Classification of Darknet Traffic Using the AdaBoost Classifier Method

Rizky Elinda Sari, Deris Stiawan, Nurul Afifah, Mohd. Yazid Idris, Rahmat Budiarto

Abstract


Darknet is famous for its ability to provide anonymity which is often used for illegal activities. A security monitor report from BSSN highlights that 290.556 credential data from institution in Indonesia have been exposed on the darknet. Classification techniques are important for studying and identifying darknet traffic. This study proposes the utilization of the AdaBoost Classifier in darknet classification. The use of variable estimator values significantly impact classification results. The best performance was obtained with an estimator value of 500 with an accuracy of 99.70%. The contribution of this research lies in the development of classification models and the evaluation of AdaBoost models in the context of darknet traffic classification.

Keywords


darknet;classification;adaboost;n_estimator;smote-enn

References


T. Pare, “Darknet and Black Market Activities Against the Cybersecurity : a Survey,” no. April, pp. 1–13, 2019, [Online]. Available: https://www.researchgate.net/publication/334126403_Darknet_and_black_market_activities_against_the_cybersecurity_A_Survey

A. Anju et al., “A Mysterious And Darkside Of The Darknet : A Qualitative Study,” Webology, vol. 18, no. 4, pp. 285–294, 2021.

A. Almomani, Darknet traffic analysis, and classification system based on modified stacking ensemble learning algorithms, no. 0123456789. Springer Berlin Heidelberg, 2023. doi: 10.1007/s10257-023-00626-2.

K. Demertzis, K. Tsiknas, D. Takezis, C. Skianis, and L. Iliadis, “Darknet traffic big-data analysis and network management for real-time automating of the malicious intent detection process by a weight agnostic neural networks framework,” Electron., vol. 10, no. 7, 2021, doi: 10.3390/electronics10070781.

M. Coutinho Marim et al., “Darknet traffic detection and characterization with models based on decision trees and neural networks,” Intell. Syst. with Appl., vol. 18, no. December 2022, p. 200199, 2023, doi: 10.1016/j.iswa.2023.200199.

M. Alimoradi, M. Zabihimayvan, A. Daliri, R. Sledzik, and R. Sadeghi, “Deep Neural Classification of Darknet Traffic,”Front. Artif. Intell. Appl., vol. 356, no. October, pp. 105–114, 2022, doi: 10.3233/FAIA220323.

H. Mohanty, A. H. Roudsari, and A. H. Lashkari, “Robust stacking ensemble model for darknet traffic classification under adversarial settings,” Comput. Secur., vol. 120, p. 102830, 2022, doi: 10.1016/j.cose.2022.102830.

X. Tong, C. Zhang, J. Wang, Z. Zhao, and Z. Liu, “Dark-Forest: Analysis on the Behavior of DarkWeb Traffic via DeepForest and PSO Algorithm,” C. - Comput. Model. Eng. Sci., vol. 135, no. 1, pp. 561–581, 2023, doi: 10.32604/cmes.2022.022495.

Q. A. Al-Haija, M. Krichen, and W. A. Elhaija, “Machine-Learning-Based Darknet Traffic Detection System for IoT Applications,” Electron., vol. 11, no. 4, 2022, doi: 10.3390/electronics11040556.

K. Kanemura, K. Toyoda, and T. Ohtsuki, “Identification of Darknet Markets’ Bitcoin Addresses by Voting PerAddress Classification Results,” ICBC 2019 - IEEE Int. Conf. Blockchain Cryptocurrency, pp. 154–158, 2019, doi: 10.1109/BLOC.2019.8751391.

F. Horasan and A. H. Yurttakal, “Darknet Web Traffic Classification via Gradient Boosting Algorithm,” Int. J. Eng. Res. Dev., vol. 14, no. 2, pp. 794–798, 2022. [12] BSSN, “Laporan Bulanan Agustus 2023,” 2023, [Online]. Available: www.idsirtii.or.id

A. H. Lashkari, “DIDarknet : A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning,” pp. 1–13.

Y. Zhang, J. Liu, and W. Shen, “A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications,”Appl. Sci., vol. 12, no. 17, 2022, doi: 10.3390/app12178654.

B. Thilagavathi, K. Suthendran, and K. Srujanraju, “Evaluating the AdaBoost Algorithm for Biometric-Based Face Recognition,” Lect. Notes Data Eng. Commun. Technol., vol. 63, pp. 669–678, 2021, doi: 10.1007/978-981-16-0081-4_67.

T. Toharudin et al., “Boosting Algorithm to Handle Unbalanced Classification of PM2.5Concentration Levels by Observing Meteorological Parameters in Jakarta-Indonesia Using AdaBoost, XGBoost, CatBoost, and LightGBM,” IEEE Access, vol. 11, no. March, pp. 35680–35696, 2023, doi: 10.1109/ACCESS.2023.3265019.

A. Rehman Javed, Z. Jalil, S. Atif Moqurrab, S. Abbas, and X. Liu, “Ensemble Adaboost classifier for accurate and fast detection of botnet attacks in connected vehicles,” Trans. Emerg. Telecommun. Technol., vol. 33, no. 10, pp. 1–18, 2022, doi: 10.1002/ett.4088.

P. Chakri, S. Pratap, Lakshay, and S. K. Gouda, “An exploratory data analysis approach for analyzing financial accounting data using machine learning,” Decis. Anal. J., vol. 7, no. March, p. 100212, 2023, doi: 10.1016/j.dajour.2023.100212.

M. X. Low et al., “Comparison of Label Encoding and Evidence Counting for Malware Classification,” J. Syst. Manag. Sci., vol. 12, no. 6, pp. 17–30, 2022, doi: 10.33168/JSMS.2022.0602.

L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao, “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 8, pp. 10173–10196, 2023, doi: 10.1109/TPAMI.2023.3250241.

L. B. V. de Amorim, G. D. C. Cavalcanti, and R. M. O. Cruz, “The choice of scaling technique matters for classification performance,” Appl. Soft Comput., vol. 133, pp. 1–37, 2023, doi: 10.1016/j.asoc.2022.109924.

C. Kaope and Y. Pristyanto, “The Effect of Class Imbalance Handling on Datasets Toward Classification Algorithm Performance,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 227–238, 2023, doi: 10.30812/matrik.v22i2.2515.

M. S. Kraiem, F. Sánchez-Hernández, and M. N. Moreno-García, “Selecting the suitable resampling strategy for imbalanced data classification regarding dataset properties. An approach based on association models,” Appl. Sci., vol. 11, no. 18, 2021, doi: 10.3390/app11188546.

M. Alamri and M. Ykhlef, “Hybrid Undersampling and Oversampling for Handling Imbalanced Credit Card Data,”IEEE Access, vol. 12, no. November 2023, pp. 14050–14060, 2024, doi: 10.1109/ACCESS.2024.3357091.

Y. Zhu, Y. Hu, Q. Liu, H. Liu, C. Ma, and J. Yin, “A Hybrid Approach for Predicting Corporate Financial Risk: Integrating SMOTE-ENN and NGBoost,” IEEE Access, vol. 11, no. October, pp. 111106–111125, 2023, doi: 10.1109/ACCESS.2023.3323198.

F. Yang, K. Wang, L. Sun, M. Zhai, J. Song, and H. Wang, “A hybrid sampling algorithm combining synthetic minority over-sampling technique and edited nearest neighbor for missed abortion diagnosis,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, pp. 1–14, 2022, doi: 10.1186/s12911-022-02075-2.

J. M. Ferreira et al., “Identification of Daily Activites and Environments Based on the AdaBoost Method Using Mobile Device Data: A Systematic Review,” Electronics, vol. 9, no. 1, p. 192, 2020, doi: 10.3390/electronics9010192.

M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking, ”IEEE Access, vol. 8, pp. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.

Y. Wang and S. Fan, “Deep Reinforcement Learning Based on Balanced Strati ed Prioritized Experience Replay for Customer Credit Scoring in Peer-to-Peer Lending,” 2023.

D. Chicco, M. J. Warrens, and G. Jurman, “The Matthews Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment,” IEEE Access, vol. 9, no. Mcc, pp. 78368–78381, 2021, doi: 10.1109/ACCESS.2021.3084050.

M. K. S. Verma et al., “On-Board State Estimation in Electrical Vehicles: Achieving Accuracy and Computational Efficiency through an Electrochemical Model,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 2563–2575, 2020, doi: 10.1109/TVT.2020.2966266.

M. Heydarian and T. E. Doyle, “MLCM : Multi-Label Confusion Matrix,” pp. 19083–19095, 2022.

D. Chen, Y. Lu, and C. Y. Hsu, “Measurement Invariance Investigation for Performance of Deep Learning Architectures, ”IEEE Access, vol. 10, no. July, pp. 78070–78087, 2022, doi: 10.1109/ACCESS.2022.3192468.

D. Chicco, V. Starovoitov, and G. Jurman, “The Benefits of the Matthews Correlation Coefficient (MCC) over the Diagnostic Odds Ratio (DOR) in Binary Classification Assessment,” IEEE Access, vol. 9, no. Mcc, pp. 47112–47124, 2021, doi: 10.1109/ACCESS.2021.3068614.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats