Unlocking Doors: A TinyML-Based Approach for Real-Time Face Mask Detection in Door Lock Systems
Abstract
Keywords
References
“Coronavirus disease (COVID-19) prevention and treatment methods and effective parameters: A systematic literature review,” Sustainable Cities and Society, vol. 64, p. 102568, Jan. 2021, doi: 10.1016/j.scs.2020.102568.
A. Bassi, B. M. Henry, L. Pighi, L. Leone, and G. Lippi, “Evaluation of indoor hospital acclimatization of body temperature before COVID-19 fever screening,” Journal of Hospital Infection, vol. 112, pp. 127–128, Jun. 2021, doi: 10.1016/j.jhin.2021.02.020.
D. K. Jain, Z. Zhang, and K. Huang, “Multi angle optimal pattern-based deep learning for automatic facial expression recognition,” Pattern Recognition Letters, vol. 139, pp. 157–165, Nov. 2020, doi: 10.1016/j.patrec.2017.06.025.
N. Zeng, H. Li, and Y. Peng, “A new deep belief network-based multi-task learning for diagnosis of Alzheimer’s disease,” Neural Comput & Applic, Jun. 2021, doi: 10.1007/s00521-021-06149-6.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection.” arXiv, Apr. 22, 2020. doi: 10.48550/arXiv.2004.10934.
J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement.” arXiv, Apr. 08, 2018. doi: 10.48550/arXiv.1804.02767.
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2015. Accessed: Apr. 09, 2023. [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
H. Law and J. Deng, “CornerNet: Detecting Objects as Paired Keypoints,” presented at the Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–750. Accessed: Apr. 09, 2023. [Online]. Available: https://openaccess.thecvf.com/content_ECCV_2018/html/Hei_Law_CornerNet_Detecting_Objects_ECCV_2018_paper.html
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, Feb. 2020, doi: 10.1109/TPAMI.2018.2858826.
Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully Convolutional One-Stage Object Detection,” in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 9626–9635. doi: 10.1109/ICCV.2019.00972.
V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann, “BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs.” arXiv, Jul. 14, 2019. doi: 10.48550/arXiv.1907.05047.
M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection,” Sustainable Cities and Society, vol. 65, p. 102600, Feb. 2021, doi: 10.1016/j.scs.2020.102600.
U. Mahbub, S. Sarkar, and R. Chellappa, “Partial face detection in the mobile domain,” Image and Vision Computing, vol. 82, pp. 1–17, Feb. 2019, doi: 10.1016/j.imavis.2018.12.003.
G. Zheng and Y. Xu, “Efficient face detection and tracking in video sequences based on deep learning,” Information Sciences, vol. 568, pp. 265–285, Aug. 2021, doi: 10.1016/j.ins.2021.03.027.
S. Singh, U. Ahuja, M. Kumar, K. Kumar, and M. Sachdeva, “Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment,” Multimed Tools Appl, vol. 80, no. 13, pp. 19753–19768, May 2021, doi: 10.1007/s11042-021-10711-8.
A. Alzu’bi, F. Albalas, T. AL-Hadhrami, L. B. Younis, and A. Bashayreh, “Masked Face Recognition Using Deep Learning: A Review,” Electronics, vol. 10, no. 21, Art. no. 21, Jan. 2021, doi: 10.3390/electronics10212666.
A. A. Abed, A. Al-Ibadi, and I. A. Abed, “Real-time multiple face mask and fever detection using YOLOv3 and TensorFlow lite platforms,” Bulletin EEI, vol. 12, no. 2, pp. 922–929, Apr. 2023, doi: 10.11591/eei.v12i2.4227.
B. Qin and D. Li, “Identifying Facemask-Wearing Condition Using Image Super-Resolution with Classification Network to Prevent COVID-19,” Sensors, vol. 20, no. 18, Art. no. 18, Jan. 2020, doi: 10.3390/s20185236.
T. Nurindini, M. N. Swacaesar, R. W. Astika, H. Purwanto, R. A. Wijayanti, and M. Taufik, “Design of Smart Door Lock System Using Face Recognition and Mask Detection Based on Viola-Jones Algorithm with Android Integration,” vol. 13, 2023.
X. Su, M. Gao, J. Ren, Y. Li, M. Dong, and X. Liu, “Face mask detection and classification via deep transfer learning,” Multimed Tools Appl, vol. 81, no. 3, pp. 4475–4494, Jan. 2022, doi: 10.1007/s11042-021-11772-5.
A. K. Gaddam and B. K. Menugonda, “Face Mask Detection and Door Unlocking System Using Deep Learning,” IJRASET, vol. 10, no. 12, pp. 651–655, Dec. 2022, doi: 10.22214/ijraset.2022.47965.
M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, “A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic,” Measurement, vol. 167, p. 108288, Jan. 2021, doi: 10.1016/j.measurement.2020.108288.
“The Pascal Visual Object Classes Challenge: A Retrospective | SpringerLink.” https://link.springer.com/article/10.1007/s11263-014-0733-5 (accessed Apr. 02, 2023).
T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context.” arXiv, Feb. 20, 2015. doi: 10.48550/arXiv.1405.0312.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection.” arXiv, May 09, 2016. doi: 10.48550/arXiv.1506.02640.
G. Jocher et al., “ultralytics/YOLOv5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.” Zenodo, Nov. 22, 2022. doi: 10.5281/zenodo.7347926.
Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-Time Vehicle Detection Based on Improved YOLO v5,” Sustainability, vol. 14, no. 19, Art. no. 19, Jan. 2022, doi: 10.3390/su141912274.
“Face Mask Detection.” https://www.kaggle.com/datasets/andrewmvd/face-mask-detection (accessed Mar. 08, 2023).
M. Altayeb and A. Al-Ghraibah, “Voice controlled Camera Assisted Pick and Place Robot Using Raspberry Pi,” Indonesian Journal of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 51–56, 2022, doi: 10.52549/ijeei.v10i1.3636.
J. Ieamsaard, S. N. Charoensook, and S. Yammen, “Deep Learning-based Face Mask Detection Using YOLOV5,” in 2021 9th International Electrical Engineering Congress (iEECON), Mar. 2021, pp. 428–431. doi: 10.1109/iEECON51072.2021.9440346.
I. ben Abdel Ouahab, L. Elaachak, M. Bouhorma, and Y. A. Alluhaidan, “Real-time Facemask Detector using Deep Learning and Raspberry Pi,” in 2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA), Jun. 2021, pp. 23–30. doi: 10.1109/ICDATA52997.2021.00014.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.