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 Passive intermodulation (PIM) has been a serious challenge in 5G Frequency 

Division Duplexing (FDD) carrier aggregated (CA) wireless systems leading 

to the degradation of system performance. Digital cancellation techniques 

have been used to dynamically cancel the time-varying PIM resulting from 
passive nonlinearities. These techniques are usually based on Volterra-like 

behavioral models which are very complex and hard to implement. In this 

paper, a Feedforward Neural Network (FFNN)-based PIM cancellation 

scheme is proposed for PIM cancellation in a CA FDD wireless system. 
Simulation of the proposed scheme shows that the FFNN cancellation scheme 

is capable of acheving above 20-dB PIM cancellation ratio over a 30-dB input 

power range. 
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1. INTRODUCTION  

Passive Intermodulation (PIM) is a major challenge in wireless systems that use FDD Carrier Aggregation 

(CA) such as 5G-New Radio (NR) systems. CA is based on using contiguous or non-contiguous multi 

component carrier (CC) bands with the objective of increasing system capacity. The problem with transmitted 

aggregated carriers is that their interaction by a passive nonlinearity leads to the presence of passive 

intermodulation (PIM) products in the receive band which leak to the receiver via the duplexing stage. These 

PIM products result in severe interference which renders CA-FDD systems unable to provide the intended 

capacity by 5G systems [1]. For example, the technical specifications of the 3rd Generation Partnership Project 

(3GPP) for Release 12 cellular system show that Base Station (BS) radio systems can undergo severe 

performance degradation as a result of PIM in several FDD band combinations [2].  

There are several scenarios where PIM components result in degradation of system performance.  For 

example, in 5G NR systems, spectral regrowth resulting from passive nonlinearities in the receive chain of the 

Down Link (DL) of the n 25 band interferes with both Uplink (UL) n 25 and the UL n 66 bands. Another 

scenario is the interference caused by PIM of the two DL signals of the n 25 and n 66 bands as shown in Figure 

1 which results in intermodulation products in the UL n 66 and n 25 bands [2]. This interference leads to 

significant performance degradations such as high noise floor, reduced cell coverage, receiver desensitization 

or even blocked transmission.  

Several approaches have been proposed for overcoming external PIM in CA-FDD systems [2]. Among 

these, digital cancellation techniques PIM have proved to be most effective as they can dynamically model and 

cancel the time-varying PIM [2], [4]-[10]. In digital cancellation, a nonlinear behavioral model is constructed 

to characterize the passive nonlinearity. This model is then used to produce a canceling signal that removes the 

PIM components at the receiver using adaptive structures. A detailed survey of various digital cancellation 

schemes that existed in the literature were presented in [1]-[3].  
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Behavioral models of passive nonlinearities are usually based on either the Volterra model or memory 

polynomials (MP’s) which can account for memory in the PIM generation process as well as the different 

mutual delays of the transmit signals before PIM generation [4]-[11]. However, Volterra-based models are 

usually complex as the number of estimated parameters grows rapidly with the maximum considered 

nonlinearity order. Furthermore, the set of static parameters has to be extracted for each input configuration 

(input power, frequency range and step, etc.) [6]. 

Inspired by the advancements of artificial intelligence (AI) in the communication domain, numerous 

Artificial Neural Network (ANN)-based models have been investigated in the literature for behavioral 

modeling of nonlinearities in wireless systems [12]-[16]. The ANN based models have been shown to be more 

flexible than polynomial based methods such as Generalized Memory Polynomials (GMP) which require fitting 

a large number of coefficients then pruning the coefficients that have negligible effect based on the knowledge 

of the mechanisms by which nonlinear distortion is generated [16]. Thus, a GMP requires physical insight into 

the possible mechanisms that contribute to generation of nonlinear distortion to achieve an acceptable model 

fidelity.  

The ANN based models have been shown to be more flexible than polynomial based methods such as 

Generalized Memory Polynomials (GMP) which require fitting a large number of coefficients then pruning the 

coefficients that have negligible effect based on the knowledge of the mechanisms by which nonlinear 

distortion is generated. Thus, a GMP requires physical insight into the possible mechanisms that contribute to 

generation of nonlinear distortion to achieve an acceptable model fidelity. ANN-based models, on the other 

hand, can accommodate the variety of mechanisms by which nonlinear distortion is produced without having 

to increase the complexity of the model [16].  

Although significant research has been conducted on using ANN’s for modeling and predistortion of 

nonlinear PA’s as well as self-interreference cancellation in wireless systems, limited research has been done 

on using them for PIM cancellation as discussed in [2]. Jang et al. [13] described a FTDNN for modeling PIM, 

but its applicability was limited to addressing third order intermodulation products exclusively. In addition, the 

ANN model was not shown to be effective in canceling PIM products. In [12], the authors presented a PIM 

cancellation system in satellite communications using RTRLNN algorithm. The system extracts the PIM 

characteristics during a pilot phase and then the ANN model is used to cancel PIM during the on-time. The 

proposed system was shown to be effective in PIM interference cancellation in terms of improving the Bit 

Error Rate (BER) performance of a satellite system. However, the performance analysis lacked clear analysis 

of PIM power reduction.  

In principle, the choice of the type of the ANN to be used in modeling nonlinearities depends on the level 

of complexity required by the behavioral model. Both RTRLNNs and FTDNNs offer unique capabilities for 

modeling passive intermodulation distortion. RTRLNNs excel in capturing complex temporal dynamics and 

long-term dependencies, while FTDNNs are well-suited for modeling time delays and short-term memory 

effects associated with PIM. This comes at the expense of computational complexity of the ANN as FTDNN’s 

have simpler feedforward connections with time delays than the RNN especially if the time delays are relatively 

small and the network is not too deep [2]. 

 
Figure 1. PIM in 5G NR system. 

This paper proposes using a FFNN to develop a cancellation scheme for PIM components in a CA-FDD 

system. The FFNN model is used to predict PIM components when two signals from two frequency bands are 

DL 

n25 

DL 
n66 

UL 
n66 

1710 - 1780 

MHz 

1930 – 1995 

MHz 
 

2110 – 2200 

MHz 



IJEEI  ISSN: 2089-3272  

 

Passive Intermodulation Cancellation in 5G Systems (Khaled Gharaibeh) 

885 

transmitted on the same antenna in an FDD system. The predicted PIM components are then used to cancel the 

PIM components from the received signal. The contributions of this paper can be summarized by the following: 

• The paper presents a novel cancellation scheme for PIM in CA-FDD systems based on prediction of PIM 

using an FFNN, offering an alternative to the cumbersome Volterra based models. 

• The proposed scheme capable of cancelling PIM components of any nonlinear order that lie at 

intermodulation frequencies and is not limited to third order PIM products, as in the case with most 

cancellation schemes presented in the literature. 

• The proposed model is compared to other approaches presented in the literature and is shown to provide 

higher PIM cancellation in a 5 G system scenario. 

This paper is organized as follows. In Section 2, a detailed description of the mechanism by which PIM is 

generated and canceled in a CA-FDD receiver is provided. The proposed FFNN model, used to model and 

cancel the passive nonlinearity, along with its parameter estimation process is then explained. Section 3 

presents simulation results, where the FFNN-based PIM cancellation scheme is implemented in MATLAB. Its 

effectiveness in canceling PIM is assessed and compared to other approaches in the literature. Finally, a concise 

conclusion of the paper contributions and results is provided in the last section. 

 

2. RESEARCH METHOD  

2.1.  PIM Generation in CA-FDD Systems 

Figure 2 shows PIM generation process in a CA-FDD system. The DL transmitter transmits two CA signals 

centered at frequencies 𝑓1 and 𝑓2 which produce a PIM component that leak to the receiver through the duplexer. 

To analyze this scenario, let the transmitted signals be represented as complex discrete signals 𝑥1(𝑛) and 𝑥2(𝑛), 
then the received baseband UL signal can be expressed as [18]: 

 

𝑟(𝑛) = 𝑟0(𝑛) + 𝑝(𝑛) + 𝑣(𝑛)                                                      (1) 

 

where 𝑟0(𝑛) represents the uplink signal, 𝑝(𝑛) represents the PIM signal generated from the intermodulation of 

the transmitted signals 𝑥1(𝑛) and 𝑥2(𝑛) which lies in the receive band (at center frequency 𝑓𝑅𝑥), and 𝑣(𝑛) is 

additive white Gaussian noise. For a memoryless passive nonlinearity, the PIM signal 𝑝(𝑛) can be expressed as: 

 

𝑝(𝑛) = BPFfRX
{𝑦(𝑛)}                                                               (2) 

 

where 𝑦(𝑛) = 𝐹(𝑥1(𝑛), 𝑥2(𝑛)), the functional 𝐹(·) represents the nonlinear characteristics of the passive 

nonlinearity, and BPF denotes the receive filter centered at 𝑓𝑅𝑋 . Note that the intermodulation components 

generated by the term 𝐹(𝑥1(𝑛), 𝑥2(𝑛)) are located at the intermodulation frequencies 𝑓𝐼𝑀𝐷  = |± 𝑛𝑓1  ±  𝑚𝑓2|, 

where n and m are integer coefficients [2]. The absolute values of these coefficients |𝑛 + 𝑚| are known as the 

orders of the IMD products. For example, the 3rd order IM (IM3) products, such as 2𝑓2 − 𝑓1 and 2𝑓1 − 𝑓2. The 

PIM products of interest are those that lie in the receive band represented by 𝑝(𝑛), i.e. 𝑓𝐼𝑀𝐷 = 𝑓𝑅𝑋 . In principle, 

the filtered version of the output of the nonlinearity can include any of the intermodulation products that lie in a 

certain receive band and not be limited to third order PIM products. In the following sections, the PIM 

cancellation scheme considers all the orders of PIM as these may be present in the UL at higher transmit power 

levels. 

 

Figure 2. PIM generation in CA-FDD systems. 

Duplexer 

PIM 

Source 

LNA 
 

Rx 

Chain 

PA 

Tx 

Chain 

Tx 

Chain 

Power 

Combine

r 

𝑟(𝑛) = 𝑟0(𝑛) + 𝑝(𝑛) 

𝑥(𝑛) 

𝑥1(𝑛) 

𝑥2(𝑛) 

𝑟0(𝑛) 

𝑦(𝑛) 



                ISSN: 2089-3272 

IJEEI, Vol. 12, No. 4, December 2024:  883 – 894 

886 

2.2.  Modelling and Cancellation of PIM 

A PIM cancellation scheme is depicted in 0. In this scheme, the downlink transmitter transmits two 

aggregated carriers 𝑥1(𝑛) and 𝑥2(𝑛) which are centered at frequencies 𝑓1 and 𝑓2. The Uplink (UL) signal 

available at the receiver, consists of the received signal plus PIM components that leak from the transmitter as 

given in (1). To simplify the analysis, only passive nonlinearities are considered (active nonlinearities of the 

Low Noise Amplifier (LNA) and the Power Amplifier (PA) are neglected).  The PIM estimation block produces 

a behavioral model for the passive nonlinearity by comparing the transmitted signal to the output of the passive 

nonlinearity at the receiver during offline operation (training mode).  In this mode of operation, the UL received 

signal (denoted by 𝑟0(𝑛)) is absent and hence, the available signal at the receiver consists of only the leaked 

PIM signal from the transmitter 𝑟(𝑛) = 𝑝(𝑛) given in (2). The model parameters produced at the training stage 

and then used to produce a cancelling signal. The cancelling signal is expressed as 

 

𝑧𝑐(𝑛) = 𝐻(𝑥1(𝑛), 𝑥2(𝑛))                                                               (3) 

 

where 𝐻(∙) represents the behavioral model of the passive nonlinearity represented by the transformation 𝐹(∙) 

in (1).  

During online operation, the cancelling signal is fed to the receiver to cancel the PIM interreference as 

shown in 0. In this case, the received signal is 

𝑟(𝑛) = 𝑟0(𝑛) + 𝑝(𝑛)                                                                 (4) 

 

Hence, the signal at the receiver chain is  

𝑟𝑐(𝑛) = 𝑟(𝑛) − 𝑧𝑐(𝑛) = 𝑟0(𝑛) + 𝑣(𝑛)                                                (5) 

 

which consists of the received signal with PIM component cancelled. 

Note that the above approach for PIM cancellation is based on offline estimation which requires 

frequent parameter estimation as PIM products may fluctuate in time [17]. This issue can be dealt with through 

the ANN parameter estimation which will be discussed in the following section. 

 

 

Figure 3. PIM Cancellation scheme in a CA-LTE system. 
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applied to a nonlinear activation function 𝑔𝑙 while the output of the output layer is applied to a linear activation 

function 𝑔o. The purpose of the activation functions is to provide non-linearity to the neural network; as without 

the nonlinear activation function, the neural network could only compute linear mappings from inputs to outputs. 

The proposed FFNN for PIM signal estimation is based on a 4-input and 2-output structure [14] as 

shown in 0. The input to the FFNN consists of the in-phase (𝐼(𝑛)) and the quadrature components (𝑄(𝑛)) of 

the complex baseband signals 𝑥1(𝑛) and 𝑥2(𝑛) with center frequencies 𝑓1 and 𝑓2 which can be expressed as: 

 

𝑥1(𝑛)  =  𝐼1(𝑛)  +  𝑗𝑄1(𝑛)                                                               (6) 

𝑥2(𝑛)  =  𝐼2(𝑛)  +  𝑗𝑄2(𝑛)                                                               (7) 

 

The input vector 𝑋(𝑛) is given by 

𝑋(𝑛)  =  [𝐼1(𝑛), 𝑄1(𝑛), 𝐼2(𝑛), 𝑄2(𝑛) ]                                                  (8) 

 

The output of each layer can be expressed by the following equation [13]: 

𝑎𝑗
(1)

=  𝑔1(∑ 𝑤𝑗𝑖
(1)

𝑋𝑖(𝑛) +  𝑏𝑗
1𝑞

𝑖=1 )      ,  1 ≤ 𝑗 ≤ 𝑁ℎ1                                     (9) 

 

where j is the input layer neuron number, 𝑤𝑗𝑖
1 is the synaptic weights of the input layer which connect the input 

i to the neuron  j, 𝑁ℎ1
 is the number of neurons in the input layer and 𝑔1 is the activation function of the input 

layer. The output of the l-th hidden layer can be written in a similar way to (9) as: 

𝑎𝑘
(𝑙)

(𝑛) =  𝑔𝑙 (∑ 𝑤𝑘𝑗
(𝑙)

𝑎𝑗
(𝑙−1)

+  𝑏𝑘
(𝑙)𝑁ℎ𝑙−1

𝑗=1
)                                                    (10) 

 

where j represents the hidden layer neuron number l, 𝑤𝑘𝑗
𝑙  is the synaptic weights connecting the output of the 

hidden layer 𝑙 − 1 to the neuron  j in layer l , 𝑁ℎ𝑙−1
 is the number of neurons in the hidden layer 𝑙 − 1 and 𝑔𝑙 is 

the activation function of the layer. The output of the hidden layer in (10) is applied to the next layer, hence, the 

output of the FFNN is computed using a linear combination of the last hidden layer activations as: 

𝐼𝑜𝑢𝑡(𝑛) = 𝑔𝑜 (∑ 𝑤1𝑘
(𝐿+1)

𝑎𝑘
(𝐿)

+ 𝑏1
(𝐿+1)

𝑁ℎ𝐿

𝑘=1

) 

𝑄𝑜𝑢𝑡(𝑛) = 𝑔𝑜 (∑ 𝑤2𝑘
(𝐿+1)

𝑎𝑘
(𝐿)

+ 𝑏1
(𝐿+1)𝑁ℎ𝐿

𝑘=1 )                                              (11) 

where 𝑔𝑜 is the output activation function and the output of the model is 𝑝(𝑛) = 𝐼𝑜𝑢𝑡(𝑛) + 𝑗𝑄𝑜𝑢𝑡(𝑛). 

The choice of the function 𝑔𝑙 depends on the computational efficiency, convergence characteristics of the 

NN and the values that the input signal take. Therefore, Various activation functions can be used. The most 

common activation functions as the sigmoid function, hyperbolic tangent sigmoid (tanh), Rectified Linear Unit 

(ReLU) function, Leaky ReLU, Exponential Linear Unit (ELU), etc. [17]. The choice of the function depends 

on the computational efficiency, convergence characteristics of the NN and the values that the input signal take.  

In this paper, the ReLU activation function is used in the hidden layers as it provides a more effective 

training process than other functions for the problem in hand. The ReLU activation function is given by [21]: 

𝑔𝑙(𝑥) = {
𝛼𝑥 𝑥 ≤ 0
𝑥 𝑥 > 0

                                                              (12) 

For the output layer, the activation function used is the 𝑝𝑢𝑟𝑒𝑙𝑖𝑛e function which is a linear function that 

can be expressed as: 

𝑔𝑜(𝑥) = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥)  =  𝑥                                                       (13) 

 

2.4. Parameter Estimation 

The FFNN weights are developed at the training phase using backpropagation-based supervised 

learning [21]. The network uses batches of training data to minimize a cost function of the form: 

𝐸 =
1

2𝑁
∑ [(𝐼𝑜𝑢𝑡(𝑛) − 𝐼𝑜𝑢𝑡(𝑛))

2
+ (𝑄𝑜𝑢𝑡(𝑛) − �̂�𝑜𝑢𝑡(𝑛))

2
]𝑁

𝑛=1                                  (14) 

 

where 𝐼𝑜𝑢𝑡(𝑛), 𝑄𝑜𝑢𝑡(𝑛) are the IQ components of the true PIM component and 𝐼𝑜𝑢𝑡(𝑛) �̂�𝑜𝑢𝑡(𝑛) are the 

estimated IQ components of PIM signal by the FFNN. The weights connected to layer 𝑙 are updated as follows: 

𝑤𝑗𝑖
𝑙   (𝑛 +  1)  =  𝑤𝑗𝑖

𝑙  (𝑛)  +  𝛥𝑤𝑗𝑖
𝑙  (𝑛)                                                 (15) 
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where 𝑤𝑗𝑖
𝑙  (𝑛) is the weight at time 𝑛 and the adjustment term  𝛥𝑤𝑗𝑖

𝑙  (𝑛) is computed by Adaptive 

Moment Estimation (ADAM) [16] in which the cost function is iteratively minimized until the preset target 

performance is achieved. The weights of the FFNN are updated after a batch of samples from the training data 

set which typically consists of few hundreds of samples. Selecting the size of the batch requires a compromise 

between the memory size and the speed of convergence [22]. Note that the NN weights are assumed to be 

estimated during off-line operation. However, this does not mean that the UL transmission needs to be 

interrupted as the NN can be trained in idle time slots or during lower traffic period.  

 
Figure 4. A 4-input-2-output FFNN. 

2.5 Limitations of the Proposed Approach 

Although the FFNN based canceller provides a simpler way than Volterra and polynomial based 

cancellers in terms of complexity, the NN model has a number of limitations. On of the main limitations is that 

the NN model does not have a physical insight into the process by which PIM occurs. Consequently, the NN 

requires retraining and parameters adjustment when PIM is generated by a different mechanism. The 

dependence of the model accuracy on the training data is a common challenge with NN models in many 

applications and specifically in wireless system applications. There are numerous approaches to address this 

issue in order to enhance the training diversity and reduce potential bias in model performance. These 

approaches include using incremental learning, pre-training through synthetic data generation or transfer 

learning [22]-[24].  

Another common limitation of the NN model is its high computational complexity necessitating 

significant computational resources to perform the modeling task in the PIM cancellation scheme. Fortunately, 

most 5-6G systems are increasingly providing high computational capability through GPUs and AI processers 

which can facilitate the deployment of ANN-based solutions in real-time applications, including PIM 

cancellation [25],[27].  

 

3. RESULTS AND DISCUSSION 

The objective of the simulations that will follow is to verify the proposed NN-based PIM cancelation 

scheme in 0 through processing CA-OFDM signals that represent 5G signals. The input to the system (transmit 

signals) consists of two OFDM carriers of 20 MHz bandwidth with a 120 MHz carrier separation. All signals 

were generated in Matlab and the FFNN cancellation scheme was implemented using the Deep Learning 

Toolbox in Matlab. 

g 

g 

g 

g 

g 

g 

g 

g 

𝐼1(𝑛) 

𝐼2(𝑛) 

𝑄1(𝑛) 

𝑄2(𝑛) 

𝑥1(𝑛) 

𝑥2(𝑛) 

𝐼𝑜𝑢𝑡(𝑛) 

𝑄𝑜𝑢𝑡(𝑛) 

𝑝(𝑛) 

Hidden Layer Output Layer Input Layer 

Bias 

𝒃𝟏 

𝐰𝟏 𝐰2 

Bias 

𝒃𝟐 



IJEEI  ISSN: 2089-3272  

 

Passive Intermodulation Cancellation in 5G Systems (Khaled Gharaibeh) 

889 

3.1 PIM Signal Generation   

The input OFDM signals were generated according to the specifications shown in Table 1. The training set 

of the NN was generated using a nonlinear transformation of the two CA OFDM signals mentioned above which 

represent 5G signals by a nonlinear transformation that represent a passive nonlinearity (PIM source).  

The passive nonlinearity was generated using the “Saleh” model which consists of amplitude and phase 

transformation [28]. For an input signal of the form 𝑥(𝑡) = 𝐴(𝑡)𝑒𝑗Φ(𝑡), where 𝐴(𝑡) is the signal magnitude and 

Φ(𝑡) is its phase, the output of the model is given by [28]-[29]: 

𝑦(𝑡) =
𝑢1𝐴(𝑡)

(1+𝑣1𝐴(𝑡)2)
   𝑒

(Φ(𝑡)+
𝑢2𝐴2(𝑡)

(1+𝑣2𝐴2(𝑡))
)

                                                  (16) 

where  𝑢1, 𝑣1, 𝑢2  and 𝑣2 are the model parameters which can be estimated from measurements of input/output 

characteristics of the PIM source [28]. The model parameters were selected as 𝑢1 = 0.95; 𝑣1 = 0.0000095; 

𝑢2 = 0.5 and 𝑣2 = 0.1. 

Note that the PIM source is used for the purpose of verifying the concepts and ensure that the proposed 

FFNN-based cancellation scheme provides PIM cancellation. In principle, the FFNN can be trained for any 

random real PIM source or communication signals and is not restricted to a cerain type of passive nonlinearity. 

 

Table 1. Simulation parameters of OFDM signals 
Signal length 200000 samples 

No. of sub-carriers 2048 

Subcarrier spacing 15 kHz 

Modulation 16 QAM 

Bandwidth 20 MHz 

Pulse shaping Raised Cosine r=0.22  

Oversampling factor 64 

PAPR 10.8 dB 

Input power range 10 dBm to 40 dBm 

 

3.2 PIM Cancellation Results 

The PIM estimation block consists of a NN which produces a behavioral model for the passive nonlinearity 

at the training stage and then, the NN weights are used to produce the cancelling signal during a testing phase. 

In the training phase, the NN model compares a filtered version of the output of the nonlinearity which consists 

of the PIM components only with the input CA signals 𝑥1(𝑡) and 𝑥2(𝑡) to produce the NN weights using 

Adaptive Moment Estimation (ADAM). The NN weights w are then used to produce the cancelling signal 𝑧𝑐(𝑛) 

in (3). 

The modeling process was conducted using two CA-OFDM signals generated using the specifications 

in Table 1. Each signal has a length of 200,000 samples of which 70% of the samples are used for model training, 

while the remaining 30% constitute a test set to evaluate the performance and generalization capability of the 

model.  

The FFNN architecture consists of an input layer, followed by three hidden layers with 128 neurons 

each, and a dense output layer. The input and hidden layers use the ReLU activation function, while the output 

layer employs a linear activation function. The network is trained using the ADAM optimizer, an initial learning 

rate of 0.01 and a batch size of 65000 samples. The training process spans 200 epochs, and its performance is 

monitored by observing the evolution of the MSE defined in (14) with the iteration number.  

Fig. 5 shows the MSE wersus iteration number for the training process of the FFNN, used to model the 

3rd order PIM component at transmit power of 30 dBm. The results indicate that the FFNN model converges 

after approximately 400 iteration. Notable, the number of iterations required for convergence depends on the 

transmit power level and the PIM order of interest. 

 

 
Figure 5. MSE vs transmit power for various PIM orders. 
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To assess the performance of the proposed PIM cancellation scheme shown in Fig. 3, the PIM 

component leaking to the receiver was obtained by applying a bandpass filter to the output of the PIM source, 

𝑦(𝑛). The filtered PIM component was then fed to the cancellation scheme which utlilizes the FFNN to produce 

a cancelling signal.  The cancelling signal was then subtracted from the output the of the PIM source to produce 

a signal with a cancelled PIM component, denoted as 𝑦𝑐(𝑛) in the following discussion.  

The cancelation capability of the proposed scheme are assessed by comparing the power spectral density 

(PSD) of the output of the passive nonlinearity before and after cancellation of the PIM component of interest. 

The PSD was computed using a periodogram as [30]: 

𝑺𝒚𝒚(𝝎) =
𝟏

𝑴
|𝐃𝐓𝐅𝐓(𝒚𝒘(𝒏)|𝟐|  =

𝟏

𝑴
|∑ 𝒚𝒘(𝒏)𝒆−𝒋𝝎𝒏𝑴 − 𝟏

𝒏=𝟎 |
𝟐
                             (17) 

where DTFT denotes the Discrete Time Fourier Transform, 𝑦𝑤(𝑛) = 𝑦(𝑛)𝑊(𝑛) is the windowed signal, 𝑊(𝑛) 

is the window function and M is the signal size. The simulations use a Hanning window which, as shown in 

[30], provides better performance in PIM simulation compared to other window functions. 

Figures 6(a)-(d) show the PSD of the input of the cancellation loop (output of the passive nonlinearity 

before cancellation) and the output of the cancellation loop for the two-carrier aggregated OFDM signals at a 

transmit power of 30 dBm. The figures show that the power of the PIM component of interest is significantly 

reduced. The PIM components where cancelled individually in order to evaluate the effectiveness of the 

cancellation scheme. The results show that the proposed method achieves excellent cancellation of the PIM 

component of interest, with the resulting cancelled signal approaching the noise floor.  

 

(a)                                                                                         (b) 

 

(c)                                                                                (d) 

Figure 6. PSD of the input and output of the cancellation scheme dBm; (a): PIM3, (b): PIM5, (c): PIM7 and 

(d): PIM9. 

The PIM cancellation ratio is quantified as: 

𝐶𝑘 = 10 log10

∫ 𝑆𝑦𝑦(𝜔)
𝜔𝐼𝑀𝑘

+𝐵𝑘

𝜔𝐼𝑀𝑘
−𝐵𝑘

𝑑𝜔

∫ 𝑆𝑦𝑐𝑦𝑐(𝜔)𝑑𝜔
𝜔𝐼𝑀𝑘

−𝐵𝑘

𝜔𝐼𝑀𝑘
+𝐵𝑘

                                                 (17) 
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where 𝑘 indicates the 𝑘-th PIM compoenent, 𝐵𝑘  is the bandwidth of the k-th PIM compoenent, 𝑆𝑦𝑦(𝜔) 

is the PSD of the output of the PIM source 𝑦(𝑛) defined in (2) and 𝑆𝑦𝑐𝑦𝑐
(𝜔) is the PSD of the output of the PIM 

source after cancelling the k-th order PIM component 𝑦𝑐(𝑛). 

Figure 7 shows the PIM cancellation ratio versus transmit power for third, fifth, seventh and ninth PIM 

components within a transmit power range of 30 dBm. The figure demonstrates that the FFNN based PIM 

cancellation scheme achieves up to 22 dB cancellation for the third order PIM while the cancellation ratio  

decreases for higher PIM orders. The reason for this is that higher order PIM components have lower power 

resulting in reduced cancellation ratio.  

Additionally, the figure shows that the cancellation ratio decreases as the the transmit power decreases. 

This is a direct result of compression in the nonlinear characterteristic of the Saleh model, which becomes more 

pronounced at higher at high input power levels. Operating the PIM source closer to the compression point of 

its nonlinear characteristic reduces the model accuracy which is a typical phenomenon observed in most 

nonlinear modelling approaches.  

However, with NN models, the range of transmit power where the model provides acceptable PIM 

cancellation can be expanded by enhancing the training data set. Specifcally, including more samples that drive 

the PIM source near its compression point allows the FFNN to learn the complex nonlinear behavior more 

effectively, improving its cancellation performance in challenging condition. 

 

Figure 7. PIM cancellation versus transmit power. 

The Signal to Interference Ratio (SIR) is also used to quantify the cancellation performance of the 

model. The SIR before PIM cancellation is given by 

𝑆𝐼𝑅 =  10 log10

∫ 𝑆𝑟𝑟(𝜔)
+𝐵0
−𝐵0

𝑑𝜔

∫ 𝑆𝑦𝑦(𝜔)𝑑𝜔
𝜔𝐼𝑀𝑘

−𝐵𝑘

𝜔𝐼𝑀𝑘
+𝐵𝑘

                                                        (18) 

where 𝑆𝑟𝑟(𝜔) is the PSD of the received signal, 𝐵0  is the receive signal bandwidth and 𝐵𝑘 is the bandwidth of 

the PIM component of interest. The SIR after cancellation is expressed as: 

𝑆𝐼𝑅 =  10 log10

∫ 𝑆𝑟𝑟(𝜔)
+𝐵0
−𝐵0

𝑑𝜔

∫ 𝑆𝑦𝑐𝑦𝑐
(𝜔)𝑑𝜔

𝜔𝐼𝑀𝑘
−𝐵𝑘

𝜔𝐼𝑀𝑘
+𝐵𝑘

                                                        (18) 

Fig. 8 shows the SIR versus the transmit power before and after cancellation of the 3rd order PIM component 

assuming a receiver signal power of 30 dBm. The figure demonstrates that the PIM cancellation scheme 

achieves an SIR gain of 15-25 dB, highlighting that the porposed cancellation scheme provide significant 

performance improvement in CA-FDD wireless systmes. 
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The PIM cancellation results presented in this paper were compared to those reported in the literature. 

Table II summarizes the PIM cancellation performance of various Volterra-based cancellation approaches. The 

results demonstrate that the proposed FFNN-based cancellation approach achieves significantly higher 

cancellation of PIM components compared to other methods. This superior performance can be attributed to 

the fact that NN models are universal approximators where they can model complex and high order 

nonlinearities without being explicitly tied to a predefined mathematical structure as Volterra based models. 

Additionally, while some methods in the literature achieve comparable results under specific conditions, the 

proposed approach maintains consistent performance across a wider range of input power levels and PIM 

orders, as shown in Fig. 7. 

 

Table 2. Comparsion of the proposed approach to literature 
Reference Approach PIM Cancellation 𝑪𝒌 

[1], [4] Lampu et. al Generalized Memory Polynomial (GMP) 15-18 dB 

[5], [6] Tian, et. al Hammerstein Model 10 dB gain in SIR 

[12] Liang et. al RTLNN 10 dB gain in SIR 

[7] Liu et. al Wiener-Hammerstein model / B-spline  19 dB 

[7] [10]Waheed, et al Generalized Memory Polynomial (GMP) 19 dB 

[17] Ahmed et. al Generalized Memory Polynomial (GMP) 12-14 dB 

   

The proposed approach  22 dB 

 

4. CONCLUSION  

A FFNN-based cancellation scheme for mitigating PIM in CA-FDD systems has been presented and 

verified. The proposed scheme utilizes an FFNN to model passive nonlinearity that exist at the duplexing stage.  

The FFNN model is trained offline, during which the network weights are produced and stored. These weights 

are subsequently used during online operation to generate a cancelling signal for PIM mitigation.  

Simulation results demonstrate that the proposed scheme achieves over 22 dB of cancellation for 3rd order 

PIM components when two CA-OFDM signals emulating 5G signals are applied. The proposed FFNN-based 

cancellation scheme has been compared to Volterra based cancellation schemes and has been shown to achieve 

better PIM cancellation. Moreover, the proposed scheme is not limited to cancelling 3rd order PIM products 

alone; it is capable of effectively cancel PIM components of any order. 
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