimation of the K-entropy to analyze chaotic momentum variation by operating with limited sets [18, 19]. 

Well-known techniques can be used to detect complications of AF. They used cardiac cycle chains to 
analyze autoregression spectra with high accuracy and estimated the conditional entropies. The principles of 
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using a new approach in electrocardiographic studies rest on the integrated analysis of a complex system 
characterized by nonlinear dynamics. 

The considered approach that allows for the guaranteed detection of AF can be reduced to the format 
of a mathematical model that acts according to the behavior of random processes as follows: 
 Discrete-time series with weakly correlated counts; 
 Irregular time series; 
 Complex processes with a clear chaotic component. 

Automated methods for the classification of atrial fibrillation (AF) episodes typically depend on the 
analysis of electrocardiogram (ECG) signals. The absence of intermittent P waves or the presence of fibrillatory 
F waves on the ECG (seen as wave-like fluctuations of the isoelectric baseline), in conjunction with irregular 
heart rate fluctuations, are hallmarks of AF. Despite considerable progress in understanding the factors 
contributing to atrial fibrillation episodes, the development of automated methods to detect AF episodes is still 
far from achieving satisfactory results because of several contributing factors, such as the presence of external 
noise, especially due to electrode and patient motion, which severely degrades the performance of AF 
classifiers, leading to an increase in classification errors, which becomes even more important in the context 
of modern wearable sensors. The use of wearable sensors for ECG recording and subsequent monitoring of 
arrhythmias has garnered significant interest [20]. Contemporary wearable sensors provide cost-effective and 
convenient solutions for vital function monitoring; nevertheless, they exhibit considerable susceptibility to 
noise interference and are highly sensitive to motion artifacts. This necessitates the development of an AF 
classifier that is robust to noise while being able to accurately identifying AF rhythms, particularly in the 
presence of other similar arrhythmias [21]. 

The model described by the regularities of nonlinear dynamic system behavior (attractor dimension, 
Lyapunov exponent, and Kolmogorov entropy) makes it possible to obtain the base characteristics for this 
process and analyze the parameters of biological impulses, reflecting, for example, pathological deviations in 
the order of heart rhythms. 

 
3. MODEL OF A METHODOLOGICAL APPROACH TO AUTOMATE THE PROCEDURE OF 

EARLY AF RECOGNI-TION AGAINST THE BACKGROUND OF OTHER RHYTHM 
DISORDERS USING A LIMITED DATA SAMPLE 

The mathematical apparatus of nonlinear dynamic methods based on the bifurcation theory of 
dynamic (deterministic) chaos can adequately describe a model that significantly expands the range of criteria 
for analyzing and diagnosing cardiovascular system states. The advantage of this approach is the possibility of 
modeling structures and phenomena that are not fully ordered, where it is possible to identify particular 
algorithms and some predeterminations and describe the chaotic process against the background of seeming 
disorder. On the other hand, unfortunately, it is not always possible to predict their long-term behavior. 
 
3.1.  Definition of the algorithm for finding the approximated entropy 

K-entropy (an average indicator of the data loss rate on the current states of the systems under 
consideration for a particular time) is the main parameter reflecting the specificity of chaotic motion. This 
parameter describes a system that uses an attractor. In general, this is a subspace of boundaries in which each 
chaotic trajectory moves. The system can also be characterized by a list of auxiliary data, which makes it 
possible to predict the cells 𝑖௡ାଵ

∗ , and it is possible to find the system when it is certain that the trajectory 
𝑖ଵ

∗, 𝑖ଶ
∗, . . . , 𝑖௡

∗  describes its motion. Suppose that d-dimensional spaces consist of cells with dimension ld, system 
X(t) can be defined in time intervals . In such a case, we represent the K-entropy, which allows us to measure 
chaos using the relation: 

 

𝐾 = 𝑙𝑖𝑚
ఛ→଴

𝑙𝑖𝑚
௟→଴

𝑙𝑖𝑚
ே→ஶ

ଵ

ேఛ
∑ (𝐾௡ାଵ − 𝐾௡)ேିଵ

௡ୀ଴ = −𝑙𝑖𝑚
ఛ→଴

𝑙𝑖𝑚
௟→଴

𝑙𝑖𝑚
ே→ஶ

ଵ

ேఛ
∑ 𝑃௜బ...௜ಿ

𝑙𝑛 𝑃௜బ...௜ಿ௜బ...௜ಿ
   (1) 

 
here, 𝐾 = − ∑ 𝑃௜బ…௜ಿ

𝑙𝑛 𝑃௜బ…௜ಿ௜బ…௜ಿ
is the value that is proportional to the data that make it possible to 

determine the location of systems 𝑖଴ … 𝑖ே, and the accuracy of prediction is expressed by the current l; 𝑃௜బ…௜ಿ
 

is the value of the joint probability that the system X(t) will stay: concerning X(t = 0) – in cells i0; concerning 
X(t= ) – in cells i1;…; concerning X(t +п) – in cells in; N is the maximum number of analyzed positions of 
the system. 

The limits l0 and N emphasize the independence of the indicator describing chaos (possibility 
of chaotic change) from the K value. In general, regarding regular motion, K-entropy can be equal to zero, and 
regarding infinite motion, K-entropy can be compared with random processes. If the process is constant, it is 
comparable to the given chaoticity. 
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Considering impulse behavior, which, at first sight, is sufficiently random, allows us to reveal the 
information contained in this impulse about the center of attraction. In other words, it is possible to determine 
the differences between the irregularity characteristic of the motion to the center of attraction and the influence 
of the noise component on the process under consideration, for which K-entropy is used. The calculation of 
this characteristic is complicated by the presence of only one known component of the studied complex 
phenomenon. However, the attractors representing the process characteristics are in d-dimensional space [22, 
23]. 

Considering Takenson’s theorem, we can determine some properties of the point of attraction by 
analyzing the time sequence of the change in one component describing the process under study [24]. 

For this purpose, it is essential to determine the K-entropy at the lower bound: 

𝐾ଶ = 𝑙𝑖𝑚
ఛ→଴

𝑙𝑖𝑚
௡→ஶ

ଵ

௡
𝑙𝑛

஼೙(௟)

஼೙శభ(௟)
≤ 𝐾        (2) 

 
Here, 𝐶௡(𝑙) is an integral whose value can be calculated with respect to the orders of the points of 

infinite length. 
In this case, chaos exists when К2 > 0. Simultaneously, the N condition does not allow this 

indicator to be used for finite sets of cardiac impulses. 
The analysis of the order of counts of some length N implies the need to approximate K-entropy. Let 

us assume that a set of lengths N is characterized by initial data x(1), x(2),..., x(N), and is given by the length 
of the studied sequence (m) and a threshold limiting the dimensionality of each cell (r), in parallel describing 
a cascade of filters to separate the noise component. The approximated entropy can be determined using the 
following algorithm: 

1) Sequences Х(1),...,X(N-т+2) are formed by the relation 𝑋(𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), . . . , 𝑥(𝑖 + 𝑚 − 1)], 
where i = 1,..., (N-m+1); 

 
2) The distance between X(i) and X(j) is determined: 
 

𝑑[𝑋(𝑖), 𝑋(𝑗)] = 𝑚𝑎𝑥
௞ୀ଴,...,(௠ିଵ)

[|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|]      (3) 

 
3) The following expression is calculated: 
 

𝐶௥
௠(𝑖) =

ே೘(௜)

(ேି௠ାଵ)
          (4) 

 
here, 𝑁௠(𝑖) is the number of values 𝑑[𝑋(𝑖), 𝑋(𝑗)], which satisfy the condition 𝑑[𝑋(𝑖), 𝑋(𝑗)] ≤ 𝑟(𝑗 =

1, … , (𝑁 − 𝑚 + 1)) 
4) Natural logarithms for each 𝐶௥

௠(𝑖) and their average value are calculated 
 
5)  

𝜃௠(𝑟) =
ଵ

ேି௠ାଵ
∑ 𝑙𝑛 𝐶௥

௠ (𝑖)ேି௠ାଵ
௜ୀଵ         (5) 

 
6) The above-mentioned steps of the procedure for finding the approximated entropy are sequentially 

repeated for the analyzed data chain of length m+1, that is, 𝐶௥
௠ାଵ(𝑖) and 𝜃௠ାଵ(𝑟) are determined. Therefore, 

we can approximately estimate the K-entropy 𝐴𝑝𝐸𝑛(𝑚, 𝑟) = 𝑙𝑖𝑚
ே→ஶ

|𝜃௠(𝑟) − 𝜃௠(𝑟)|, expressed as a limited set 

by the ratio 
𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) = |𝜃௠(𝑟) − 𝜃௠ାଵ(𝑟)|       (6) 

 
The approximated entropy, which is the dependence of the dimensionality of the studied order t on 

the entire length of the set N, is characterized by the fact that, as m increases, the value of ApEn(m) becomes 
approximately zero, regardless of how regular the process is considered. This is because as т increases, the 
chances that the order data will describe only once-occurring events will naturally increase. Researchers often 
deal with erroneous values that describe the randomness of the impulse under study when using approximated 
entropy calculated using this algorithm. To exclude this, the lower value of the corrected estimate describes 
the K-entropy: 

𝐴𝑝𝐸𝑛௖௢௥(𝑚) = 𝐴𝑝𝐸𝑛(𝑚) + 𝐴𝑝𝐸𝑛(0) ⋅
ே೘

(భ)

ே೘శభ
      (7) 
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in this case, 𝑁௠ାଵ expresses all considered orders of impulses of length (m +1), 𝑁௠
(ଵ) is the number of 

all once emerged orders of length т, AрЕп(0) is the absolute entropy calculated for the initial order of counts. 
 
 
3.2.  Determination of atrial fibrillation identification parameters 

Figure 1 shows some examples of ApEncor(m) and ApEn(m) functions from order lengths m 
determined by models describing a harmonic impulse s(i)=3cos(i/20), i=1,2,3,…., N (a), noise component of 
0.09 (b), and a combination of harmonic impulse and noise components (c). Figure 1 (d) shows the function of 
the number of once-detected orders from m concerning harmonic impulse (1), noise component (2), and their 
combination (3). 

The introduction of the ApEncor(m) correction and the joint consideration of some characteristic 
features of the dependencies presented in Figure 1 make it possible to facilitate the solution of the problem of 
recognizing processes that differ in their regularity. The graphs show that the values of AрЕп(1), AрЕп(2) and 
also AрЕп(3) concerning the harmonic impulse are smaller than the values describing the noise component and 
the combination of the noise component with harmonic impulses. In addition, when the harmonic impulses 
ApEn(m) and ApEncor(m) are equal when applied to a noisy impulse, they will be significantly different. This 
phenomenon occurs because the correction is performed considering once identified orders, but considering 

Figure 1 (d) regarding the harmonic impulse, the value 𝑁௠
(ଵ)will be zero. However, regarding the noise 

component and the combination of the helpful impulse with the noise component, the number of these orders 
increased with increasing m. 

Note that the calculation of 𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) relies on the flexible option of creating each significant 
region owing to the structure of the hyperspheres shown in Figure 2, having a half-diameter r whose center is 
given by the values r = (015) 0,27SDx, and m =(1) 2, ..., 7(6), when SDx is the error of the initial set. 

 
 

  
(a) 

 
(b) 

 

  
(c) (d) 

 

Figure 1. Demonstration examples of ApEn(m) and ApEncor(m) dependence on the length of chains m, 
obtained using the following models: a) harmonic impulse, b) noise, c) combination of impulse and noise, d) 

dependences of the number N୫
(ଵ)of single chains 
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Figure 2. Schematic representation of cell creation in the phase space when calculating the approximated 
entropy 

 
The specificity of the impulse complexity description provides reliable indicators that are resistant to 

the noise component, reflecting predetermined chaotic processes (phenomena) and random impulses using a 
combination of short sets, N, optimal thresholds, r, and lengths, m of the considered orders of counts. 

  
(a) (b) 

  
(c) (d) 

 

Figure 3. ApEn(m) and ApEncor(m) functions for the noise component with a set length N: a) 150, b) 300, c) 
600, d) 1000 counts 

 
Figures 1-3 illustrate the performance of the approximated entropy subsequent to signal processing 

according to the sequence delineated by formulas (3-7). Considering the above-mentioned factors, model 
experiments made it possible to evaluate the characteristics to identify the different components of each discrete 
process when the set length N was 150, 300, 600, and 1000 counts. Figure 3 shows several plots of the ApEn(m) 
and ApEncor(m) functions of the noise component for different set lengths. Analyzing the experimental results 
allows us to conclude that the reliability of each obtained chaotic characteristic of discrete impulse orders 
remains even when N = 150. The findings of the experiments demonstrated that stable entropy estimates were 
obtained for both extended and abbreviated sequences. Furthermore, we determined that fragments of signals 
with a length N equal to 300 samples were utilized. 
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Model experiments on the features of the approximated entropy showed that the impact of white noise 
on the system was efficiently eliminated if the value r characterizing this type of entropy was larger than the 
noise amplitude. An illustration of this fact is, for example, the results presented in Figure 4 obtained for a 

harmonic signal 𝑠(𝑖) = 3 𝑐𝑜𝑠 ቀ
గ௜

ଶ଴
ቁ, i=1,…N, containing noise n(i) uniformly distributed in the boundaries (-1, 

+1). Here, the considered sample X(i) appears as 𝑋(𝑖) = 𝑠(𝑖) + 𝑐𝑛(𝑖), where c is an indicator that defines the 
amplitude of the noise component of the signal. 

Thus, ApEn(m) values for all m except m = 1 are noise tolerant. When c < r, the value of 
ApEn(m=2,...,6) increases simultaneously with increasing t if the noise component becomes greater than the 
threshold r. In addition, K-entropy opens up the possibility of analyzing the noise of a predetermined impulse 
in the combined processes of 𝑀௜(𝑝). This is essential for analyzing biological impulses, because the 
predominant part of these impulses is composed of regular and random components. 

The following relation expresses a mixed process: 

𝑀௜(𝑝) = [1 − 𝑍௜(𝑝)]𝑋௜ + 𝑍௜(𝑝)𝑌௜ , in this case, 𝑋௜ = √2 𝑠𝑖𝑛 ቀ
గ௜

଺
ቁ, i=1,2,3,…; N is a periodic impulse; 

Yi is an independent random value in the limit of ൫−√3; √3൯; Zi(p) is a random value (if Zi = 1, the probability 
of this is expressed as р, and if Zi = 0, the probability of this is (1-p)). 

In other words, Mi(p) is a combination of known and random components, where p represents the ratio 
of these components. The average value and magnitude of the typical deviation Mi(p) correspond to zero and 
one, respectively; however, the current p does not determine them. Figure 5 shows the function 
ApEn(m=1,2,3,4,5) from the current p with respect to the considered model impulse. If the irregular component 
of the impulse corresponds to ApEn(m=1,2,3) and its intensity increases, the considered function will be 
nonlinear for significant values of p. For example, if m = 3, the value ApEn(m) decreases because the number 
of separate impulse orders increases simultaneously with the increase in p. 

 

 
 

Figure 4. ApEN (m) function of the noise component 
 

 
 

Figure 5. ApEN (m) function (m = 1, 2, 3, 4, 5) describing the change of random component in complex 
impulses 
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Some study results (essential for identifying signals with chaotic properties) are illustrated above, but 
others are not. For example, if the frequency of the harmonic impulse changes, it does not affect the current 
AрEn(m). Therefore, the approximate estimation of the K-entropy can help identify the dynamic irregularity 
established by a set of internal qualities of the process. 

By analyzing the obtained dependencies ApEn(m) and ApEncor(m) on m, we can conclude that the 
autoregressive process is a nondeterministic chaotic process. The nature of the dependencies ApEn(m) and 
ApEncor(m) is similar to that of the regularities revealed in the case of white noise. A pronounced minimum 
ApEncor(m) is observed; the values of ApEn(m) at small m are rather large, and with increasing m tends to zero, 
while the function ApEncor(m) – tends to the value of absolute entropy.  

In light of the analysis of the properties of the approximated entropy and the findings of the model 
experiments, it can be posited that the following parameters may be employed to gauge the extent of regularity 
observed in the changes occurring in a discrete sequence of samples: 
 ApEncor(m) and ApEn(m) values when m = 1, 2, 3, and 4 if the orders under consideration have negligible 

effects on the overall process. 
 Conditional minima ApEncor(m): 𝑀𝐸௄ = 𝐴𝑝𝐸𝑛(0) − 𝑚𝑖𝑛

௠ୀଵ...଺
{𝐴𝑝𝐸𝑛(𝑚)} when m =1...6, which 

approximates the lower outlines of the K-entropy. 
 
3.3.  Construction of decision functions 

The construction of decision functions from the approximated entropy estimates involves the use of 
linear discriminant analysis. In this analysis, the d-dimensional observations were projected onto a straight line. 
Rotating vector W in the original feature space allowed us to determine its orientation, such that the projected 
samples were well separated. This task is the goal of classical discriminant analysis. For AF detection, the 
detection of arrhythmias against the background of other rhythm disorders, discriminant analysis was 
performed for two groups: ω1 (rhythmograms of atrial fibrillation) and ω2 (normal rhythm). The obtained 
spectral density estimation can be used for the formation of spectral features and construction of appropriate 
solving rules. However, it is necessary to limit the analyzed frequency region, which reduces the dimensionality 
of the initial spectral representation and simplifies the implementation of the signal recognition procedures. 
For this purpose, we propose to estimate the discrepancy between the sampled frequency descriptions of signals 
by generating training data samples for the given classes ω1 and ω2 and calculating their spectral density 
estimates. 

Fisher's criterion, which quantitatively assesses the quality of dividing observations into ω1 and ω2 
classes, is defined by the following equation: 

 

𝐽 =
ௐ೅∗ௌభ∗ௐ

ௐ೅∗ௌమ∗ௐ
          (8) 

 
where 𝑆ଵ is the between-class scatter matrix, 𝑆ଶ is the within-class scatter matrix. 
The linear separating function in the space of given features is defined by the following equation: 
 

If 𝐷(𝑋) > 0, 𝑡ℎ𝑒𝑛 𝑋 ∈ 𝜔ଵ; if 𝐷(𝑋) < 0, 𝑡ℎ𝑒𝑛 𝑋 ∈ 𝜔ଶ     (9) 
 

Vector W, which maximizes the value of criterion J, is in the form 𝑊 = 𝑆ଶ
ିଵ ∗ (𝑚ଵ − 𝑚ଶ), where 𝑚ଵ 

and 𝑚ଶ are vectors of the sample mean values for classes ω1 and ω2, respectively. 
The value of the threshold w0 was determined based on the criterion of optimality of partitioning into 

classes, specifically the minimization of the sum of errors of the first and second types. This approach was 
selected because it balances the importance of avoiding false negatives (missing the MA) with that of avoiding 
false positives (generating false alarms). To identify the errors, histograms of the distribution of projections of 
objects on the unit vector W for classes 𝜔ଵ and 𝜔ଶ were constructed, as well as the corresponding density 
functions of the distribution that adhere to the normal law of distribution. 

Denoting the vector found above as W1 the vector W2 can be represented as follows: Let the matrix 
of coordinates of the objects in the original feature space be given as follows: 

𝑋 = ൥

𝑥ଵ,ଵ ⋯ 𝑥ே,ଵ

⋮ ⋱ ⋮
𝑥ଵ,ௗ ⋯ 𝑥ே,ௗ

൩  

where d - is the number of features, N-number of objects. 
We find vector W1 by maximizing criterion J. Then, using the coordinate transformation  𝑌 = 𝑋 −

𝑊ଵ
் ∗ 𝑋 ∗ 𝑊ଵ we determine the new coordinates of the objects: 
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𝑌 = ൥

𝑦ଵ,ଵ ⋯ 𝑦ே,ଵ

⋮ ⋱ ⋮
𝑦ଵ,ௗ ⋯ 𝑦ே,ௗ

൩  

Similarly, we find the vector W2 for the coordinates of objects 𝑌௜ , 𝑖 = 1, … , 𝑁 in the residual space. 
After performing the appropriate transformations, the coordinates of vector W2 were determined: 

𝑊ଶ
் = [0.357, −0.566, 0.744, −0.194]  

Now, in the space (W1, W2), we find the best position of the new vector W' by rotating it within the 
angle -90°,...,+90 °relative to the direction of vector W1. The average intergroup distance between the 
projections of objects of classes ω1 and ω2 to direction W' was calculated as follows: 

Figure 6 shows the results of the distance calculation 𝜌(𝜑) and the distribution of objects in space 
(W1, W2). The position of the new vector W' corresponds to the maximum value of 𝜌(𝜑). Thus, the angle 𝜑 = 
0,597 radians, and the coordinates of the vector W'T = [0,827 0,562]. 

 

 
 

Figure 6. Visual representation of the separation of classes ω1 and ω2 

 
3.4.  Classification of atrial fibrillation 

The basis for constructing decisive rules classifying AF types within the 𝜔ଵ class is the correlation 
rhythmogram of the CRG (scatterogram). It is a graphical representation on a plane in the form of points of 
each pair of neighboring RR intervals and reflects the degree of their linear dependence. 

At present, scatterograms are constructed through the application of programmatic methodologies. In 
the construction of a scatterogram, a cluster of points is formed with the center located on the bisector of the 
right angle. The distance from the center of the cluster to the origin of the coordinate axes is proportional to 
the expected duration of the cardiac cycle. The value of the point deviation from the bisector indicates the 
degree to which the cardiac cycle in question is shorter or longer than the previous cycle. Deviations downward 
from the bisector indicated shorter cycles, whereas upward deviations indicated longer cycles. In the absence 
of any process variation or artifacts, the scatterogram point cloud typically assumes an ellipse-like form, 
situated symmetrically relative to the bisector, with the highest point density observed at the center of the 
group. A reduction in the size of the area under consideration indicated a decrease in the variability of cardiac 
cycles. In cases of arrhythmia, there is a notable dispersion of points, and the positioning of these accumulations 
enables the physician to visually ascertain the presence and nature of cardiac rhythm disturbance. In instances 
where statistical and spectral analyses of heart rate variability are inconclusive or inadequate, evaluation of 
scatterograms may offer a viable alternative. A training sample was constructed to study the characteristics of 
the distributions and develop solution rules. Five distinct types of rhythmograms and their corresponding 
scatterograms were identified to analyze atrial fibrillation (AF), and the corresponding solving rules were 
defined for each [28, 29]: 

1. Monomodal symmetrical. Points are grouped in a relatively limited rounded area, and their 
pronounced thickening is located in the center, on the bisector at a right angle. In other words, there were a 
significant number of cardiac cycles with the same duration. This type is rare and only occurs in patients who 
do not receive foxglove preparations. This is based on the following rule. 

𝑇𝑦𝑝𝑒 1 = (𝑍(𝑓௠௔௫) ∈ 𝑏) ∧ ൫∑ 𝑓௕ > ∑ 𝑓௔,௖௔,௖௕ ൯ ∧ (𝑓௠௔௫ > 25)  
 
2. The dataset is monomodal and asymmetric. A notable densification of points is observed on the 

bisector; however, their scattering area is constrained by straight lines parallel to the coordinate axes. The 
restriction of the point distribution area is indicative of the process of "filtering" of the most prevalent impulses 
in the atrioventricular junction. This is based on the following rule. 
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𝑇𝑦𝑝𝑒 2 = (𝑍(𝑓௠௔௫) ∈ 𝐴) ∧ (∑ 𝑓(𝑍) > ∑ 𝑓(𝑍)௓∈஼௓∈஺ ) ∧ (𝑓௠௔௫ > 25)  
 
3. Amodal. The area of the point distribution is constrained by lines running parallel to the coordinate 

axes; however, there is no densification of the points on the bisector. This phenomenon is most frequently 
observed in patients receiving foxglove group drugs for an extended period. This is based on the following 
rule. 
𝑇𝑦𝑝𝑒 3 = (𝑓௠௔௫ ≤ 25) ∧ (𝑛଴ ≤ 3) ∧ (𝜎(𝑧) ≤ 3,5) 

 
4. The distribution was polymodal. The points were distributed in a clustered manner along the angle 

bisector and parallel to the coordinate axes. The distance between the centers of the clusters of points is equal 
to 0.16–0.20 s (by type of atrial flutter), or less than 0.16 s (by type of large-wave fibrillation). This 
phenomenon has been observed in cases of atrial flutter with changing atrioventricular conduction and in 
patients with paroxysms of atrial fibrillation. This is based on the following rule. 
𝑇𝑦𝑝𝑒 4 = (𝑓௠௔௫ ≤ 25) ∧ (𝑛଴ > 3) ∧ (𝜎(𝑧) > 3,5) 

 
5. The dataset is monomodal and inverted. The cluster of points is situated at the bisector in an area 

remote from the origin of coordinates, and is circumscribed by lines running parallel to the coordinate axes. 
This type is observed in patients who have ingested excessive amounts of foxglove-derived medications, 
resulting in documentation of numerous ventricular complexes at the atrioventricular junction. This is based 
on the following rule. 

𝑇𝑦𝑝𝑒 5 = (𝑍(𝑓௠௔௫) ∈ 𝐶) ∧ (∑ 𝑓(𝑍) > ∑ 𝑓(𝑍)௓∈஺௓∈஼ ) ∧ (𝑓௠௔௫ > 25)  
 
where 𝑓௠௔௫ = max

௓
𝑓(𝑍); n0 – is the number of symbols Z, for which 𝑓(𝑍) = 0; 𝜎(𝑍) – value of the 

standard deviation of the parameter Z; а, b, А, В, С- distribution areas 𝑓(𝑍). 
 
4. RESULTS 

The experimental research presented here was based on data from the publicly available MIT-BIH 
Atrial Fibrillation Database, which can be accessed via PhysioNet. The database comprises 25 long-term ECG 
Holter records from diverse subjects that predominantly exhibit paroxysmal attacks. It encompasses two ECG 
signal channels with AF annotations. To investigate the frequency properties of the ECS, a sample of the 
verified signal fragments with a duration of 2 s was used. The addition of zeros to the obtained signal 
realizations enabled an interpolated estimate of the power spectral density (PSD) to be obtained, with a step 
equal to 0.244 Hz, with a sampling rate of 250 Hz, and the records also encompass manually marked beat notes 
by expert clinicians [30]. 

To analyze the performance of the proposed system, the generally accepted analysis methods are 
accuracy, specificity, and sensitivity. 

Sensitivity = 
்௉

்௉ାிே
∗ 100%, Specificity = 

்ே

்ேାி௉
∗ 100%, Accuracy = 

்ேା்

்ேା்௉ାிேାி
∗ 100% 

TP and TN indicate the numbers of correctly detected cases of atrial fibrillation and no atrial 
fibrillation, respectively. FP and FN indicate the number of incorrectly detected cases of atrial fibrillation and 
absence of atrial fibrillation, respectively. 

The performance of the proposed methods is tested in two instances: definition of atrial fibrillation 
and classification of atrial fibrillation. 

 
Table 1. Comparative analysis of AF diagnostic methods 

Name of the method used Sensitivity, % Specificity, % Accuracy, % Reference 
Multi-scale 

CNN 
98,22 98,11 98,18 [31] 

SVM + CNN 96.14 96.02 96.09 [32] 
FNN 84,26 93,23 83,14 [33] 

Threshold 99,2 97,3 98,1 [34] 
LSTM + CNN 96,46 94,49 95,28 [35] 

Proposed method, based on Kolmogorov 
approximation 

98 98,5 98,4  

 
Most of the presented methods have been tested using the same MIT-BIH database. As evidenced by 

the results of the calculations presented in Table 1, the method demonstrated a high degree of sensitivity and 
specificity in the identification of atrial fibrillation, thereby rendering it suitable for application in practical 
tasks. Additionally, the method evaluated the impact of sample size on the precision of the analytical outcomes. 
The total error, comprising of primary and secondary errors (missed and false diagnoses, respectively), was 
selected as the evaluation criterion. The results of this analysis are shown in Figure 7. 
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Figure 7. Results of the effect of sampling on the total error of the proposed method 
 
The proposed method uses the parameters of approximate Kolmogorov entropy estimation, thus 

facilitating reliable detection of chaotic changes generated by nonlinear models. In addition to this capability, 
the method provided the smallest error rate of 2.5% in the identification of atrial fibrillation in the context of 
normal rhythms and frequent extrasystoles. In comparison with existing solutions for the recognition of atrial 
fibrillation, the proposed method demonstrated satisfactory results and facilitated substantial augmentation of 
the range of quantitative criteria for diagnosing cardiovascular system conditions. This augmentation is 
achieved through the utilization of a set of characteristics for deterministic chaos estimation. The incorporation 
of such systems in conjunction with a training method based on machine learning has the potential to enhance 
the capabilities and increase the accuracy of the presented method. 

In the following section, the results of classifying the diagnosis of atrial fibrillation by type will be 
presented. As shown in Figure 8, the decisive rules had high sensitivity and specificity for all AF types. The 
lowest sensitivity (94%) was observed for the polymodal type (Type 4). Some signals of this type are 
categorized into amodal and monomodal asymmetric types. However, the polymodal type can be mixed with 
these types of arrhythmias, which affects the classification results. The diagnostic significance is not lost 
because the detection of amodal-type elements in the distribution indicates the inexpediency of electrical 
defibrillation of the heart. 

 

 
 

Figure 8. Efficacy of atrial fibrillation classification 
 
The obtained results confirm the acceptable level of using the proposed method for solving practical 

problems. The results obtained in this study can be useful for the further development of methods and 
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algorithms for polymodal data. The solution to such problems is most relevant and in demand in medical 
information systems and other areas of decision making in anthropotechnical systems [36-38]. 
 
5. CONCLUSIONS 

Within the framework of this study, a linear discriminant analysis approach based on the concept of 
K-entropy was proposed to automate the procedure for recognizing AF against the background of other rhythm 
disorders using a limited data sample. The results of the experiments with model impulses confirmed that the 
methodology based on approximate K-entropy estimation allows for highly accurate detection of chaotic 
changes generated by a nonlinear model. We employed a linear discriminant analysis with the incorporation 
of conditional entropy parameters and approximate Kolmogorov entropy estimation to discern chaotic 
alterations in the sequence of cardiac cycles. This was performed with the objective of identifying atrial 
fibrillation amidst the backdrop of other rhythm disturbances. Identifying the type of AF is an essential 
indicator of the activity of any specialized professional because it is a highly informative diagnostic indicator 
that makes it possible to identify the features of atrioventricular nodal conduction, predict myocardial responses 
to defibrillation, and correctly select treatment courses based on cardiac drugs. The results of the proposed 
methods showed high accuracy, specificity, and sensitivity compared to existing topical methods. One of the 
limitations of the proposed method is the significant decrease in the accuracy of the results when dealing with 
low data sampling. 
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