
Journal of Telematics and Informatics (JTI)
Vol.7, No.2, June 2019, pp. 60~68 ◼ 60
ISSN: 2303-3703

Software Defect Prediction Using

Synthetic Minority Over-sampling Technique and
Extreme Learning Machine

Khadijah, Priyo Sidik Sasongko
Department of Computer Science/ Informatics, Universitas Diponegoro

Semarang, Indonesia
e-mail: khadijah@ive.undip.ac.id

Abstract
Software testing is one of the crucial processes in software development life cycle

which will influence the software quality. One of the strategies to help testing process is
predicting the part or module of software which is prone to defect. Then, the testing process can
be more focused to those parts. In this research a classifier model for predicting software defect
was built. One of the most important problems in software defect prediction is imbalance data
distribution between samples of positive class (prone to defect) and of negative class.
Therefore, in this research SMOTE is implemented to handle imbalance data problem and
extreme learning machine is implemented as a classification algorithm. As a comparison to
SMOTE-ELM, a modification of ELM which directly copes with imbalance problem, weighted-
ELM, is also observed. This research used NASA MDP dataset PC1, PC2, PC3 and PC4. The
results of experiment using 10-fold cross validation show that directly classification using ELM
obtain the worse result compared to SMOTE-ELM and weighted-ELM. When the value of
imbalance ratio is not very small, the SMOTE-ELM is better than weighted-ELM. When the
value of imbalance ratio is very small, the g-mean of weighted-ELM is higher than the g-mean of
SMOTE-ELM, but the accuracy of weighted-ELM is lower than the accuracy of SMOTE-ELM.
Therefore, in this software defect prediction case it can be concluded that SMOTE is effective to
increase the generalization performance of classifier in minority class as long as the value of
imbalance ratio is not very small.

Keywords: extreme learning machine (ELM), software defect prediction, SMOTE, weighted-
ELM

1. Introduction

Software testing is one of the crucial processes in software development life cycle.
Software testing is aimed to find errors of software before it is deployed to end user [1]. The
results of software testing will influence the software quality. Incomplete software testing can
result in bad software quality. Comprehensive software testing activities need big resources in
term of cost, human and time, especially if the developed software is complex and large scale
[2].

 One of the strategies to do testing process effeciently is by predicting the part or
module of software which is prone to defect. Then, the testing process can be more focused to
those parts. One of the approaches for predicting software defect is based on software metrics
which describe the properties of software [3]. Therefore, an automated software defect
prediction model can be built based on those software metrics. In term of machine learning,
such kind of model can be built by using supervised learning or classification algorithm.

The various classification algorithm have been implemented for predicting software
defect, such as Artificial Neural Network (ANN) [4] [5], Support Vector Machine (SVM) [6] and
Naïve-Bayes classifier [7]. Naïve-Bayes classifier assumes that every attribute (software metric)
is conditional independence to the class of software defect [8], while in the case of software

JTI ISSN: 2303-3703 ◼

Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme
Learning Machine (Khadijah)

61

defect prediction these attributes is not truly conditional independence to the class of software
defect. When using ANN, gradient-descent learning algorithm is usually implemented. This
learning algorithm usually needs many iteration to reach convergency and involves many
parameter in its training process. The other learning algorithm for ANN that can solve the
limitation of gradient-descent learning is extreme learning machine (ELM). The training process
of ELM is extremely fast because it only needs one iteration. ELM also involves less number of
parameter in its training process [9]. ELM is also faster and more scalable than SVM. Moreover
in binary classification case the generalization performance of ELM is better than ANN and
similar to SVM [10].

In spite of classification algorithm, the other important problem in software defect
prediction is the imbalance ratio of number of samples between possitive class (prone to defect)
and negative class. The value of imbalance ratio can reach 1/100, even 1/1000 in certain
dataset. Classifications on imbalanced dataset usually result in good accuracy, but very low
sensitivity. For example, when number of samples of positive class is 10 and number of
negative class is 90 and classifier always classifies each sample into negative class, then the
classifier can achieve 90% accuracy. However, it can not be claimed that it is a good classifier
because it never classifies a sample into possitive class, as the positive class is the topic of
interest. Therefore, it is needed an additional method for handling imbalanced data distribution
in order to get optimal results [11].

One of the approaches for handling imbalanced data distribution is resampling (data-
level method). Resampling method modifies the distribution of dataset to achieve balance ratio
between number of positive class and negative class. The advantages of this method is its
flexibility because it is independence to the classification algorithm [12]. Synthetic Minority Over-
sampling Technique (SMOTE) is one of the popular resampling methods and has been
frequently used in many cases [13]. SMOTE even still has good performance when the number
of samples in minority class is quite small [11]. Some implementation of SMOTE on
classification with imbalanced dataset has proven that SMOTE is able to improve the
generalization performance of classifier in minority class [14] [15] [16].

As a comparison to SMOTE, the other approach for handling imbalance dataset,
algorithm-level method, is also implemented. This method does not modify the dataset, but
modifies the classification algorithm directly [12]. This research implements weighted-ELM
which is the modification of original ELM to cope directly with the imbalanced data problem.
Experiment results show that weighted-ELM has better performance than original ELM as
classifier on imbalanced dataset [17].

This research is aimed to create a model for predicting software defect using SMOTE
as a resampling method to achieve balanced data distribution and ELM as a classifier. Then, as
a comparison to SMOTE, a model for software defect prediction is also built using special
modification of ELM for imbalanced data distribution, weighted-ELM. The resulting models are
then evaluated to measure their performance.

2. Research Method

There are two process involved to build a model for software defect prediction, the
training and testing process. The training is aimed to create a model and testing is aimed to
evaluate the resulting model. This section describes the dataset, methods (SMOTE and ELM)
and evaluation metric used in this research.

Tabel 1. Description of Dataset

Dataset 𝑑 𝑁
Number of

negative samples
Number of

positive samples
Imbalance ratio

PC1 37 735 674 61 0.0905
PC2 36 1493 1477 16 0.0108
PC3 37 1099 961 138 0.1436
PC4 37 1380 1201 179 0.1490

2.1. Dataset

 ◼ ISSN: 2303-3703

 JTI Vol. 7, No. 2, June 2019

62

This research used dataset from NASA MDP dataset PC1, PC2, PC3 and PC4. Version
of dataset used is the cleaned data [18]. Those dataset can be downloaded in
https://github.com/klainfo/NASADefectDataset. The description of each dataset are shown at
Table 1 where 𝑑 is the number of feature attributes and 𝑁 is number of samples. The imbalance
ratio is ratio between number of samples in positive class (prone to defect) and number of
samples in negative class. Each dataset consists of some feature attributes and one decision
attribute. The feature attributes are numeric software metrics that are used as an input feature
for prediction, while the decision attribute is the output class which shows the existence of
software defect (yes or no).

2.2. Synthetic Minority Over-sampling Technique (SMOTE)

SMOTE is a resampling method to increase the number of samples in minority class by
creating some synthetic samples. SMOTE creates a synthetic sample by choosing a point
randomly in the line segment connecting a sample and its nearest neighbor. Figure 1 shows the
pseudocode of SMOTE algorithm. There are two parameters in this algorithm. The first
parameter is 𝑁, the amount of over-sampling. The second parameter is 𝑘, the number of
nearest neighbor selected for creating synthetic samples. For example, if the number of
samples in minority class is 10, the value of 𝑁 is set to 200% and the value of 𝑘 is set to 5,
SMOTE will creates 2 synthetic samples for every samples in the minority class. Each time
SMOTE creates a synthetic sample, SMOTE will choose a point randomly on the line
connecting its sample and one of the five nearest neighbors of its sample. Therefore, the total
number of synthetic sample is 2 x 10 = 20 and the total number of samples in minority class
now is 10 + 20 = 30. This over-sampling is applied on training data, so that in the training
process the ratio of samples in posstive class and negative is balanced or almost balanced. [13]

Function SMOTE(Sample[1..T][1..numattrs] :array of array of real, T : integer, numattrs: integer, N : integer, k: integer) →

<array of array of real >

{This function is used for over-sampling minority class samples. The parameters of this function are:
Sample[][] is array original minority class samples

T is number of samples in minority class
numatrrs is the number of sample’s attributes

N is percentage of over-sampling (N ≥ 100%)

k is number of nearest neighbors

Kamus lokal:

i : integer {counter for original sample}

nnarray : array of integer {array for storing index of sample’s nearest neighbors}

nn: integer {index of the choosen nearest neighbor of a sample}

attr : integer {counter for sample’s attributes}

dif : real {the difference of attribute value between synthetic sample and original samples}

gap : real {random value between 0..1 for multiplying dif}

newindex : integer {counter for generated synthetic samples}

Synthetic : array of array of real {array of generated synthetic samples}

Algoritma:

{initialization}

newindex 0

i traversal [1..T]

{obtain k nearest neighbor for i-th sample using Euclidean distance formula and store

location index of its nearest negihbors into nnarrays}

<nnarray> compute_nearest_neighbor(Sample[i][1..numattrs])

{generate synthetic samples}

N (integer)(N/100)

while N ≠ 0

{choose a sample from k nearest neighbors of i-th sample randomly }

nn random(1,k) {nn is random value between 1..k}

attr traversal [1..numattrs]

{calculate the difference between attribute value of sample’s nearest neighbor

and its sample}

dif Sample[nnarray[nn]][attr] – Sample[i][attr]

gap random(0,1) {gap is random value 0..1}

Synthetic[newindex][attr] = Sample[i][attr] + gap*dif

{end traversal attr}

newindex newindex + 1

N N-1

{endwhile N ≠ 0}

https://github.com/klainfo/NASADefectDataset

JTI ISSN: 2303-3703 ◼

Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme
Learning Machine (Khadijah)

63

{end traversal i}

→ Synthetic[0..newindex-1][1..numattrs]

Figure 1. Pseudocode of SMOTE [13]

2.3. Extreme Learning Machine (ELM)

ELM is a learning algorithm for artificial neural network which has single hidden layer
and feedforward architecture. The learning algorithm of ELM only needs one iteration, so that
the training process is extremely fast [9] [10]. Figure 2 shows the architecture of artificial neural
network used in this research. This network has 𝑑 input nodes which is equal to number of

feature attributes in each dataset, 𝐿 hidden nodes dan one output node which represents the
decision attribute or existence of defect. This network apply radial basis function (RBF) hidden

node, so that parameter (𝐚𝑗, 𝑏𝑗)𝑗=1
𝐿 from input nodes to hidden nodes are center vector 𝐚𝑗 and

scaling parameter bj in the 𝑗-th hidden node. The weights from hidden nodes to output node is

vector 𝛃 = [𝛽1, … , 𝛽𝐿]
𝑇 [19].

1 j L

1 d

. . . .

x

f(x)

d Input Nodes

L Hidden Nodes

Output Node

(aj,bj)

β1 βj

βL

. .

Figure 2. The Architecture of Network for ELM [19]

Training algorithm of ELM uses 𝑁 pairs of training sample, (𝐱𝑖, 𝑡𝑖)𝑖=1
𝑁 where 𝐱i =

[𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑑]
𝑇 ∈ 𝑅𝑑 is input vector and 𝑡𝑖 is output target. The value of input and target are first

normalized into [-1,1] using min-max normalization. Then the algorithm of the training is
described as following [10]:

1. Initialize parameter (𝐚𝑗, 𝑏𝑗)𝑗=1
𝐿 from each input node to 1 . . 𝐿 hidden node randomly.

2. Calculate matrix 𝐇, the output of each hidden node 1. . 𝐿 for all training samples from 1. . 𝑁,

using a specific activation function as equation (1). This research used multiquadric

activation function as shown in equation (2).

𝐇 = [
𝐡(𝐱1)
⋮

𝐡(𝐱𝑁)
] = [

ℎ1(𝐱1) … ℎ𝐿(𝐱1)
⋮ ⋮ ⋮

ℎ1(𝐱𝑁) … ℎ𝐿(𝐱𝑁)
]

𝑁×𝐿

 (1)

ℎ𝑗(𝐱𝑖) = (‖𝐱 − 𝐚𝑗‖
2
+ 𝑏𝑗

2)1/2 (2)

3. Calculate vector 𝛃 = [𝛽1, … , 𝛽𝐿]
𝑇, the weights from hidden nodes to output node, as

equation (3). Output vector 𝐓 as equation (4) is target value for each training samples from

1. . 𝑁, 𝐈 is identity matrix, and 𝐶 is regularization parameter to increase the generalization

performance.

 ◼ ISSN: 2303-3703

 JTI Vol. 7, No. 2, June 2019

64

𝛃 =

{

𝐇T (

𝐈

𝐶
+ 𝐇𝐇𝐓)

−1

𝐓 if 𝑁 < 𝐿

(
𝐈

𝐶
+ 𝐇𝐓𝐇)

−1

𝐇T𝐓 if 𝑁 ≫ 𝐿
}

 (3)

𝐓 = [

𝑡1
⋮
𝑡𝑁

] (4)

In the testing process, class of an input sample 𝐱 can be predicted by using equation (5)

followed by equation (6). Equation (5) is aimed to calculate the value of output network using

parameter (𝐚𝑗, 𝑏𝑗)𝑗=1
𝐿 and 𝛃 and also activation function from the training process, while equation

(6) is aimed to predict the class of output 𝑓(𝐱). [10]

𝑓(𝐱) = 𝐡(𝐱)𝛃 (5)

𝑐𝑙𝑎𝑠𝑠(𝐱) = sign(𝑓(𝐱)) (6)

ELM algorithm is not especially designed for used in imbalanced dataset. Therefore, in
the imbalanced dataset to maximize the accuracy, the boundary line of classifier usually is
moved toward to the side of minority class. As a result, the generalization performance of
classifier in the majority class is high, while in the minority class is low. But, the low performance
in the minority class does not give significant effect on the end accuracy of classifier because
the number of samples in the minority class is small enough. Therefore, ELM is modified into
weighted-ELM which is especially designed for handling imbalanced data distribution. [17]

Weighted-ELM modifies the training algorithm of ELM by adding diagonal weight matrix
𝐖 = 𝑑𝑖𝑎𝑔{𝑤𝑖𝑖}, 𝑖 = 1, … , 𝑁. Each row of matrix 𝐖 is associated to each sample in the training
data. The addition of this matrix is aimed to move boundary line toward to the area of majority
class in order to increase the generalization performance in the minority class. But how much
the boundary line is moved, should be carefully decided so that the generalization performance
in the majority class does not decrease. Therefore, the value of 𝑤𝑖𝑖 is calculated using the

golden ratio, 0,618:1 as shown at equation (7) where #(𝑡𝑖) is the number of samples which is

belong to the class of 𝑖-th sample. Then, the output weight matrix can be calculated by using
equation (8). [17]

𝑤𝑖𝑖 =

{

0.618

#(𝑡𝑖)
, 𝑖𝑓 𝑡𝑖 is majority class

1

#(𝑡𝑖)
, 𝑖𝑓 𝑡𝑖 is minority class

 (8)

𝛃 =

{

𝐇T (

𝐈

𝐶
+𝐖𝐇𝐇𝐓)

−1

𝐖𝐓 if 𝑁 < 𝐿

(
𝐈

𝐶
+ 𝐇𝐓𝐖𝐇)

−1

𝐇T𝐖𝐓 if 𝑁 ≫ 𝐿
}

 (9)

2.4. Evaluation Metrics

Binary classifier can be evaluated based on its accuracy, sensitivity and specifity.
Accuracy is the comparison between number of samples predicted correctly by classifer and the
total number of samples. Sensitivity is the accuracy of positive class, while sensitivity is the
accuracy of negative class [8]. The ratio between number of samples in positive class and
negative class in the NASA MDP dataset is imbalanced, so that the use of accuracy as an
evaluation metric is not quite representative. Therefore, in this research classifier is also
evaluated by 𝑔 −𝑚𝑒𝑎𝑛 as shown at equation (10). The value of 𝑔 − 𝑚𝑒𝑎𝑛 is not influenced by
the balanceness of dataset because it considers the performance of classifier in both class,
positive and negative [20].

JTI ISSN: 2303-3703 ◼

Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme
Learning Machine (Khadijah)

65

𝐺 −𝑚𝑒𝑎𝑛 = √𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 (10)

3. Results and Analysis

In order to get comparating result, in this research the classifier for predicting software
defect was built by using three scenarios: 1) directly classification using ELM; 2) over-sampling
minority class using SMOTE followed by classification using ELM; 3) directly classification using
modification of ELM, weighted-ELM. This experiment applied 10-cross validation to divide
dataset into training and testing data. First, dataset is divided into 10 parts where each part has
the same ratio of positive samples and negative samples, then each experiment uses 9 part as
training data and 1 part as testing data. The experiment is repeated until 10 times using
different part as testing data, then the reported result is the mean of result of 10 experiments
[21].

There are two parameters in the ELM training algorithm. They are number of hidden
nodes 𝐿 and regularization parameter 𝐶. In this research, number of hidden nodes is set to
1000. Some prior research used 1000 hidden nodes for various dataset and concluded that as
long as the number of hidden nodes is quite large, it does not make significant effect to the end
result [10]. Therefore, there is only one remaining parameter to be adjusted, regularization

parameter 𝐶. The value of 𝐶 is search from range {21, 22, … , 224, 225} to obtain optimal result.
In the over-sampling using SMOTE, there are also two parameters, they are number of

nearest neighbors 𝑘 and percentage of over-sampling 𝑁. The value of 𝑁 in each dataset is set
into certain number to make the ratio of positive and negative samples in training data close to
1. Then, the value of 𝑘 is set to 10 because in each dataset there are 6 to10 synthetic samples

that would be created for each minority sample, except in the PC2 dataset the value 𝑘 is set 12
because there are only 12 to 13 samples of positive class in the training data. Table 2 shows
the combination of SMOTE parameters in four datasets.

Tabel 2. The Combination Value of SMOTE parameters

dataset 𝒌 𝑵

PC1 10 1000
PC2 12 1200
PC3 10 600
PC4 10 500

The results of experiment using ELM, SMOTE-ELM and weighted ELM for all dataset
are shown at Table 3, 4 and 5, respectively. Then, the graphic at Figure 3 and 4 show the
comparison of accuracy and g-mean, respectively.

Tabel 3. The Results of Experiment Using ELM

Dataset 𝐶 Akurasi Sensitivity Specifity G-mean

PC1 25 86,52 ± 3,5 42,62 ± 1,1 90,49 ±3,3 62,10
PC2 25 97,66 ± 1,1 35,00 ±41,2 98,38 ± 0,8 58,68
PC3 24 83,44 ±2,6 34,18 ± 8,2 90,53 ± 3,0 55,62
PC4 20 87,60 ± 2,5 45,49 ± 9,5 93,84 ± 3,1 65,34

Tabel 4. The Results of Experiment Using SMOTE-ELM

Dataset 𝐶 Akurasi Sensitivity Specifity G-mean

PC1 7 82,73 ± 6,5 74,05 ± 23,2 83,51 ± 6,9 78,64
PC2 9 98,26 ± 1,0 45 ± 43,78 98,92 ± 0,9 66,72
PC3 8 77,16 ± 4,9 72,42 ± 15,2 77,83 ± 4,6 75,08
PC4 9 84,19 ±3,5 82,65 ±11,6 84,44 ± 4,3 83,53

Tabel 5. The Results of Experiment Using Weighted-ELM

Dataset 𝐶 Akurasi Sensitivity Specifity G-mean

PC1 12 72,92 ± 6,3 86,67 ± 13,1 71,64 ± 7,1 78,80
PC2 4 76,36 ± 3,4 85,00 ± 24,2 76,31 ± 3,5 80,54

 ◼ ISSN: 2303-3703

 JTI Vol. 7, No. 2, June 2019

66

PC3 24 74,88 ±4,0 69,62 ± 10,6 75,65 ± 3,7 72,57
PC4 16 76,28 ± 3,7 93,30 ± 6,8 73,78 ± 4,3 82,97

The results on Table 3 show that directly classification using ELM without any handling

for imbalanced data problem, tend to achieve the highest accuracy and the lowest g-mean,
compared to the other methods (SMOTE-ELM and weighted-ELM). It is caused by the high
value of specifity, but the low value of sensitivity, so that the the value of g-mean become low.
However, because the number of positive samples is far smaller than the number of negative
samples, especially in PC2 dataset, the value of accuracy is still high.

 In the second scenario, when SMOTE is added for over-sampling dataset before
classification, it can be observed that the value of g-mean and sensitivity in all dataset are
higher compared to the first scenario, but the value of accuracy and specifity decrease, except
on PC2 dataset. This condition show that when SMOTE is added, the generalization
performance on positive class increase, but it is also followed by drecreasing generalization
performance on negative class. It can be observed that the increasement values of g-mean are
higher than the decreasement values of accuracy from ELM to SMOTE-ELM. The condition is
slightly different on PC2 dataset, because PC2 has very low number of positive samples so that
after oversampling the dataset is still imbalanced and the classifier still obtain bad generalization
performance on positive (minority class) class.

Same as the second scenario, when using weighted-ELM the generalization
performance on positive class (sensitivity) also increase, but it is also followed by drecreasing
generalization performance on negative class (specifity). Compared to SMOTE-ELM, the values
of g-mean are lower on PC3 and PC4 dataset, slightly higher on PC1 dataset, and higher on
PC2 dataset. But, the accuracy of weighted-ELM are lower than accuracy of SMOTE-ELM in all
dataset. On PC2 dataset, the value of imbalance ratio is very small so that in the learning
algorithm of weighted-ELM the minority samples are given high value in the calculation of
weight matrix 𝐖 so that the boundary line is moved toward to the area of majority class. It
causes the generalization performance of minority class increase, but the generalization of
majority class decrease. Because the number of minority class is very small, the value of
accuracy also decrease. Therefore, it can be concluded that in this prediction case SMOTE-
ELM is better than weighted-ELM, especially when the imbalance ratio is not very small.

Figure 3. The Comparison of g-mean in All Dataset

Figure 4. The Comparison of Accuracy in All Dataset

4. Conclusion

In this research the classifiers for software defect prediction was built. For building the
classifier model, four dataset from NASA MDP were used, they are PC1, PC2, PC3 and PC4
dataset. One of the important problems in those dataset is the imbalance data distribution

0

0.2

0.4

0.6

0.8

1

PC1 PC2 PC3 PC4

ELM

SMOTE-ELM

Weighted-ELM

0.75

0.8

0.85

0.9

0.95

1

PC1 PC2 PC3 PC4

ELM

SMOTE-ELM

Weighted-ELM

JTI ISSN: 2303-3703 ◼

Software Defect Prediction Using Synthetic Minority Over-sampling Technique and Extreme
Learning Machine (Khadijah)

67

between samples of positive class and samples of negative class. Therefore, in this research a
method for handling this imbalance data problem was added. In order to get comparating result,
the classifiers were built by using three scenarios: 1) directly classification using ELM; 2) over-
sampling minority class using SMOTE followed by classification using ELM; 3) directly
classification using modification of ELM, weighted-ELM.

The results of experiment using 10-fold cross validation show that directly classification
using ELM obtain the worse result compared to the other scenarios. When the value of
imbalance ratio is not very small the SMOTE-ELM is better than weighted-ELM because
SMOTE-ELM can achieve higher value, both in g-mean and accuracy. When the value of
imbalance ratio is very small, the g-mean of weighted-ELM is higher than the g-mean of
SMOTE-ELM, the accuracy of weighted-ELM is lower than the accuracy of SMOTE-ELM.
Therefore in this software defect prediction case, it can be concluded that SMOTE is effective to
increase the generalization performance in minority class as long as the value of imbalance
ratio is not very small.

The future research can be focused for selecting features or attributes that play
signigicant role to the prediction class. The reduction of number of features as input to a
classfier can also increase the performance of classifier.

References
[1] Pressman RS. y Software Engineering: A Practitioner’s Approach Seventh Edition. New

York: McGraw-Hill. 2009.

[2] Galin D. Software Quality: Concepts and Practice. Hoboken: IEEE Computer Society. 2018.

[3] Thi P, Phuong M, Thong PH. Empirical Study of Software Defect Prediction : A Systematic

Mapping. Symmetry. 2019;11(212):1–28.

[4] Sethi T, Gagandeep. Improved Approach for Software Defect Prediction using Artificial

Neural Networks. 5th International Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions) (ICRITO). Noida. 2016: 480–485.

[5] Irawan E, Wahono RS. Penggunaan Random Under Sampling untuk Penanganan

Ketidakseimbangan Kelas pada Prediksi Cacat Software Berbasis Neural Network. Journal

of Software Engineering. 2015;1(2):92–100.

[6] Rong X, Li F, Cui Z. A Model for Software Defect Prediction Using Support Vector Machine

Based on CBA. Intenational Journal of Intelligent Systems Technologies and Applications.

2016;15(1):19–34.

[7] Putri SA, Wahono RS. Integrasi SMOTE dan Information Gain pada Naive Bayes untuk

Prediksi Cacat Software. Journal of Software Engineering. 2015;1(2):86-91.

[8] Han J, Kamber M. Data Mining: Concepts and Techniques Second Edition. San Farnsisco:

Elsevier Inc. 2006.

[9] Huang G, Zhu Q, Siew C. Extreme Learning Machine : Theory and Applications.

Neurocomputing. 2006;70:489–501.

[10] Huang G-B, Zhou H, Ding X, Zhang R. Extreme Learning Machine for Regression and

Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics - Part B:

Cybernetics. 2012;42(2):513–28.

[11] Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G. Learning from Class-

imbalanced Data: Review of Methods and Applications. Expert System Applications.

2017;73:220–39.

[12] Douzas G, Bacao F, Last F. Improving Imbalanced Learning Through a Heuristic

Oversampling Method Based on K-means and SMOTE. Infomation Sciences. 2018;465:1–

20.

[13] Chawla N, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence Research. 2002;16:321–57.

[14] Sarakit P, Theeramunkong T, Haruechaiyasak C. Improving Emotion Classification in

 ◼ ISSN: 2303-3703

 JTI Vol. 7, No. 2, June 2019

68

Imbalanced YouTube Dataset Using SMOTE Algorithm. 2nd International Conference on

Advanced Informatics: Concepts, Theory and Applications (ICAICTA). Chonburi. 2015.

[15] Demidova L, Klyueva I. SVM Classification : Optimization with the SMOTE Algorithm for the

Class Imbalance Problem. 6th Mediterranean Conference on Embedded Computing

(MECO). Montenegro; 2017:17–20.

[16] Chang Z. The Application of C45 Algorithm Based on SMOTE in Financial Distress

Prediction Model. 2nd International Conference on Artificial Intelligence, Management

Science and Electronic Commerce (AIMSEC). Dengleng. 2011:5852–5855.

[17] Zong W, Huang G Bin, Chen Y. Weighted Extreme Learning Machine for Imbalance

Learning. Neurocomputing. 2013;101:229–42.

[18] Shepperd M, Song Q, Sun Z, Mair C. Data Quality : Some Comments on the NASA

Software Defect Datasets. IEEE Transactions on Software Engineering. 2013;39(9):1208–

1215.

[19] Huang G. Extreme Learning Machine - Learning Without Iterative Tuning. Tutorial in

IJCNN2012/WCCI2012. Brisbane. 2012.

[20] Timotius IK, Miaou SG. Arithmetic Means of Accuracies: A Classifier Performance

Measurement for Imbalanced Dataset. International Conference on Audio, Language and

Image Processing (ICALIP). Shanghai. 2010:1244–1251.

[21] Haykin S. Neural Networks - A Comprehensive Foundation. Second Edition. India: Pearson

Education; 2005.

