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 Performance of radiographic diagnosis and therapeutic intervention heavily 
depends on the quality of acquired images. Over decades, a range of pre-
processing for image enhancement has been explored. Among the most recent 
proposals is iterative blinded image deconvolution, which aims to identify the 
inheritant point spread function, degrading images during acquisition. Thus 
far, the technique has been known for its poor convergence and stability and 
was recently superseded by non-negativity and support constraints recursive 
image filtering. However, the latter requires a priori on intrinsic properties of 
imaging sensor, e.g., distribution, noise floor and field of view. Most 
importantly, since homogeneity assumption was implied by deconvolution, 
recovered degrading function was global, disregarding fidelity of underlying 
objects. This paper proposes a modified recursive filtering with similar non-
negativity constraints, but also taking into account local anisotropic structure 
of content. The experiment reported herein demonstrates its superior 
convergence property, while also preserving crucial image feature. 
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1. INTRODUCTION  

Recent advances in medical imaging technology has so far enabled high performance computerized 
radiographic diagnosis and therapeutic intervention [1-5]. More specifically, it has been widely applied, for 
examples, in patient specific anatomical modeling, lesion extraction and more recently in unsupervised deep 
learning [6]. Thus far, degradation is one of major impeding factors in their success. Although in practice, it is 
led by a series of complex processes imaging signal underwent during acquisition, for simplicity, the term is 
typically characterized by linear deconvolution of blurring kernel and an additive noise [7], as expressed in (1). 

 
gሺ𝑥, 𝑦ሻ ൌ 𝑓ሺ𝑥, 𝑦ሻ ∗ ℎሺ𝑥, 𝑦ሻ  𝑛ሺ𝑥, 𝑦ሻ (1) 

 
where g and f are degraded and (presumably) original images, respectively. In the spatial domain of (x, y)  
R2, h and n are convolutional kernel and noise, respectively. In analyzing degradation process, h is sometimes 
referred to as blur filter or, in our context, point spread function (PSF). Reconstructing the original image f, 
given the degraded g and a priori on (or sometimes, unknown) noise model, n, is however not trivial. Its key 
element involves estimating a PSF and its respective inverse (h-1). This process is called deconvolution and 
depicted in Figure 1.  
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Figure 1. Direct filtering model of convolution and deconvolution 
 
 

Depending on assumption of the degrading model, PSF can be estimated by calculating its governing 
(for example, blurring) parameters [8, 9]. However, several other factors, such as out of focus, motion, and 
geometrical distortion, etc. may have equally contributed to degraded image quality. Identifying these simple 
model parameters was unable to completely restore such adverse effects. Determining types of degradation, 
their ranking and interactions, indeed are not trivial, especially without access to imaging modality calibration. 
Another approach, called blind image deconvolution (BID) [7, 10, 11], tackled this problem by estimating each 
element in PSF kernel/ matrix (or its inverse), subject to some criteria, but without prior on degradation sources. 
BID combines PSF estimation and deconvolution into a single reciprocal process. Estimation of PSF is usually 
done by iteratively updating vectorized kernel using a gradient descent variant [12], whereby in each cycle its 
values are varied with respect to pre-defined objective function and constraints. Provided that an optimum 
exists, upon convergence, resultant inversed PSF are able to closely recover the true non-degraded image. It 
can be noted that noise model was not incorporated into the inversed PSF and hence would have caused 
instability in case of low SNR. Other studies thus opted for operations in frequency domain, in which linear 
property of convolution can be exploited [13, 14], i.e., F* (u, v) = G (u, v) H-1 (u, v), where capital letters refer 
to (estimated) true, degraded images and PSF in frequency domain, respectively. Accordingly, noise may be 
dismissed by selectively processing only in the lower frequency spectrum. Although iterative variants exist, 
PSF estimation in frequency domain are of close-form and more efficient, compared to that on spatial one. 
However, its main drawback was that knowledges about noise properties are prerequisite, without which severe 
instability could occur. To remedy this adverse effect, Wiener filter [15, 16], Wavelet [17] and Curvelet [18] 
based methods were proposed. 

Note may be drawn from the literature that both spatial and frequency domain operations have their 
pros and cons. While the former can greatly benefit from straightforward yet intuitive constraints imposition, 
the latter is more efficient, with available fast spatial-frequency conversion algorithms. BID on both domains, 
called a nonnegativity and support constraints recursive filtering (NAS-RIF) [7, 19] was introduced and 
recently enhanced [20-26]. Its primary contribution was to overcome instability issue found in conventional 
BID. As its name suggested, NAS-RIF imposes irreducible, absolutely summable, i.e., ( || h || < ), and being 
invertible, i.e., h–1, properties on a PSF, while maintaining the same assumption (i.e., real value and positive 
definite) on the true image as IBD. The support on the image was defined within a region of interest (ROI). 
This has made NAS-RIF particularly suitable for medical imaging, where anatomical object is generally 
acquired in the center of a matrix and surrounded by uniform background. Specifically, NAS-RIF divided the 
degraded image into two regions, i.e., inside and outside support (Dsup), whose cost functions were determined 
with different objectives and constraints. A generic NAS-RIF algorithm is summarized in Figure 2. 

 
 

 
 

Figure 2. (a) Generic NAS-RIF algorithm [7] and (b) definition of support region (Dsup)  
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Given a degraded image g (x, y), NAS-RIF recursively determines the optimal inversed PSF, denoted 
here as u (x, y). At each iteration the elements of u are optimally adjusted subject to a cost function, consisting 
of negativity penalizes for pixels within and outside support region. Some enhanced proposal suggested 
additional regularization constraints, e.g., DC gain [21] or more realistic boundary support [22]. Noise issues 
were elevated by using designated filters [23-25]. For better performance nonetheless, deconvolution was 
performed in the frequency domain. 

The summary of NAS-RIF algorithm (see text for detailed explanation): 
a.  Definition 

 𝑓መ )x,y( : Estimate of the true image at kth iteration 
 𝑢)x,y( : FIR filter parameters of dimension 𝑁௫௨ ൈ 𝑁௬௨ at iteration k 
 𝐽൫𝑢൯ : Cost function, given parameter setting 𝑢 
 ∇𝐽ሺ𝑢ሻ : Gradient of 𝐽 at 𝑢 

 
b.  Set initial condition )k = 0( 

 Set FIR filter 𝑢ሺ𝑥, 𝑦ሻ to all zeros 
 

c.  At each iteration )k(: k = 0, 1, 2, … 
 𝑓መሺ𝑥, 𝑦ሻ = 𝑢ሺ𝑥, 𝑦ሻ ∗ 𝑔ሺ𝑥, 𝑦ሻ  
 𝑓መேሺ𝑥, 𝑦ሻ = 𝑁𝐿ሾ𝑓መሺ𝑥, 𝑦ሻሿ 
 Minimize routine to update FIR filter parameters )conjugate gradient routine(. 

 

ൣ∆𝐽൫𝑢൯൧
்

ൌ ቈ
𝜕𝐽ሺ𝑢ሻ

𝜕𝑢ሺ1,1ሻ
 

𝜕𝐽ሺ𝑢ሻ

𝜕𝑢ሺ1,2ሻ
 ⋯ 

𝜕𝐽ሺ𝑢ሻ

𝜕𝑢൫𝑁௫௨, 𝑁௬௨൯
 

where 
డ൫௨ೖ൯

డ௨ሺ,ሻ
ൌ 2 ∑ 𝑓መଶ

ሺ௫,௬ሻ∈ೞೠ
ሺ𝑥, 𝑦ሻ ቈ

ଵି௦ቀመሺ௫,௬ሻቁ

ଶ
 𝑔ሺ𝑥 െ 𝑖  1, 𝑦 െ 𝑗  1ሻ 

2  ൣ𝑓መሺ𝑥, 𝑦ሻ െ 𝐿𝑩൧𝑔ሺ𝑥 െ 𝑖  1, 𝑦 െ 𝑗  1ሻ
ሺ௫,௬ሻ∈ഥೞೠ

 

2𝛾   𝑢ሺ𝑥, 𝑦ሻ െ 1
∀ሺ௫,௬ሻ

 

𝛽 ൌ ൫൏ ∇𝐽൫𝑢൯ െ ∇𝐽൫𝑢ିଵ൯, ∇𝐽൫𝑢൯ ൯/൫൏ ∇𝐽൫𝑢ିଵ൯, 𝐽൫𝑢ିଵ൯ ൯ 
If 𝑘 ൌ 0, 𝑑 ൌ െ∇𝐽൫𝑢൯ 
 

otherwise 𝑑 ൌ െ∇𝐽൫𝑢൯  𝛽𝑑ିଵ 
𝑢ିଵ ൌ 𝑢  𝑡𝑑 

 
 Increment k 
 Repeat step 3) until convergence. 

 
Despite its great stability, shortcoming of NAS-RIF was slow convergence rate. Moreover, the 

inversed PSF (u) was a compromise between two penalize terms, derived from pixel intensity. This paper, 
therefore proposes a structural adaptive anisotropic term being introduced in iterative optimization. It was 
computed, taking into account local orientation pattern of object structure. Its main contribution was not only 
emphasizing on updates in favor of feature preservation, but also promoting faster convergence as fidelity was 
enhanced. The remaining of this paper is organized as follow: Section 2 describes the proposed method in more 
detail. Section 3 reports experimental results and relevant analyses. Finally, section 4 states concluding remark 
of this study. 
 
 
2. RESEARCH METHOD 

This paper partly adopted conventional NAS-RIF following the process, depicted in Figure 2a. It 
iteratively adjusted FIR filter, u, and simultaneously its output, that was an intermediate estimation of the true 
image, f*. To ensure nonnegativity and support constraints, this image was projected onto a non-linear (NL) 
space that diminished pixel intensities outside the support region (Dsup) to that of the background (LB). The 
corresponding non-expansive map, f*NL were then subtracted with its precedent, resulting in error matrix,  
given in (2) [20]. 
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𝑒 ሺ𝑥, 𝑦ሻ ൌ ∑ ൣ𝑓መேሺ𝑥, 𝑦ሻ െ 𝑓መሺ𝑥, 𝑦ሻ൧
ଶ

∀ሺ௫,௬ሻ  (2) 
 

where 
 

𝑓መேሺ𝑥, 𝑦ሻ ൌ ቐ
𝑓መሺ𝑥, 𝑦ሻ
0          
𝐿       

   
if 𝑓መሺ𝑥, 𝑦ሻ  0 and ሺ𝑥, 𝑦ሻ ∈ 𝐷ௌ

if 𝑓መሺ𝑥, 𝑦ሻ ൏ 0 and ሺ𝑥, 𝑦ሻ ∈ 𝐷ௌ

if ሺ𝑥, 𝑦ሻ ∈ 𝐷ഥௌ                               
 

 
Instead of simply minimizing this matrix, which would prematurely bring estimation to halt, the error 

image was then divided by supporting region. Ideally, object pixels bled outside Dsup due to degrading (e.g., 
blurring) PSF should be drawn back inside, leaving only the background. This could be achieved by an edge-
enhancing FIR. However, exaggerating this adjustment could lead to negative pixels by deconvolution. To 
maintain the balance of these constraints, basic NAS-RIF defined the cost function to penalize negative pixels 
inside the Dsup and background discrepancies outside. According to the recent modification [21], irreducibility 
of FIR was also ensured by regularization. The cost function adopted in this study was thus given in (3). Using 
this function, it is trivial to prove that its gradient with respect to an FIR element. Given the cost function J and 
its respective gradient, J, iterative non-linear optimization was done using a conjugate gradient method [26]. 
 

𝐽 ൌ ∑ 𝑓መଶሺ𝑥, 𝑦ሻ ቈ
ଵି௦ቀመሺ௫,௬ሻቁ

ଶ
ሺ௫,௬ሻ∈ೄೆು  ∑ ൣ𝑓መሺ𝑥, 𝑦ሻ െ 𝐿൧

ଶ
ሺ௫,௬ሻ∈ഥೄೆು  𝛾ൣ∑ 𝑢ሺ𝑥, 𝑦ሻ െ 1∀ሺ௫,௬ሻ ൧

ଶ
 (3) 

 
where sgn and  were, respectively, a signed function and an empirical factor weighting FIR 

regularization. Upon convergence, when the difference between successive true image estimations fell within 
a pre-defined threshold, the resultant FIR filter was then applied to the degraded image, g, producing the final 
true image restoration. 

It was, however, reported in the recent NAS-RIF literature that noise reduction and a priori on 
underlying pixel distributions are essential determinant in its stability and restoration result. In addition, 
penalizing cost function, while sufficient for typical photographic images, did not consider structural fidelity 
in an image, hence undermining anatomical features, crucial for the subsequent analyses. Inspired by intuitive 
constraints augmentation found in the recent works, this paper therefore incorporated an anisotropic measure 
into NAS-RIF optimization. Structural anisotropic measure was introduced in [27] and later improved in [28]. 
In those studies, it was used to orient and adjust the extent of an adaptive FIR filter so that it aligned with 
underlying pixel orientation pattern. Anisotropic measure within neighborhood surrounding a pixel, p, is  
given in (4). 

 

𝑎𝑛𝑖ሺ𝑝ሻ ൌ
ቊ∬ቀ

ങ
ങೣቁ

మ
ିቀ

ങ
ങቁ

మ
ௗ௫ௗ௬ቋ

మ

ାቄ∬ ଶቀ
ങ
ങೣቁቀ

ങ
ങቁௗ௫ௗ௬ቅ

మ

ቊ∬ቀ
ങ
ങೣቁ

మ
ାቀ

ങ
ങቁ

మ
ௗ௫ௗ௬ቋ

మ  (4) 

 
Figure 3 depicts a sample image with three selected neighborhood centers with different local 

orientation patterns and their respective anisotropic values. 
 
 

 
 

Figure 3. A sample image with three selected centers and corresponding anisotropic values  
 
 

In order to avoid further complicating the cost function (3), which would inevitably cause even more 
local minima, this study instead encouraged feature preservation by adjusting updating step size t according to 
relative anisotropic strength, as expressed in (5). 
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𝑡 ൌ 𝛼 ቆ
∑ ቀመೖሺ௫,௬ሻቁ∀ሺ𝑥,𝑦ሻ

∑ ቀመೖషభሺ௫,௬ሻቁ∀ሺ𝑥,𝑦ሻ
ቇ

ଶ

 (5) 

 
where  was a typical stepping size taken in each iteration. 
The benefits of adjusting step size according to total relative anisotropic were two folds. Firstly, while 

steering away from non-negativity, original NAS-RIF cost function tended to stumble around an overly 
smoothing kernel. With anisotropic controlled step size, on the other hand, as the bled pixels were gathered 
inside, implying more pronounced object boundaries, the relative anisotropic measure also increased and so 
was the confidence in such adjustment. This effectively accelerated NAS-RIF convergence. Secondly, 
involving anisotropic measure into the optimization also helped lessen the dependency on having to 
meticulously initialize the supporting region [22]. It is also worth emphasizing here that, anisotropic measure 
was computed within a neighborhood of specified extent and not from an isolated pixel. It was thus robust 
against imaging noise [27].  
 
 
3. RESULTS AND ANALYSIS 

Without loss of generalization, the proposed enhanced NAS-RIF algorithm was examined by applying 
to both synthetic and medical images corrupted with known degradation. The images were encoded as 2D 
matrix of grayscale intensities, whose values were stored and processed in floating point format. 
 
3.1.  Anisotropic strength as image contrast regularization 

As pointed out in [20] and subsequent works, trivial all-zero condition could be prevented by imposing 
a total sum constraint on FIR kernel. We found that it did not, however, rectify a uniform FIR kernel that would 
bring the image contrast tremendously down to an all-grey. To demonstrate that in addition to structural pattern 
[27] anisotropic measure is also responsive to such condition (and thus was a viable means of circumvent this 
problem) relationships between contrast appearances and respective total anisotropic strength are shown  
in Figure 4. 
 
 

 
Figure 4. Relationships between synthetic image appearances and their anisotropic measures 

 
 

During an early stage of optimization, image contrast could be regularized by anisotropic strength. 
More specifically, as the FIR proceeded away from trivial all-zeros, the measure helped increasing its 
confidence by further stepping in that direction. 
 
3.2.  Visual enhancement  

An MR scan of a human brain on a uniform background whose matrix size was 350x350 pixels, was 
then employed in the next experiment. Comparison between enhancement made by a generic NAS-RIF and 
the proposed enhancement against an original MR image are illustrated in Figure 5. The results are snapshots 
at the 80th iteration. 

 
 

 
 

Figure 5. Comparison between a generical (middle) and proposed NAS-RIF (right) enhancement 
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The resultant inversed FIR, u, brought sharper edge and better separation between tissue and the skull. 
Dynamic range of pixel intensities was much improved, compared to the generic NAS-RIF. It is also worth 
noted here that, instead of thousands of iterations usually required by a generic NAS-RIF to converge [7, 19], 
the proposed enhanced NAS-RIF gave an estimation with already higher fidelity and contrast at much early 
cycles. Moreover, no other priors were needed. 
 
3.3.  Relationship between anisotropic strength and visual enhancement 

Figure 6 compares anisotropic strengths during the first 80th iterations between a generic and the 
proposed NAS-RIF implementation, and respective enlarged original image estimations. It is evident from the 
graph that in the proposed implementation, the strength accelerated at faster rate, which well corresponded to 
much enhanced appearance. It was thus a suitable metric for a NAS-RIF optimization constraint and well 
conformed to the preliminary hypothesis of this study. 
 
 

 
 

Figure 6. Comparison of anisotropic strengths (left) between generic (top-right) and  
proposed (bottom-right) NAS-RIF implementations 

 
 

3.4.  Numerical assessments 
To quantitatively elucidate the proposed NAS-RIF scheme, especially in terms of noise immunity, 

numerical assessment was performed on simulated adulteration To this end, a phantom image was degraded 
with Gaussian blur and polluted with Rician noise (to emulate what happens in MR acquisition). Peak SNR 
[29, 30], was then computed for the original, adulterated, and generic and proposed NAS-RIF enhanced images. 
The peak SNR (PSNR) and corresponding restored images at 40th iteration were listed in Table 1 and shown 
in Figure 7, respectively. 
 
 

Table 1. PSNR of a brain phantom image, after 
enhanced with generic and proposed  

NAS-RIF methods 
Enhanced Method PSNR (dB)

Generic 25.392
Proposed 25.449

 
 

𝑃𝑆𝑁𝑅 ൌ 10𝑙𝑜𝑔
𝑃𝑒𝑎𝑘ଶ

𝑀𝑆𝐸
 

 

𝑀𝑆𝐸 ൌ
1

𝑊 ൈ 𝐻
|𝑓 െ 𝑔|ଶ 

 

 
 

Figure 7. Visual comparisons of original, adulterated 
and generic and proposed NAS-RIF enhanced images 
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Although quantitatively and visually, there was only slight improvement in PSNR over the generic 
NAS-RIF, the proposed method was equally if not better immune to additive noise. To elucidate that the 
proposed enhanced NAS-RIF could equally well applied to other images, the anisotropic strength and 
convergence were compared against the baseline one. The experiments were performed on README, Brain 
Phantom and Real Abdominal CT images. It is evident from the Figure 8 that the proposed method consistently 
outperformed the baseline one in all examples. 
 
 

 
 

Figure 8. Comparison of anisotropic strengths of README (top-left), brain phantom (botom-left) and real 
abdominal CT (top-right) images between the proposed (solid-line) and baseline (dash-line) NAS-RIF 

implementations and pictorial annotation of each experiment is shown in bottom right 
 
 

4. CONCLUSION 
Blind image deconvolution is an ill-posed problem that was designed to restore the true image, 

undergone degradation by an unknown PSF and possibly by random noise. Variational BID elevates this 
problem by iteratively estimate the PSF (or its inversed) subject to some pre-defined criteria. NAS-RIF is 
another well accepted variation BID that imposed non-negativity and supports constraints over a sequence of 
restored image, during the optimization. Nonetheless, it is prone to noise and had low convergence rate. Many 
attempts had been made in the literature to address these issues, by suggesting various FIR regularization 
schemes, selectively filtering the projected image, or accurately defining the object support, etc.  

This paper put emphasis on quality of the shape and object definition and thus proposing a structural 
adaptive metric, i.e., anisotropic strength. Its advantages are robustness against noise and intuitively 
representing characteristics of local orientation pattern. Unlike other recent works, this paper did not augment 
anisotropic strength into an already complicate NAS-RIF cost function, or else it would have caused minima 
traps and created another unnecessary expression to be weighted and balanced. On the contrary, it was used 
simply to adjust the step size in each kernel update. The benefits were two folds; it accelerated convergence as 
object boundaries became more pronounced and structural appearance. It concisely represented the structural 
appearance of underlying object and thus lessen the need of precise initial support. 

The experimental results reported herein confirmed visually and numerically that the proposed NAS-
RIF had much higher convergence rate, offered restoration of better quality, and was equally immune to 
synthetic noise. It was therefore believed that the proposed method could offer a new direction toward 
improving the performance of the widely adopted NAS-RIF, especially in the fields of medical imaging, 
computer aided diagnosis (CAD), and digital anatomy. 
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