Responsive Motion Control for Robot Soccer Navigation Using Adaptive Social Force Framework

Bima Sena Bayu Dewantara, Bagus Nugraha Deby Ariyadi, Hary Oktavianto

Abstract


This paper presents a modified Social Force Model (SFM) for navigation control of a soccer robot application. We modified the way of determining the parameter value of the gain factor, , of the SFM using the Fuzzy Inference System (FIS), so that the value of the gain factor, , is adaptive. The purpose of the gain factor adaptation is that the robot can move responsively but not over-reactive when it encounters an obstacle at high speed, which is a weakness of SFM with fixed parameters. Modification of SFM parameters using FIS is hereinafter referred to as the Fuzzy-based Social Force Model (F-SFM). We used this technique on a soccer robot with an omnidirectional drive platform with three motors. As an experiment, several modifications to the FIS rules were made and compared to the SFM with fixed parameters. The simulation-based experimental results show that the proposed method outperforms the SFM method with fixed-parameters, and the computation time does not differ significantly so that it can be applied for real implementation.

Keywords


Navigation; Soccer robot; Social force model; Fuzzy inference system; Simulation

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

Error. Page cannot be displayed. Please contact your service provider for more details. (6)