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Nowadays, it became difficult to ensure data security because of the rapid 

development of information technology according to the Vs of Big Data. To 

secure a network against malicious activities and to ensure data protection, 

an intrusion detection system played a very important role. The main 
objective was to obtain a high-performance solution capable of detecting 

different types of attacks around the system. The main aim of this paper is to 

study the lacks of traditional and open source Intrusion Detection Systems 

and the Machine Learning techniques commonly used to overcome these 
lacks. A comparison of some existing works by Intrusion Detection System 

type, detection method, algorithm and accuracy was provided. 
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1. INTRODUCTION

The amount of data processed and stored on personal, industrial and government digital networks is 

constantly increasing, which strongly motivates attackers to make illegitimate access attempts. The protection 

of personal and sensitive data and the security of the digital environment should be addressed progressively 

in order to respond to the challenges linked to modern security concerns with regard to log management and 

the ability to define the extent of security policy violations. 

The open source and commercial tools that can be used against security threats are enormous and 

their use should be context and need-specific. This study focuses on Intrusion Detection Systems (IDS) and 

Security Information and Event Management (SIEM). SIEM manages the data generated by the IDSs. We 

have chosen the most popular traditional and open source IDSs that have scored high marks in intrusion 

detection such as Snort, Suricata, Bro (Zeek) and OSSEC (Open Source SECurity). The first motivation to 

use these open source IDSs is their ability to detect known attacks effectively with little consumption of 

computational resources and little time consuming. However, the number of false alarms generated by these 

IDSs is actually a challenge. 

Another challenge related to the traditional IDSs is that they cannot detect previously unknown 

attacks, because they are based on signatures or rules, and detect only based on the defined rules. 

Additionally, sometimes these IDSs have difficulty detecting variations in known attacks according to Y. 

Ding et al. [1]. In addition, most of these IDSs do not have Graphical User Interface (GUI). 

In order to address the false alarms problem, the simplest way is to turn off some attack signatures; 

however, this can degrade the detection quality of the IDS according to B. Subba et al. [2]. 

N. Hubballia et al. [3] present a survey of false alarm minimization techniques in signature-based 

IDS such as Signature Enhancement, Stateful Signatures, Vulnerability Signatures, Alarm Correlation, Alarm 

Verification etc. The advantages and drawbacks of each of these techniques were provided. Ref. [3] give also 
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an analysis on commercial SIEMs that uses some of the techniques presented in this survey. B. Subba et al. 

[2] mentioned many drawbacks related to false alarm minimization existing techniques. 

Another technique that often gives good results in terms of detection rate and can achieve false 

alarm reduction in a proactive manner is Machine Learning. In addition, Meng et al. [4] prove that using 

machine learning to create a false alarm filter is a promising solution to solve the false alarm problem. 

Some research papers studied the application of these techniques to improve IDSs by making them 

more accurate in recognizing malicious network traffics. Machine Learning-based IDSs was the object of a 

survey conducted by Kunal et al. [5]; they provide a comparison of some previous works based on type of 

classifier, approach and dataset used and the results obtained in each work. 

Gilmore and Haydaman [6] presented a taxonomy of available Machine Learning methods, and 

highlighted the advantages and weaknesses of each. Furthermore in order to improve intrusion detection, a 

number of interesting observations which provide insight into the application of Machine Learning 

techniques to IDSs has been revealed by [7] during an experimental analysis. 

Among the most common ideas to meet the challenges of open source IDSs is to create a filter that 

serves to minimize false alarms, as proposed in papers [8] and [9]. 

 

2. SECURITY INFORMATION AND EVENTS MANAGEMENT 

An SIEM (according to Gartner [10]) is a solution for threat detection and security incident response 

through real-time collection and historical analysis of security events from a wide variety of events and 

contextual data sources; it also supports compliance reporting and incident investigation by analyzing 

historical data from these sources. 

New types of attacks and vulnerabilities are discovered daily. Firewalls, IDS, IPS and other security 

solutions designed for malicious activity at various locations in the IT infrastructure. However, many 

solutions on the market are not effective and are not even capable of detecting unknown attacks, which may 

reflect that these solutions do not consider context. It is essential for a security system to understand the 

context of the activities to be secured. Analyze and monitor the traffic that passes through the system's 

infrastructure in order to know all the information surrounding it. This is where SIEM is useful. 

An excellent example is the Gartner reports, which present a detailed assessment of current SIEM 

systems based on multiple characteristics depending on the context [11]. Taking into account the 

characteristics and indicators is therefore an important task that must precede the selection. Authors in [12] 

suggest appropriate technological and operational requirements that they have found useful in an SIEM 

system and proposes a two-phase evaluation process to measure the compliance and applicability of an 

SIEM. 

The determining characteristics of an SIEM are described below. The features described are basic 

features covered by the majority of commercial and open source SIEM systems: Data collection, 

Normalization and categorization, Notifications, Correlation, Visualization, Prioritization, Reporting and 

Workflows. 

Podzins and Romanovs [13] present the advantages and disadvantages of SIEM. Among the main 

problems of deployment of the SIEM solution presented in this article are the following: 

• The need for a high level of maintenance to investigate alerts and optimize SIEM 

(correction of "false positives") will quickly become overwhelming if care is not taken. 

• SIEM will not provide complete information without other security solutions such as 

firewalls, IPS / IDS and other security solutions. 

 

2.1. Commercial SIEMs 

Commercial SIEMs offer full features. In addition to a SIEM having pre-integrated intrusion 

detection, vulnerability analysis and behavior-based monitoring system capabilities, the majority of these 

systems measure events based on the number of events received per second (EPS). 

Large companies only trust commercial systems, never thinking that some systems development 

researchers consider flaws found in commercial systems in the development of open source systems. We can 

get along with the study made by [14] which provide a comparison study of some commercial SIEMs such as 

Splunk (this one is the leader since 2012, according to Gartner Magic Quadrant), QRadar, LogRhythm and 

ArcSight Enterprise Security Manager (ESM) according to the following criteria: 

Real-time monitoring, Threat intelligence, Behavior profiling, Data and user monitoring, 

Application monitoring, Analytics, Log management and reporting, Deployment/Support Simplicity. 

Another aspect that many companies are targeting when using commercial systems is compliance 

with privacy laws such as GDPR (General Data Protection Regulation), CNIL (Commission Nationale 

Informatique et Liberté), etc. However, most high-performance SIEM systems are very expensive, so few 

companies have the capacity to use them. Moreover, the implementation of an open source system with 

similar features is a challenge [18]. 
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In addition, Son and Kwon [15] finds that commercial SIEMs often have limited flexibility for 

optimization. Flexibility allows easy adaptation to the conditions and environment. Maintenance also plays 

an important role in this context. Developing one's own SIEM can be a flexible and less expensive solution. 

 

2.2. Open Source SIEMs 

Open source SIEMs are many, and of different levels. In this paper, we cite those that are considered 

the most effective in terms of performance in intrusion detection. These are Security Onion, Graylog, but also 

ELK (Elasticsearch, Logstash and Kibana) [16], according to Gantner [17]. There is also OSSIM which is 

among the most popular open source SIEMs and uses many open source tools, small and large, to achieve the 

desired feature. However, this is not a cure for all kinds of threats [18]. 

Authors in Ref. [19] analyze and compares tested SIEMs solutions (OSSIM, ELK Stack, Splunk 

Free and Graylog), their features and their compliance with GDPR. In this work, four SIEMs were analyzed 

and, based on the results obtained from the tests, systematized in the two tables presented, it was concluded 

that the OSSIM and Splunk Free solutions are not scalable, so that the choice for the implementation of the 

prototype is between ELK Stack and Graylog. The two chosen SIEMs take into consideration the legal 

requirements of the GDPR, such as the anonymisation and pseudo-anonymisation of sensitive data, the 

retention time of the "logs", their encryption and their protection. 

ELK Stack therefore has a feature that allows the pseudo-anonymisation of data, which is one of the 

fundamental requirements for acting in accordance with the GDPR. In addition, Graylog makes it possible to 

restrict user access to certain information. 

 

2.3. ELK as a SIEM 

 ELK is a Big Data platform for log analysis and management, but also an alternative to commercial 

SIEMs. ELK is chosen among the 12 SIEM solutions presented by Gartner. It is an extremely popular log 

management and analysis tool and has the advantage of being free and open source. A large community is 

approaching Open Source products. In Ref. [20], the results of the SIEM evaluation tests performed by these 

authors show that performance and flexibility are not necessarily linked to commercial SIEM. Even so, there 

are difficulties related to commercial IDSs. Juniper, Palo Alto and Check Point are the leading commercial 

IDS/IPS on the market, a survey was conducted to evaluate their detection capabilities using three datasets, 

the results obtained show that the detected attacks do not exceed 50% of all attacks [21]. 

Therefore, it is better to use an open source SIEM, which will allow more freedom on the 

modification or integration of new features if necessary. These integrations are often necessary to fill the 

gaps in feature often missing in open source solutions. 

To use ELK as a security tool, [22] proposed to combine intrusion detection systems with Machine 

Learning techniques for intrusion detection and network security alerting using Elasticsearch as the core for 

data storage. For this purpose, some ML-jobs have been integrated into the ELK. 

On other hand, [23] provide a survey on intrusion detection using Deep Learning technique and how a Deep 

Learning model could be integrated into the ELK Stack. 

 

3. INTRUSION DETECTION SYSTEMS 

Intrusion Detection Systems (IDS) are security tools that aim to defend a system, execute 

countermeasures or generate alerts to an entity capable of performing appropriate actions, when an attack 

occurs [24]. The notions SIEM and IDS are strongly linked. SIEMs have been designed for the first time to 

reduce the number of False Positives generated by Intrusion Detection Systems (IDS). 

These systems could also be focused on a variety of areas. Some IDSs act as advanced firewalls and 

detect attacks on network entrances, others could monitor the network internally to catch intruders, or even 

collect information about the entire network for central analysis. Most of these systems have a similar 

structure and set of features [25], as seen in Figure 1. 

 

3.1. Data Source 

There are two types of detection: 

- Host-based Intrusion Detection (HIDS): Monitors the characteristics of a single host and the events 

occurring in that host to detect suspicious activity. 

- Network based Intrusion Detection (NIDS): Monitors network traffic for particular network segments 

or devices and analyzes the network. 

These two types can be combined to find a Hybrid- based Intrusion Detection, which is the 

combination of HIDS and NIDS. HIDSs and NIDSs are generally complementary in a malicious activity 

detection system. 

 



IJEEI ISSN: 2089-3272  

Machine Learning-based Intrusion Detection System… (Fatimetou A. V. et al) 

777 

3.2. Detection Methods 

Intrusion detection systems can be classified under four methods: 

- Signature-based Intrusion Detection: It is a methodology for detecting hosts and malicious network 

activity based on known malicious patterns or sequences. 

- Anomaly-based Intrusion Detection: Anomaly-based detection shows abnormal or anomalous system 

behavior. It creates the profile of normal activities, if the normal activity exceeds the given threshold, 

it is considered as an intrusion. Any deviation from the threshold, gives the abnormal behavior. 

- Hybrid-based Intrusion Detection: These systems typically use signature-based detection for normal 

traffic. It is a combination of the two approaches above (Signature-based and Anomaly-based) to avoid 

the disadvantages and to integrate the advantages. 

- Protocol-based Intrusion Detection: It is a method for monitoring the protocols used by the system 

while performing state and dynamic behavior analysis and applying the legal use of the protocol. 

 

3.3. Structure 

- Centralized (or monomod): Single-mode IDSs are deployed separately in stand-alone mode and not all 

devices/applications communicate with each other. 

- Distributed: multiple instances (sensors) of cooperative IDS that are configured and controlled by a 

centralized IDS server. 

 

3.4. Response Type 

- Active: Active IDS is known as an intrusion prevention system (IPS) [26]. 

- Passive: It can generate or log alerts in a file only after an anomaly has been identified [27]. 

 

3.5. Frequency usage 

- Real Time: Real-time systems detect abnormal behavior as it occurs. 

- Offline: these systems process recorded attack data sets. 

 

 
Figure 1. Intrusion Detection Systems Taxonomy 

 

4. OPEN SOURCE IDS 

  For this study, we selected the most commonly used IDSs such as Snort, Zeek and Suricata as NIDS 

(Network-based IDS) and OSSEC as HIDS (Host-based IDS). 

 

4.1. Snort 

Snort [28] is an open source intrusion detection and prevention tool. It is a single process, which 

means that a single job can be run in a session without interruption. Snort uses only intrusion detection based 

on user signatures and the community maintains the rules. It tries to match each packet it receives with a set 

of rules defined by the Snort configuration (rules can be specified to detect certain contents in the packet 

payload or other characteristics found in packet headers). Snort is rule-based, when a rule is compared to a 

packet, Snort can take actions such as Alert, Log packet, Ignore packet and Drop packet. Snort has managed 

to be the most popular IDS in various aspects thanks to its scalability. However, it still generates a high 

number of False-Positive alerts. It is unable to detect unknown [29]. A solution named SNIPER [30] using 

the "few-shot learning" method to minimize the FP rate can be associated with Snort to solve this problem. 

 

4.2. Suricata 

  Just like Snort, Suricata [31] is a free and open source intrusion detection and prevention tool, it 

supports additional features such as Multi-Process Analysis, which provides distributed analysis of large 

volumes of data. The list of additional features is quite long. Suricata also supports automatic protocol 
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detection for specific protocols on all ports. This feature limits the amount of configuration required for the 

solution to perform basic features. The contributions to this NIDS are limited, there is [32] who has designed 

a framework to use Suricata rules as official rules rather than implementing independent preprocessors or 

detection engines. By this design, it is possible to implement state analysis methods by defining state rules 

without major modification of the plugin. 

 

4.3. Zeek (Formally "Bro") 

  Zeek [33] is an open source NIDS that uses behavioral analysis to detect a network anomaly. It 

allows network administrators to perform incident response, forensic analysis, file extraction and hashing. 

Zeek is an advanced tool that captures metadata about network activity and then provides an interpreter to 

understand the activity [34]. It supports a wide range of inbound traffic analysis, even outside the security 

domain, including troubleshooting and performance measurement. There are many significant advantages to 

using Zeek, for example, it efficiently captures data from Gbps networks and can operate very efficiently in a 

high-speed environment. It is well known for its flexibility to customize feature. However, it has some 

limitations such as the difficulty of deployment [35]. 

 

4.4. OSSEC 

  OSSEC [36] is an open source HIDS whose response type is Active that uses both hybrid anomaly 

detection methodologies. It is capable of operating system log analysis, integrity checking, Windows registry 

monitoring, active response and real-time alerts. It enables multi-system monitoring due to its centralized and 

multi-platform architecture. The IDS Log Analysis Engine is capable of correlating and analyzing logs from 

multiple hosts. The implementation of this IDS is being studied in open source platform development 

communities and has been considered in Wazuh [37], which can be considered as an enhanced extension. 

Smart SIEM [20] combines ELK with Snort, Bro and OSSEC, it is a good way to take advantage of a 100% 

open source SIEM based on a Big Data platform and intrusion detection systems, which are ranked among 

the most powerful open source IDSs. On the other hand, the integration of these IDSs as is, without 

addressing their failures (false alarms, memory consumption, etc.) is to be discussed. 

 

5. MACHINE LEARNING-based IDS 

  In SIEM and IDS, in general, two types of Machine Learning algorithms are used: Supervised 

classification for abuse detection and Non-supervised outlier/novelty classification for anomaly detection 

[38]. Machine Learning algorithms are starting to be used more and more to improve and make IDSs flexible. 

As quoted by [39], the commonly algorithms integrated with detection systems: 

Artificial Neural Network (ANN), Support Vector Machine (SVM), K-Nearst Neighbor (KNN), Naïve 

Bayes, Logistic regression, Decision tree, K-means, Deep Brief Network (DBN), Deep Neural Network 

(DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Generative Adversarial 

Network (GAN), Restricted Boltzmann Machine (RBM), Auto Encoder. 

  Authors in [40] propose a NIDS based on Fuzzy-Genetic and Genetic Algorithm to efficiently detect 

various types of network intrusions. On the other hand, problems and challenges related to Machine Learning 

for the detection and prevention of network attacks are discussed in [41]. Therefore, it was discovered that 

Machine Learning techniques play an important role in security area, and that these techniques have the 

potential to cause a low false alarm rate while providing a high detection rate, these are what the majority of 

Open Source systems need. 

  Several works use Machine Learning and Data Mining techniques to maximize the efficiency of 

intrusion identification after generating data using Snort. Attack detection is complementary to Snort, as long 

as Snort only detects known attacks. Suthaharan [42] proposed advanced rules for Snort, designed to detect 

new attacks and reduce false positives rate, to achieve this purpose. The test of this method was achieved 

using a Data Mining package named "Weka", the used algorithms are: KNN, Random Forest, ID3, Adaboost, 

Multi-Layer Perceptron MLP, Naïve Bayes, Quadratic Discriminant Analysis QDA and j48 with CICIDS 

dataset. 

  In the context of high speed networks, Ref. [43] show that, Snort priorities of true positive traffic 

can be approximated in real-time by a decision tree classifier, using the information of easily extracted 

features. He executed Snort on all the ISCX dataset, extracted all packets generating and triggering Snort 

alerts, then, he mapped between these packets and their flows in the ISCX dataset and label different alerts 

based on the ISCX labeled flows. By the aforementioned steps, he constructed a labeled IDS dataset that 

contain 7779 alerts. To make these tasks, he used several tools include TCPReplay and TCPDump. Features 

extracted were protocol, source IP, source port, destination IP and destination port. Afterwards the Decision 

Tree model is applied to Dataset. He obtained an accuracy of 99%, while avoiding its false alerts, and being 

able to run in real-time. 
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  A hybrid NIDS proposed by authors in Ref. [44] to maximize the effectiveness in identifying attacks 

by integrating the Network Traffic Anomaly Detection (NETAD) [45] as an anomaly-based IDS with 

SNORT. Afterwards, k-means and CART algorithms to classify normal and abnormal traffics. Then, the 

proposed hybrid IDS is evaluated using KDD Cup Dataset. 

  Another contribution to Snort is a new plug-in [46] developed to address false alarm problems. 

Three datasets (NSA, DARPA and NSL-KDD) were selected to conduct performance experiments on 

Machine Learning algorithms. The evaluation environment for the experiment was built and consisted of a 

configuration and data pre-processing using Weka. Then, a set of high-performance Machine Learning 

algorithms was selected based on the results of previous research and guidelines: Support Vector Machine 

(SVM), Decision Trees (DT), Fuzzy Logic, BayesNet and NaiveBayes. The best result was obtained using 

SVM optimized with a False Positive Rate equal to 8.6% and a False Negative Rate equal to 2.2%. 

  Some authors believe that reducing the amount of incoming data could help reduce false alarms, as 

the idea evoked by [47]. The idea of Ref. [47] is to develop a model to reduce the amount of data to be 

processed by IDS, using a flow-based approach using Bro IDS based on some algorithms available on Weka 

library such as; J48, Random Tree, Rep Tree (Reduced-error pruning Tree), BF Tree (Best-First tree), PART, 

Jrib (JRepeated Incremental Pruning), DTNB (Decision Table Naïve Bayes) for classification. This approach 

has generated a significant number of false positive alarms. This indicates (according to the author of this 

paper) that for detection purposes, it is difficult to make a complete behavior of malicious activities from 

limited data and flow level.  

  On the other hand, Gustavsson [48] uses six supervised Machine Learning algorithms (Support 

Vector Machines SVM, Naive Bayes NB, Quadratic Discriminant Analysis QDA, Artificial Neural Networks 

ANN, Decision Tree DT and Random Forest RF) on Zeek logs to improve malicious traffic detection, 

templates and scripts have been created to extract the necessary feature using a dataset labeled. 

  Another hybrid NIDS was proposed by [49] to detect attacks in the network by monitoring network 

traffic. This NIDS aims to detect and stop attacks in real time impairing the security of the LAN, it uses 

Suricata as signature-based detection to discover known attacks, and the Isolation Forest algorithm (an 

unsupervised Machine Learning algorithm) to detect a network anomaly. The authors of this paper believe 

that by applying Suricata before the Isolation Forest algorithm, the latter should only detect unknown attacks.  

Another contribution to Suricata is presented in [50], which describes a project called OPNids integrates 

Suricata with the "DragonFly" Machine Learning engine, which uses a continuous data analysis model to 

ingest Suricata's line-rate network data and help make decisions. There is a commercial version of OPNids 

under development. 

  The work on improving OSSEC using Machine Learning is not much. As a contribution to OSSEC, 

there is [51], which provides a User Behavior Analysis based OSSEC using a Naive Bayes algorithm. The 

paper use OSSEC as a HIDS for monitoring of user shell commands and detects intrusion based on those 

commands. The detection system is based on Naive Bayes model. This solution detect intrusions with an 

accuracy of 69%. They used UNIX-User to train their model. 

  Additionally, a recent IDS [52] has scored significant points of effectiveness in terms of attack 

detection and false alarm reduction, which has been compared with Snort, the proposed IDS is called 

"INsIDES" and uses Machine Learning to achieve more effective attack detection than Snort. The proposed 

IDS is compared to Snort using the new UNSW-NB15 dataset. The results of this comparison show a 

detection rate of 98.11% and a false alarm rate of 8.57% for INsIDES, while Snort has a detection rate of 

2.43% and a false alarm rate of 30.66%, showing that traditional IDSs can integrate Machine Learning 

techniques well. However, this IDS does not have the ability to detect unknown attacks. 

  Table 1 shows some a summary of works that contributes to open source IDSs using Machine 

Learning techniques with some results. For propositions that provide more than one result, we have selected 

the highest accuracy and precision for each. 

  Other IDS solutions were provided in different context, some papers use the context of IoT such as 

the papers [8], [53] and [54]. Ref. [54] examines the possibilities of using Machine Learning algorithms to 

protect the IoT against DoS attacks. Classifiers are the subject of an in-depth study that can advance the 

development of anomaly-based intrusion detection systems. Authors in [54] place particular emphasis on the 

evaluation of the performance of supervised ML algorithms, they find that the use of unsupervised ML can 

be more efficient, so they tend to evaluate the performance of unsupervised ML algorithms for the detection 

of intrusions in the IoT will be taken into account in their future work. 

  In this regard, Naukarkar and Hande [55] proposed an IDS model using supervised Machine 

Learning approach. The proposed approach identify the attack by analyzing information from the KDD Cup 

dataset. It use Naive Gaussian Bayes algorithm to classify the traffic data generated. The NSL-KDD and 

UNSWNB15 dataset were used to assess the efficiency and effectiveness of an intrusion detection approach 

based on Machine Learning algorithms using a Data Mining tool [56]. 
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Table 1. Contributions to traditional IDSs using Machine Learning 
 

Paper 

Journal, 

Conference., 

Thesis, 

Project 

 

Detection 

Type 

 

Detection 

Method 

 

Proposition 

 

ML 

Techniques 

 

Datasets 
 

Accuracy 
 

Precision 

 

 

[42] 

 

 

Journal 

 

 

NIDS 

 

 

Anomaly-

based 

 

Developed 

advanced rules for 

Snort 

KNN, RF, 

ID3, 

Adaboost, 

MLP, 

NaiveBayes, 

QDA, J48 

 

 

CICIDS 

 
 

N/A 

 
 

98% 

 

[43] 

 

Journal 

 

NIDS 

Anomaly-

based 

Real-time attack 

detection on high-

speed traffic 

 

Decision Tree 

 

ISCX 
 

99.3% 
 

98.45% 

 

[44] 

 

Journal 

 

NIDS 

 

Hybrid-

based 

Effective Intrusion 

Identification and 

False Alarm 

Elimination 

 

K-means, 

Decision Tree 

 

KDD Cup 99 
 

99.41% 
 

99.40% 

 

[46] 

 

Journal 

 

NIDS 

 

Anomaly-

based 

Snort False Alarm 

Reduction Plug-in 

SVM, DT, 

Fuzzy Logic, 

BayesNet, 

NaiveBayes 

NSA, 

DARPA, 

NSL-KDD 

 
95.6% 

 
N/A 

 

 

[47] 

 

 

Journal 

 

 

NIDS 

 

 

Anomaly-

based 

Develop a model 

to reduce the 

amount of data to 

be processed 

through intrusion 

detection 

J48, Random 

Tree, Rep 

Tree, BF 

Tree, PART, 

Jrib, DTNB 

 

ISOT, CTU-

50, CTU-51, 

CTU-52, 

CTU-53 

 
 

N/A 

 
 

66% 

 

[48] 

 

Thesis 

 

NIDS 

 

Anomaly-

based 

 

Create templates 

and scripts to 

improve traffic 

detection 

SVM, NB, 

QDA, ANN, 

DT et RF 

 

CICIDS2017 
 

99.16% 
 

N/A 

 

[49] 

 

Conference 

 

NIDS 

 

Hybrid-

based 

Design of hybrid 

IDS combining 

Suricata with 

Isolation Forest 

 

Isolation 

Forest 

 

N/A 
 

N/A 
 

N/A 

 

[50] 

 

Project 

 

NIDS 

 

Signature-

based 

Help improve 

incident response 

and threat-hunting 

activities 

 

Dragonfly 

 

N/A 
 

N/A 
 

N/A 

 

[51] 

 

Project 

 

HIDS 

 

Hybrid-

based 

 

Implement User 

Behavior Analysis 

on cloud 

infrastructures 

 

Naive Bayes 

 

UNIX-User 
 

69.1% 
 

78% 

 
            Works on Snort                      Works on Zeek (Bro)                             Works on Suricata                       Works on OSSEC 

 

  

  Most of the previous research is limited to the supervised learning. The unsupervised learning is 

little used compared to the supervised learning; the cause of this comes down to some challenges. This type 

of learning was used by [57] through the Auto-Encoder algorithm. The proposed framework was tested using 

the CICIDS2017. 

  However, whatever the type of learning used for the detection, a very important step must be part of 

the creation of IDS is the Feature Selection. Feature selection aims to select the most relevant features and 

eliminate the other features, which reduces dimensionality and model learning time and improves detection 

results. Features selection methods are classified into three major categories, Filter, Wrapper, and Embedded 

[58]. 

  Kurniabudi et al. [59] use Information Gain (which is a Filter-based feature selection method) to 

select relevant features, they implements five models to evaluate its performance, namely Random Forest, 

Bayes Net, Random Tree, Naive Bayes and J48. To test this approach, authors use CICIDS-2017 dataset. 

They obtained good results in terms of accuracy and execution time. The best models were Random Forest 

with an accuracy of 99.86% and 22 features and J48 with an accuracy of 99.87% and 52 features. 

  D. Stiawan et al [60] introduced an approach for constructing ensemble IDS using six ranked feature 

selection techniques, namely, Information Gain, Gain Ratio, Symmetrical Uncertainty, Relief-F, One-R and 

Chi-Square ensemble with four classifiers such as Bayesian Network, Naïve Bayesian, J48 and SOM, and 

validated using Hold-up, K-fold approaches. Experimental results were obtained on Weka using the ITD-

UTM dataset. The highest accuracy was 85.2593% obtained using Bayesian Network and Symmetrical 

Uncertainty with 10 features. 
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6. CONCLUSION  

The aim of this paper is to present a study on open source IDSs, emphasizing their strengths and 

weaknesses. Snort, Suricata, Zeek and OSSEC IDSs were discussed. 

Some works that provided contributions to improve these open source IDSs were also presented. 

Most of the proposed solutions use supervised Machine Learning algorithms, and find that they tends to 

make the open source IDSs more efficient in terms of the accuracy of detection and the minimization of false 

alarms. Existing works that propose new ideas to improve Snort, Suricata, Zeek and OSSEC and the results 

they have achieved by integrating Machine Learning techniques in these IDS are presented. 

Regarding SIEM, a solution like ELK Stack, free, open source, scalable and recognized for its 

performance in data management and analysis as well as its ease of use, deserves to be chosen to manage the 

data generated by the IDSs. 
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