BCDNN: Enhancing CNN Model for Automatic Detection of Breast Cancer Using Histopathology Images
Abstract
The United Nations has identified health and well-being for all as one of its sustainable development goals. Research efforts in the healthcare domain worldwide are aligned with this goal. According to the World Health Organization (WHO), there has been an increasing incidence of breast cancer globally. The emergence of Artificial Intelligence (AI) has enabled learning-based approaches for diagnosing various ailments in the healthcare domain. Numerous efforts have been designed to efficiently diagnose breast cancer using deep learning algorithms, with the Convolutional Neural Network (CNN) being the widely used model due to its efficiency in processing medical images. However, CNN-based models may experience deteriorated performance without empirical studies to improve the underlying architecture. Motivated by this fact, our paper proposes a deep learning-based system for breast cancer diagnostic automation by enhancing a CNN model called the Breast Cancer Detection Neural Network (BCDNN). We also introduce an algorithm called Enhanced Deep Learning for Breast Cancer Detection (EDL-BCD), which leverages the enhanced deep learning model for better disease diagnosis performance. Our evaluation with a benchmark dataset comprising breast histopathology images shows that our suggested framework significantly outperforms state-of-the-art models, achieving an impressive accuracy of 97.99%. Therefore, the proposed system can be integrated with healthcare applications to assist in automatic screening by utilizing histopathology pictures to visualize breast cancer.
Keywords
References
Md Ishtyaq Mahmud, Muntasir Mamun and Ahmed Abdelgawad. (2023). A Deep Analysis of Transfer Learning Based Breast Cancer Detection Using Histopathology Images. IEEE., pp.1-7. http://DOI:10.1109/SPIN57001.2023.10117110
Mohammad Reza Abbasniya, Sayed Ali Sheikholeslamzadeh, Hamid Nasiri and Samaneh Emami. (2022). Classification of Breast Tumors Based on Histopathology Images Using Deep Features and Ensemble of Gradient Boosting Met. Elsevier. 103, pp.1-14. https://doi.org/10.1016/j.compeleceng.2022.108382
Gecer, Baris; Aksoy, Selim; Mercan, Ezgi; Shapiro, Linda G.; Weaver, Donald L. and Elmore, Joann G. (2018). Detection and Classification of Cancer in Whole Slide Breast Histopathology Images Using Deep Convolutional Networks. Pattern Recognition, S0031320318302577–. http://doi:10.1016/j.patcog.2018.07.022
Budak, Ümit; Cömert, Zafer; Rashid, Zryan Najat; Şengür, Abdulkadir and Çıbuk, Musa (2019). Computer-aided diagnosis system combining FCN and Bi-LSTM model for efficient breast cancer detection from histopathological images. Applied Soft Computing, 85, 105765–. http://doi:10.1016/j.asoc.2019.105765
Aresta, Guilherme; Araújo, Teresa; Kwok, Scotty; Chennamsetty, Sai Saketh; Safwan, Mohammed; Alex, Varghese; Marami, Bahram; Prastawa, Marcel; Chan, Monica; Donovan, Michael; Fernandez, Gerardo; Zeineh, Jack; Kohl, Matthias; Walz, Christoph; Ludwig, Florian; Braunewell, Stefan; Baust, Maximilian; Vu, Quoc Dang; To, Minh Nguyen Nhat; Kim, Eal; Kwak, Jin Tae; Galal, Sameh; Sanchez-Freire, Veronica; Brancati, Nadia; Frucci, Maria; Riccio, Daniel; Wang, Yaqi; Sun, Lingling; Ma, Kaiqiang; Fang, Jiannan; Kone, Ismael; Boulmane, Lahsen; Campilho, Aurélio; Eloy, Catarina; Polónia, António and Aguiar, Paulo (2019). BACH: grand challenge on breast cancer histology images. Medical Image Analysis, S1361841518307941–. http://doi:10.1016/j.media.2019.05.010
Yang, Heechan; Kim, Ji-Ye; Kim, Hyongsuk and Adhikari, Shyam P. (2019). Guided Soft Attention Network for Classification of Breast Cancer Histopathology Images. IEEE Transactions on Medical Imaging, 1–1. http://doi:10.1109/TMI.2019.2948026
Vo, Duc My; Nguyen, Ngoc-Quang and Lee, Sang-Woong (2019). Classification of breast cancer histology images using incremental boosting convolution networks. Information Sciences, 482, 123–138. http://doi:10.1016/j.ins.2018.12.089
Sharma, Shallu and Mehra, Rajesh (2020). Conventional Machine Learning and Deep Learning Approach for MultiClassification of Breast Cancer Histopathology Images—a Comparative Insight. Journal of Digital Imaging. http://doi:10.1007/s10278-019-00307-y
Dabeer, Sumaiya; Khan, Maha Mohammed and Islam, Saiful (2019). Cancer diagnosis in histopathological image: CNN based approach. Informatics in Medicine Unlocked, 100231–. http://doi:10.1016/j.imu.2019.100231
Shallu, and Mehra, Rajesh (2018). Breast cancer histology images classification: Training from scratch or transfer learning?. ICT Express, S2405959518304934–. http://doi:10.1016/j.icte.2018.10.007
Li, Chao; Wang, Xinggang; Liu, Wenyu; Latecki, Longin Jan; Wang, Bo and Huang, Junzhou (2019). Weakly Supervised Mitosis Detection in Breast Histopathology Images using Concentric Loss. Medical Image Analysis, S1361841519300118–. http://doi:10.1016/j.media.2019.01.013
Kumar, Abhinav; Singh, Sanjay Kumar; Saxena, Sonal; Lakshmanan, K.; Sangaiah, Arun Kumar; Chauhan, Himanshu; Shrivastava, Sameer and Singh, Raj Kumar (2020). Deep feature learning for histopathological image classification of canine mammary tumors and human breast cancer. Information Sciences, 508, 405–421. http://doi:10.1016/j.ins.2019.08.072
Talo, Muhammed (2019). Automated classification of histopathology images using transfer learning. Artificial Intelligence in Medicine, 101, 101743–. http://doi:10.1016/j.artmed.2019.101743
Roy, Kaushiki; Banik, Debapriya; Bhattacharjee, Debotosh and Nasipuri, Mita (2018). Patch-based system for Classification of Breast Histology images using deep learning. Computerized Medical Imaging and Graphics, S0895611118302039–. http://doi:10.1016/j.compmedimag.2018.11.003
Naylor, Peter; Lae, Marick; Reyal, Fabien and Walter, Thomas (2018). Segmentation of Nuclei in Histopathology Images by deep regression of the distance map. IEEE Transactions on Medical Imaging, 1–1. http://doi:10.1109/TMI.2018.2865709
Sudharshan, P.J.; Petitjean, Caroline; Spanhol, Fabio; Oliveira, Luiz Eduardo; Heutte, Laurent and Honeine, Paul (2019). Multiple instance learning for histopathological breast cancer image classification. Expert Systems with Applications, 117, 103–111. http://doi:10.1016/j.eswa.2018.09.049
[17] Komura, Daisuke and Ishikawa, Shumpei (2018). Machine Learning Methods for Histopathological Image Analysis. Computational and Structural Biotechnology Journal, S2001037017300867–. http://doi:10.1016/j.csbj.2018.01.001
Roy, Santanu; kumar Jain, Alok; Lal, Shyam and Kini, Jyoti (2018). A Study about Color Normalization Methods for Histopathology Images. Micron, S0968432818300982–. http://doi:10.1016/j.micron.2018.07.005
Hou, Le; Nguyen, Vu; Kanevsky, Ariel B.; Samaras, Dimitris; Kurc, Tahsin M.; Zhao, Tianhao; Gupta, Rajarsi R.; Gao, Yi; Chen, Wenjin; Foran, David and Saltz, Joel H. (2018). Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images. Pattern Recognition, S0031320318303261–. http://doi:10.1016/j.patcog.2018.09.007
Gandomkar, Ziba; Brennan, Patrick C. and Mello-Thoms, Claudia (2018). MuDeRN: Multi-category classification of breast histopathological image using deep residual networks. Artificial Intelligence in Medicine, S0933365717305031–. http://doi:10.1016/j.artmed.2018.04.005
ArunaDevi Karuppasamy, Abdelhamid Abdesselam, Rachid Hedjam, Hamza zidoum and Maiya Al-Bahri. (2024). Feed-forward networks using logistic regression and support vector machine for whole-slide breast cancer histopathology image classification. Elsevier. 9, pp.1-8. https://doi.org/10.1016/j.ibmed.2023.100126
Sangeeta Parshionikar and Debnath Bhattacharyya. (2024). An enhanced multi-scale deep convolutional orchard capsule neural network for multi-modal breast cancer detection. Elsevier. 5, pp.1-17. https://doi.org/10.1016/j.health.2023.100298
Sergio Ortiz, Ignacio Rojas-Valenzuela, Fernando Rojas, Olga Valenzuela, Luis Javier Herrera and Ignacio Rojas. (2024). Novel methodology for detecting and localizing cancer area in histopathological images based on overlapping patches. Elsevier. 168, pp.1-12. https://doi.org/10.1016/j.compbiomed.2023.107713
G. Mohan, Muhammadu Sathik Raja, S. Swathi and E.N. Ganesh. (2024). A novel breast cancer diagnostic using convolutional squared deviation neural network classifier with Al-Biruni Earth Radius optimization in medical IoT system. Elsevier. 7, pp.1-12. https://doi.org/10.1016/j.prime.2024.100440
JIALONG SI, WEI JIA AND HAIFENG JIANG. (2024). Breast Cancer Histopathology Images Classification Through Multi-View Augmented Contrastive Learning and Pre-Learning Knowledge Distillation. IEEE. 12, pp.25359 - 25371. http://DOI:10.1109/ACCESS.2024.3366185
Miguel López-Pérez, Pablo Morales-Álvarez, Lee A.D. Cooper, Christopher Felicelli, Jeffery Goldstein, Brian Vadasz, Rafael Molina and Aggelos K. Katsaggelos. (2024). Learning from crowds for automated histopathological image segmentation. Elsevier. 112, pp.1-12. https://doi.org/10.1016/j.compmedimag.2024.10232
Xiao Xiao, Yan Kong, Ronghan Li, Zuoheng Wang and Hui Lu. (2024). Transformer with convolution and graphnode co-embedding: An accurate and interpretable vision backbone for predicting g gene expressions from local histopathological image. Elsevier. 91, pp.1-18. https://doi.org/10.1016/j.media.2023.103040
Sruthi Krishna, S.S. Suganthi, Arnav Bhavsar, Jyotsna Yesodharan and Shivsubramani Krishnamoorthy. (2023). An interpretable decision-support model for breast cancer diagnosis using histopathology images. Elsevier. 14, pp.1-13. https://doi.org/10.1016/j.jpi.2023.100319
MD. SAKIB HOSSAIN SHOVON, M. F. MRIDHA, KHAN MD HASIB, SULTAN ALFARHOOD, MEJDL SAFRAN AND DUNREN CHE. (2023). Addressing Uncertainty in Imbalanced Histopathology Image Classification of HER2 Breast Cancer: An Interpretable Ensemble Approach With Threshold Filtered Single Instance Evaluation (SIE). IEEE. 11, pp.122238 - 122251. http://DOI:10.1109/ACCESS.2023.3327898
TASLEEM KAUSAR, YUN LU AND ADEEBA KAUSAR. (2023). Breast Cancer Diagnosis Using Lightweight Deep Convolution Neural Network Model. IEEE. 11, pp.124869 - 124886. http://DOI:10.1109/ACCESS.2023.3326478
SAMEEN AZIZ, KASHIF MUNIR, ALI RAZA, MUBARAK S. ALMUTAIRI AND SHOAIB NAWAZ. (2023). IVNet: Transfer Learning Based Diagnosis of Breast Cancer Grading Using Histopathological Images of Infected Cells. IEEE. 11, pp.127880 - 127894. http://DOI:10.1109/ACCESS.2023.3332541
Dianzhi Yu, Jianwu Lin, Tengbao Cao, Yang Chen, Mingfei Li and Xin Zhang. (2023). SECS: An effective CNN joint construction strategy for breast cancer histopathological image classification. Elsevier. 35(2), pp.810-820. https://doi.org/10.1016/j.jksuci.2023.01.017
Agaba Ameh Joseph, Mohammed Abdullahi, Sahalu Balarabe Junaidu, Hayatu Hassan Ibrahim and Haruna Chiroma. (2022). Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Elsevier. 14, pp.1-11. https://doi.org/10.1016/j.iswa.2022.200066
Jialiang Yang, Jie Ju, Lei Guo, Binbin Ji, Shufang Shi, Zixuan Yang, Songlin Gao, Xu Yuan, Geng Tian, Yuebin Liang and Peng Yuan. (2022). Prediction of HER2-positive breast cancer recurrence and metastasis risk from histopathological images and clinical information via multimodal deep learning. Elsevier. 20, pp.333-342. https://doi.org/10.1016/j.csbj.2021.12.028
Gupta, V., Vasudev, M., Doegar, A., & Sambyal, N. (2021). Breast cancer detection from histopathology images using modified residual neural networks. Biocybernetics and Biomedical Engineering, 41(4), 1272–1287. http://doi:10.1016/j.bbe.2021.08.011
Burçak, K. C., Baykan, Ö. K., & Uğuz, H. (2020). A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model. The Journal of Supercomputing. http://doi:10.1007/s11227-020-03321-y
Hirra, I., Ahmad, M., Hussain, A., Ashraf, M. U., Saeed, I. A., Qadri, S. F., and Alfakeeh, A. S. (2021). Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access, 9, 24273– 24287. http://doi:10.1109/access.2021.3056516
Demir, F. (2021). DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images. Biocybernetics and Biomedical Engineering, 41(3), 1123–1139. http://doi:10.1016/j.bbe.2021.07.004
Wang, P., Wang, J., Li, Y., Li, P., Li, L., & Jiang, M. (2021). Automatic classification of breast cancer histopathological images based on deep feature fusion and enhanced routing. Biomedical Signal Processing and Control, 65, 102341. http://doi:10.1016/j.bspc.2020.102341
Rachapudi, V., & Lavanya Devi, G. (2020). Improved convolutional neural network based histopathological image classification. Evolutionary Intelligence. http://doi:10.1007/s12065-020-00367-y
Breast Histopathology Images dataset. Retrieved from https://www.kaggle.com/datasets/paultimothymooney/breasthistopathology-images/data
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.