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 There are several types of cassava leaves with different characteristics, tastes, 

and nutritional content. Some people use cassava leaves as a vegetable 

ingredient for daily consumption as a source of fiber and minerals. However, 

people often have difficulty identifying the different types of cassava leaves, 

including cassava leaf variants that are locally referred to as gajah, karet, and 

mentega. This study aims to use transfer learning to identify the variant of 

cassava leaves. The Inception v3 architecture was selected to build the 

classification model. To demonstrate the superiority of transfer learning, the 

Inception v3 architecture was run with two different weights. The first weight 

was randomly initialized, while the second weight was taken from pre-trained 

weights from ImageNet. The experimental results show that the classification 

accuracy rate using the pre-trained weights reached 95.76%. This indicates that 

the classification model used in this study is promising and can be used for 

practical purposes in everyday life. 
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1. INTRODUCTION  

Cassava (Manihot sp.) leaves can be used as a vegetable in various culinary preparations. They are 

often boiled or sautéed and used as a side dish, or they can be added to soups, stews, or curries. Cassava leaves 

are rich in nutrients, including protein, fibre, vitamins, and minerals, and they are a good source of antioxidants. 

They also have some medicinal properties, as they contain compounds that may have anti-inflammatory, anti-

microbial, and anti-cancer effects. In some regions, cassava leaves are a traditional food and an important part 

of the local cuisine. Overall, cassava leaves are versatile and nutritious vegetables that can be enjoyed in many 

different ways [1-4]. 

There are several variants of cassava leaves, including (called in local names): gajah (Manihot  

esculenta var gajah), karet (Manihot glaziovii), and mentega (Manihot esculenta var mentege). These variants 

differ in their characteristics, such as their texture, taste, and nutritional content [5-7]. Gajah cassava leaves are 

large and have a tough texture, and they are often used in dishes that require long cooking times, such as soups 

and stews. On the other hand, Karet cassava leaves are softer and have a smoother texture, often used in stir-

fries or salads. Mentega cassava leaves are small and tender, and they have a buttery flavor that is prized in 

some culinary traditions. Each variant of cassava leaves has its own unique properties and culinary applications, 

and they can be used interchangeably in some recipes or combined to create new flavors and textures. Some 

examples of gajah, karet, and mentega variants of cassava leaves are presented in Figure 1. 

As can be seen in Figure 1, the different variants of cassava leaves have a high degree of similarity, 

and this can make it difficult for people to distinguish between them. They may look very similar in terms of 

their shape, size, and color, and they may also have similar nutritional content and culinary applications. This 
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can be particularly challenging for people who are not familiar with cassava leaves or who do not have much 

experience cooking with them. Without proper training or guidance, it can be hard to identify the different 

variants of cassava leaves, which can make it difficult to use them effectively in cooking or to take advantage 

of their nutritional benefits.  

 

 
Figure 1. Some cassava variants leaves: gajah (top), karet (midle), and mentega (bottom) 

Deep learning, especially transfer learning, can be used to easily classify different variants of cassava 

leaves. With the help of a pre-trained neural network and modern computer support, it is possible to accurately 

identify each variant based on its unique characteristics and features [8-13]. The transfer learning approach 

allows for the neural network to be adapted to the specific task of identifying cassava leaves, even with limited 
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training data. By training a deep learning model, such as Inception v3, on a dataset of labeled cassava leaf 

images, the model can learn to differentiate between the different variants. It can learn to recognize the texture, 

shape, and other characteristics that distinguish each variant from the others. The resulting model can then be 

used to classify new cassava leaf images with a high degree of accuracy, making it easy to identify each variant 

[14-17]. 

Research related to the classification of cassava leaves has been carried out by researchers. Lilhore et 

al. used an enhanced convolutional neural network model to classify and identify diseases on cassava leaves 

[19]. Ravi et al. also build a classifier using deep learning to do similar work [20]. Surya et al. also detected 

cassava leaf disease using a convolutional neural network [21]. Similarly, Zhong et al. also classified cassava 

leaf disease in non-balanced datasets using transformer-embedded ResNet [22]. Again, the classification of 

cassava leaf disease was also carried out by Sangbamrung using deep learning [23]. Most research related to 

cassava leaves aims to detect and classify diseases in cassava leaves. 

Research on classifying cassava leave variants using deep learning techniques is still not very 

extensive. While there have been some studies on using deep learning for plant classification in general [24-

30], the specific task of classifying different variants of cassava leaves is relatively new. One reason for this is 

that cassava leaves are not as widely used in cooking as other vegetables, so there may be less interest in 

studying them. Additionally, there may be challenges in obtaining a large dataset of labeled cassava leaf 

images, which is necessary for training deep learning models. 

The proposed study aims to address a significant research gap by focusing on variant classification. 

While extensive research has been conducted on disease detection in cassava leaves, there has been a notable 

lack of investigation into the classification of the variants. This study aims to fill this crucial gap in knowledge. 

 

2. RESEARCH METHOD  

In this section, Inception v3 will be discussed as an architecture that will be used in the classification 

of cassava leaf variants. In addition, the preparation of data sets for experiments will also be presented. 

Furthermore, the use of image augmentation will also be discussed. Experiment details will also be provided. 

Finally, how to measure performance will be presented in the closing of this section.  

 

2.1. Deep Learning and Transfer Learning   

Deep learning is a subfield of machine learning that focuses on training artificial neural networks with 

multiple layers to learn and extract hierarchical representations of data. These networks, called deep neural 

networks, are capable of automatically learning features from raw input data, which makes them highly 

effective in tasks such as image and speech recognition, natural language processing, and more. A technique 

in deep learning where knowledge gained from training a model on one task is transferred and applied to a 

different but related task is called transfer learning. Instead of training a model from scratch, transfer learning 

leverages the learned representations from a pre-trained model and adapts them to the target task with a smaller 

dataset. This approach can significantly reduce the training time and resource requirements, especially when 

labeled data for the target task is limited. Transfer learning is widely used to achieve better performance in 

various domains and has become a common practice in deep learning applications. Some popular deep learning 

architectures are available such as VGG-16, VGG-19, and Resnet 50. In this study, Inception v3 is utilized to 

classify the variant of cassava leaves. 

 

2.2. Inception v3  

Inception v3 is a deep neural network architecture used for image classification tasks. It was 

introduced by Google in 2015 and is an extension of the original Inception architecture. The main idea behind 

Inception v3 is to create a deep neural network that is both accurate and efficient [31-34]. 

The Inception v3 architecture uses a combination of convolutional layers, pooling layers, and 

inception modules. Inception modules are a combination of convolutional layers of different sizes and pooling 

operations that are designed to extract features from the input image at different scales. This allows the network 

to capture features at different levels of granularity, which can improve the accuracy of the model. 

One of the key features of Inception v3 is the use of batch normalization. Batch normalization is a 

technique that helps to address the problem of internal covariate shift, which can occur during the training of 

deep neural networks. By normalizing the input to each layer, batch normalization can help to stabilize the 

training process and improve the accuracy of the model. 

Another important feature of Inception v3 is its use of auxiliary classifiers. These are small classifiers 

that are added to intermediate layers of the network and are trained to predict the class labels of the input 

images. The output of these classifiers is then used to provide additional feedback to the main classifier, which 

can help to improve the accuracy of the model. 
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2.3. Dataset and Image Augmentation  

In this study, the dataset was obtained using a mobile phone camera. The image dataset obtained from 

cassava plantations for each class (variant) is 118 images. This number is relatively small for learning using 

deep learning. Fortunately, nowadays there are image augmentation methods [35-38].  

Image augmentation is a technique used in machine learning to create variations in training data by 

transforming existing images. The goal is to increase the amount of training data and existing image variations, 

to improve model performance in classifying or detecting. 

In the case of cassava leaf variant classification with a limited number of images, image augmentation 

can help increase the amount of data training by generating new images derived from transformations of 

existing images, such as image rotation, shift, zoom, and stop. This can help overcome the problem of 

overfitting the model, where the model learns too much from the existing patterns in the training data and 

cannot generalize well to the new test data. 

In classifying cassava leaf variants, image augmentation can help increase the variety of cassava leaf 

images by performing image transformations such as horizontal or vertical flip, zoom in or zoom out, and 

image rotation. With more image variations, the model will be better at studying the characteristics of each 

cassava leaf variant and recognizing differences between one cassava leaf variant and another. Some of the 

results of image augmentation operations on an image of cassava leaves can be seen in Figure 2. 

 

 
Figure 2. A number of image augmentations on a single image 
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2.4. Experiment settings  

The following is a detailed description of the experiment step-by-step to classify cassava leaves 

variant using the Inception v3 model with image augmentation: 

Firstly, the images are divided into ten folds and subsequently stratified cross-validation is applied 

[39-40]. In each sub-test, the images are divided into approximately 90% training and 10% validation, i.e., 9 

and 1 folds, respectively. The training folds will be used to train the model, while the test fold will be used to 

evaluate the accuracy of the model. The splitting between the training and the testing folds in stratified cross-

validation is described in Figure 3. Then, we perform data augmentation on the images in the training folder 

using techniques such as flipping, zooming, rotation, and more.  

 

 
Figure 3. Stratified 10-Cross-Validation 

 

Secondly, we employ Inception v3, a pre-trained deep learning model, as the base for the classification 

model. We add a few layers on top of it to create a custom model for cassava leaf classification. Then, we 

freeze the Inception v3 layers and compile the model using a categorical cross-entropy loss function.  

Thirdly, the model is subsequently trained using the augmented training data set. We set the number 

of epochs and batch size based on the available hardware resources. By monitoring the model's accuracy and 

loss during training, we identify the point where it starts to overfit the training data.  

Finally, test the model on new, unseen cassava leaves images to see how well it generalizes to new 

data. Use the model to classify the variant of the cassava leaves and compare the results to the actual labels to 

evaluate the model's accuracy. 

 

2.5. Performance Evaluation   

In supervised machine learning, a confusion matrix is a useful tool for evaluating the performance of 

a classification model, especially in the case of multi-class classification like cassava leaves variant 

classification, which has three classes: gajah, karet, and mentega. 

A confusion matrix is a table that summarizes the performance of the classification model by 

comparing the actual class labels of the samples to the predicted class labels. In the case of cassava leaves 

variant classification, the confusion matrix will have three rows and three columns, corresponding to the three 

classes: gajah, karet, and mentega. The diagonal elements of the matrix represent the correctly classified 

samples, while the off-diagonal elements represent the misclassified samples. 
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The accuracy of the classification model can be calculated using the values in the confusion matrix. 

The accuracy is the ratio of the correctly classified samples to the total number of samples. It is calculated as 

follows: 

𝑎 =
𝑡

𝑛
× 100%      (Eq. 1)  

where  

a : accuracy,  

t  : number of correct predictions,  

n : number of predictions  

 

Moreover, precision, recall, and F1 score are also commonly used in classification tasks to evaluate the 

effectiveness of a model in predicting the correct class labels.  

 

Precision is a measure of the accuracy of positive predictions made by a model. It calculates the 

proportion of true positive predictions (correctly predicted positive instances) out of the total instances 

predicted as positive (the sum of true positives and false positives). In other words, precision focuses on the 

model's ability to avoid false positives. A high precision value indicates that the model has a low rate of falsely 

predicting positive instances. 

 

Recall, also known as sensitivity or true positive rate, measures the model's ability to correctly identify 

positive instances out of all the actual positive instances in the dataset. It calculates the proportion of true 

positive predictions to the sum of true positives and false negatives (positive instances incorrectly classified as 

negative). Recall focuses on the model's ability to capture all positive instances without missing any. A high 

recall value indicates that the model has a low rate of falsely predicting negative instances. 

 

The F1 score is a single metric that combines both precision and recall into a balanced evaluation of 

a model's performance. It is the harmonic mean of precision and recall and provides an overall measure of a 

model's accuracy. The F1 score is calculated using the formula:  

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
= 2 ∗ precision ∗ recall 

precision + recall
                                                         (Eq. 2) 

 

The F1 score ranges from 0 to 1, where a value of 1 represents perfect precision and recall, while 0 indicates 

the worst performance. 

 

3. RESULTS AND DISCUSSION  

3.1. Results  

The cassava leaf variant classification experiment was carried out in two schemes with the difference 

being the weight settings in the inception v3 architecture. The first scheme uses randomly initialized weights. 

The results of the first scheme experiment are presented in Table 1 column randomly initialization while the 

second scheme which employs weights taken from pre-trained models from ImageNet are listed in the column 

pre-trained from ImageNet. 

 

Table 1. Classification Accuracy for randomly and pre-trained weights 

Fold test  Randomly Initialization Pre-trained from ImageNet 

1 33.33 91.67 

2 61.11 94.44 

3 33.33 97.22 

4 36.11 100.00 

5 34.29 100.00 

6 34.29 97.14 

7 34.29 94.29 

8 34.29 91.43 

9 31.43 100.00 

10 42.86 91.43 

Average 37.53 95.76 
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We also record the detailed results of the cumulative classification for further analysis in the form of 

a confusion matrix. The confusion matrices for the first and second schemes are presented in Figures 4 and 5, 

respectively. In addition, the computation time for each fold is shown in Table 2. 

 

 
Figure 4. Confusion Matrix for Random-Initialization Weights 

 

 

Figure 5. Confusion Matrix for Pre-trained Weights 

 

Table 2. The Computation Time forEach Fold 

Fold Training Testing 

1 25.02 2.08 

2 15.58 1.62 

3 16.05 1.53 

4 15.96 1.54 

5 16.23 1.99 

6 15.52 1.51 

7 15.87 1.46 

8 15.79 1.50 

9 15.60 1.54 

10 16.09 1.56 

Total 167.72 16.33 
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3.2. Discussions  

The experiments aimed to classify three different types of cassava leaves, namely gajah, karet, and 

mentega, using an image classification algorithm. The experiment used two different approaches to build the 

model: using a pre-trained model with weights from ImageNet (Inception v3), and random initialization. The 

results of the experiment showed that the pre-trained model with Inception v3 achieved a much higher accuracy 

rate of 95.76% compared to random initialization, which only achieved an accuracy rate of 37.53%. This 

indicates that using a pre-trained model with weights from ImageNet can significantly improve the 

performance of the image classification algorithm for cassava leaf classification. The reason why the pre-

trained model performed better is because it had already been trained on a large dataset of images, including 

many different types of plants and leaves, including cassava leaves. This means that the model already had a 

good understanding of the features that distinguish cassava leaves from other types of leaves. By using the pre-

trained weights from ImageNet, the model could leverage this prior knowledge and adapt it to the specific task 

of cassava leaf classification. On the other hand, random initialization involves starting with a blank slate and 

training the model from scratch. This approach can work well for some tasks, but it requires a much larger 

dataset and more training time to achieve the same level of performance as a pre-trained model. 

The experimental results of Tables 1 and 2 are clarified by Figures 4 and 5. In Figure 4, the confusion 

matrix has an irregular heatmap pattern where the classification results look random. In contrast, the confusion 

matrix in Figure 5 is very regular where the main diagonal has large values and strong colors indicating that a 

lot of correct predictions occur. According to the matrix, there are three labels for cassava leaves: gajah, karet, 

and mentega. The first row indicates that out of 118 cassava leaves labeled as gajah, 115 were correctly 

identified as gajah, 1 was misclassified as karet, and 2 were misclassified as mentega. The second row indicates 

that out of 118 cassava leaves labeled as karet, 110 were correctly identified as karet, 6 were misclassified as 

gajah, and 2 were misclassified as mentega. Finally, the third row indicates that out of 118 cassava leaves 

labeled as mentega, 114 were correctly identified as mentega, 1 was misclassified as gajah, and 3 were 

misclassified as karet. 

From the above values, the classification performance, besides accuracy, can be evaluated using the 

F1 score, which can be calculated using equation (2). For the gajah class, the F1 score is approximately 0.958. 

This indicates that the model achieved a balanced performance in correctly identifying gajah leaf variants, 

considering both precision and recall. A higher F1 score implies that the model had a good balance between 

identifying true positive gajah samples and minimizing false positives and false negatives. For the karet class, 

the F1 score is approximately 0.949. This suggests that the model achieved a relatively good overall 

performance in correctly classifying karet leaf variants, with a balanced consideration of precision and recall. 

The F1 score demonstrates the model's ability to effectively identify true positive karet samples while 

minimizing false positives and false negatives. For the mentega class, the F1 score is approximately 0.965. 

This indicates that the model exhibited a strong performance in correctly identifying "butter" leaf variants, 

considering both precision and recall. The high F1 score suggests that the model was effective in accurately 

recognizing true positive mentega samples while minimizing false positives and false negatives. 

According to the information provided in Table 2, the computational time for each image during the 

training and testing phases was recorded as 0.053s and 0.046s, respectively. The computational time was 

obtained based on the fact that the dataset used in this study consisted of 354 images, and the testing process 

was performed using a 10-fold cross-validation approach. These values indicate that the computational time 

for processing each image is relatively low, suggesting that the proposed method is efficient in terms of 

computational speed. Considering the context of real-time applications, the obtained computational time is still 

considered reliable. Real-time applications typically require fast processing and response times to provide 

instantaneous results. In this case, the reported computational times of 0.053s and 0.046s for training and 

testing, respectively, demonstrate that the proposed method is capable of handling the analysis of cassava leaf 

images in near real-time scenarios. By achieving such low computational times, it is likely that the proposed 

method can be effectively deployed in various real-time applications related to cassava leaf classification. 

To conclude this discussion session, we would like to compare the classification results of cassava 

leaf variants with similar classifications, although the classification goals may not be exactly the same. Several 

studies related to cassava leaf classification can be found in the literature, and some of them will be discussed 

here. 

Lilhore et al. achieved 99.3% accuracy by applying an enhanced convolutional neural network model 

to classify and identify diseases on cassava leaves. Ravi et al. also used deep learning to do similar work and 

achieved an accuracy rate of 87.08%. Surya et al. obtained an accuracy rate of 74.96% when detecting cassava 

leaf disease using a convolutional neural network. Zhong et al. achieved an accuracy rate of 91.12% for cassava 

leaf disease classification in non-balanced datasets using transformer-embedded ResNet. Finally, 

Sangbamrung used deep learning to do a similar task and obtained an accuracy of 96.0%. A summary of other 

research results and our research is presented in Table 2.  
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Table 3. Research Comparison 

Researchers Goal Acc. 

Lihore et al. [19] Cassava leaf disease classification 99.3 

Ravi et al. [20] 
Cassava leaf disease classification 

87.08 

Surya et al. [21] 
Cassava leaf disease classification 

74.97 

Zhong et al. [22] 
Cassava leaf disease classification 

91.12 

Sangbamrung et al.  [23] 
Cassava leaf disease classification 

96.0 

Our works Cassava leaf variant classification 95.76 

 

As seen in Table 2, the classification results of cassava leaf variants are generally good and 

comparable to the cassava leaf classification done by other researchers. The accuracy of cassava leaf disease 

classification results can vary due to the differences in datasets and methods employed. The accuracy of disease 

identification heavily relies on the quality and diversity of the dataset used for training and evaluation. A well-

curated dataset that includes a wide range of cassava leaf diseases and their corresponding labels is crucial for 

developing accurate disease identification models. Furthermore, the methods utilized for feature extraction, 

model selection, and training procedures can significantly impact the accuracy of disease identification. 

Various techniques, such as deep learning models like CNNs or machine learning algorithms like random 

forests or support vector machines, may yield different results depending on the specific dataset and 

methodology chosen. Therefore, careful consideration of dataset quality and appropriate method selection are 

essential for achieving reliable and accurate cassava leaf disease identification results.  

The classification results of cassava leaf variant identification typically fall within an accuracy range 

that lies between the accuracy achieved in cassava leaf disease classification. The accuracy results of our 

experiment are lower than those of Lihore et al. and higher than other researchers' experiments. This difference 

is still acceptable since the two problems fundamentally belong to different problem domains. Cassava leaf 

variant classification involves distinguishing and categorizing different variations of cassava leaves based on 

visual characteristics such as shape, color, or texture. While it can be challenging, it is relatively more 

straightforward compared to cassava leaf disease classification. The latter task involves identifying specific 

diseases or abnormalities present in cassava plants, which requires recognizing subtle symptoms and patterns 

associated with various diseases. Due to the inherent differences in these problem domains, it is reasonable to 

observe variations in accuracy between cassava leaf variant and disease classifications. Despite the variances, 

both tasks contribute valuable insights to the field of cassava research and management, aiding in crop 

improvement and disease control efforts. 

To the best of our knowledge, there have been no prior studies on the classification of cassava leaf 

variants similar to ours. The achievement of 95.76% accuracy can serve as a baseline for other researchers in 

the same problem domain. Furthermore, this level of accuracy is deemed sufficient for practical applications 

in everyday scenarios. The ability to accurately classify cassava leaf variants opens up possibilities for various 

applications in the agricultural sector. The findings of this research contribute to the existing knowledge in the 

field and offer a valuable tool for researchers and practitioners alike. 

 

 

4. CONCLUSION  

The classification study of cassava leaf variants has been conducted using VGG-16 and Inception v3 

architectures, employing both random weight initialization and pre-trained weights from ImageNet. The 

highest accuracy achieved in this study was 95.76%, which was obtained using Inception v3 with weights from 

ImageNet. This indicates the superior performance of Inception v3 in accurately classifying cassava leaf 

variants compared to VGG-16. The utilization of pre-trained weights from ImageNet played a crucial role in 

enhancing the model's accuracy and efficiency. These findings suggest that Inception v3 with ImageNet 

weights is a promising approach for the classification of cassava leaf variants, paving the way for potential 

applications in crop management and agricultural research. 

For future works, there are several suggestions that can be explored. Firstly, increasing the dataset 

size could potentially improve the accuracy of the classification. Secondly, experimenting with different deep 

learning architectures or applying different pre-processing techniques can potentially yield better results. 

Additionally, the inclusion of more classes or extending the classification to include other cassava plant parts 

could also be an interesting avenue to explore. Finally, exploring the transfer learning approach using models 

trained on other similar plant datasets could also be a promising area for future research.   
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