
Journal of Telematics and Informatics (JTI)
Vol.4, No.1, March 2016, pp. 12~18
ISSN: 2303-3703 12

Average Hashing for Perceptual Image Similarity in
Mobile Phone Application

Sam Farisa Chaerul Haviana and Dedy Kurniadi
Sultan Agung Islamic University

Jl.Raya Kaligawe Km.4, Semarang, Central Java, +6224-6583584

e-mail: samfch@unissula.ac.id

Abstract
 Common problem occurs in almost all mobile devices was duplicated data or files.

Such as duplicated images that often happen by events like capturing perceptually similar
photos by the user, or images that shared several times in messaging applications chat groups.
This common problem can be solved by manually search and remove the duplicated images
one by one by the users, but better solutions is by building automated application that search
perceptually similar images then provide the results to the users. We study and implement
Average Hashing and Hamming distance for perceptual image similarity into application under
mobile phone platform to realize the solution for the problem. The results was very promising in
speed and accuracy for finding perceptually similar images under limited resources device like
mobile phone.

Keywords: perceptual image similarity, average hash, mobile phone

1. Introduction

Digital images is one of the most common file found in mobile phone storage nowadays.
Its existence could be consciously kept by the user or by application programs that utilize them
without user knowledge. Habits of taking picture and using messaging applications, like
WhatsApp, to share images or another multimedia files, could deliver users into storage runs
out problem. Another problem is that not all saved images by those process are unique. Some
or many images could be the same images or perceptually similar. Such as pictures taken
several times in the same situation, or almost similar poses, tend to produce perceptually similar
images. This could be solved, for example, by choosing only the best images to save storage
spaces. In messaging application like WhatsApp, sometimes some people in a chat group
shares the same images for several times, this also could lead the users into storage problem.

Users could manually search and find those perceptually similar images for later move
them to another storage or just remove them. But this could be very time consumed action that
user has to take to find those images one by one. A better way is that we could build an
application that search and compare those perceptually similar images then give the result to
the user. This way need particular set of methods that could calculate the images similarity,
perceptually, by finding their features or characteristics then measure the distance for each
image to determine which images are perceptually similar. This is commonly called by
perceptual image search or perceptual image similarity.

To build the character or feature of an image that could recognized by machine, some
approach have been studied. Some of them build the images color histogram to build the
characteristic, some other build the hash value of the image that represent its characteristic.
Many research like [1]–[6], build hash value of the image that represent image visually. The
resulting hash also represent the image fingerprint so that in some applications like in [3], [6]–
[8], and many others use this hash to check the image integrity for security purpose. In
perceptual image hash, the approach of hashes application is slightly different than the hash
used in security (like MD5 and SHA). In security like cryptography, the resulting hash of the
image is sensitive to its content, even change on a bit of image could result a very different
hash, but in perceptual image hash, the resulting hash is only slightly different on identical

JTI ISSN: 2303-3703

Title of manuscript is short and clear, implies research results (First Author)

13

images. This give us chance to calculate the distance of similarity of the images. Table 1 shows
the difference between hash for cryptography (MD5) and perceptual image hash.

Table 1. The difference of Cryptography Hash (MD5)

and Perceptual Image Hash

Image

cat.jpg

cat-with-dot.jpg

Cryptography Hash
(MD5) Value

0E2A2968AF422728899
11224531A6DF8

928F22030B9A02DCC1
C207099201B220

Perceptual Hash
Value

11111001010001011000
00101001010010010101
00011000100010000011
0000

1111100101000111100
0011100010110100101
0110111000100010001
0110000

As you seen in Table 1, those identical images (cat.jpg and cat-with-dot.jpg) result a very
different hash value on MD5 hash, but a slightly different hash value on perceptual hash. Value
in bold of perceptual hash is the only difference of resulting hash from those two identical
images. This shows us that the perceptual hash still maintain the correlation of data source and
the hash value so we could calculate the degree of similarity of the image.

Research in perceptual image similarity has become an interesting area at least in the
last decade. One of the reason is to find technique that can make machine recognizing the
perceptually similar images just like human do with their perception. In [9], show some important
factors in assessment of image similarity based on human and machine perception. One of
determinant factor according to [9] is image color. Color become key to judge image
perceptually. This mean that image character could be built by its color composition. In some
Content Based Image Retrieval (CIBR) researches, image character was built by extracting
color histogram of the image. Histogram approach and its variation shows success in many
applications or systems using it [10]. However the usage of histogram like in [10] is to build the
index of image characteristic for later usage in similarity measure. This means that this
approach requiring a pre-processing step, which does not quite suitable for application in limited
computing capabilities devices like mobile phone.

Another solution approaches have been proposed, one of them is in [11], by building
the hash of the image which is a perceptual hash. On the resulting hash, then similarity
measurement methods can be used to find the distance of two hashes that represent two
images, so it can be determined if two images perceptually different or not [11]. In [11] also
studied the benchmark of three different perceptual hash methods which is Discrete Cosine
Transform (DCT) based, Marr-Hildreth based, radial variance based, and block mean value
based method. The result show the block mean value based method is the best in speed [11].
There is also a categorization of perceptual image hashing like stated in [12]. Four different
category of image hashing method briefly described in [12]. First, Statistic-based schemes, used
in [1], [2], [7]. This category building hash by calculating statistics in spatial domain like mean,
variance, higher moment of image block and histogram. Second, Relation-based schemes,
used in [8], [13]. This category building the hash by using some invariant relation of DCT or
Discrete Wavelet Transform (DWT) coefficient. Third, Coarse-representation-based schemes,
used in [3]–[6], this category use coarse information on whole image, like significant wavelet
coefficient distribution and Fourier transform coefficient in low frequency. Fourth, Low level
feature-based schemes, used in [14], [15]. This category building hash by detecting prominent
feature point of image. This category doing DCT and DWT transformation on the original image
the directly use its coefficient to build the hash.

Image hashing method variation continues to grow, like stated in [16], because of its
application in security and image similarity in various platform. The main challenge is the
difficulties to find method that has good performance in low computing capabilities device and
with acceptable result of accuracy. The method we used in the application of this study is similar

 ISSN: 2303-3703

 JTI Vol. 4, No. 1, March 2016 : 12 – 18

14

with the one used in [17], but we utilize simpler perceptual hashing method combined with
hamming distance function for similarity measurement in order to get lower computing cost in
mobile device.

2. Research Method

The method used in this study is one of the simplest method to build the hash of an
image. We have tried to implement the simplest steps of process in order to get minimal
computing cost while still maintaining the correlation of the hash to the image. The main idea of
this method is to get the average value of pixel color of processed image then utilize it to build
the hash value. Unlike the block mean value based method, this method we use does not divide
the image into blocks to build the hash, but use the entire pixel value to build the hash. This
study implement average hashing in four main steps:
1. Resize image dimension
This step is reducing image dimension into 8x8 pixel from any dimension without considering
image aspect ratio. This step is intended to remove high frequency of image color and detail.
The result of this step is 64 pixels image which represent the color composition and distribution
of the original image. By reducing dimension, the cost to process the next step will also be
reduced.
2. Reducing image colors or Grayscaling
This step is intended to reduce the Red, Green, Blue (RGB) color value of the image into a
single greyscale color value of each pixel. The result is 64 pixel image with 0 to 255 value in
each pixel.
3. Calculate average color
We could calculate the average color of all pixels by dividing the sum of all pixel value resulting
from the last step with 64. The order to read and sum the value does not matter. The average
value later used to build the hash in the next step.
4. Build hash
The hash was built by comparing the value of each pixel of the image resulting from the
grayscaling step with the image average color value. The value greater than or equal to the
average value will be represented as 1 in the hash. The smaller value than the average will be
represented as 0 in the hash. So that for 64 pixel of image, we get 64 bit of binary hash value.
This binary representation later could be represented as hexadecimal or decimal value
depending on its application. In this study we keep using the binary value of the hash.

Next process in to calculate the similarity of the images using the hash by comparing
them using similarity measurement method. We utilize Hamming Distance as this method works
good in binary data. In the end, we represent the distance into percentage of image similarity.
The application’s process flow we build in this study shown in Figure 1.

Figure 1. Flowchart of Perceptual Image Search Application

JTI ISSN: 2303-3703

Title of manuscript is short and clear, implies research results (First Author)

15

We use linear search to find all the images in the specified path than build the hash and
calculate the distance in runtime. We did not utilize database engine or file storage to save the
hashes as those will need additional storage space in the device. This does not fit with our goal
to save more space by finding perceptually similar images. The other reason why we don’t
utilize database or file storage for the hashes is that we don’t make a preprocessing step to
save hashes of the images as the image files in the device is dynamically changed even in
small time interval, for example like the image files used by messaging applications. This could
be time and resources consuming thing if we do a preprocessing step to save and index the
hashes.

In the application we built for this study, we use an image as the query image. This
query image will be compared to all images found in the specified path. Than using a specified
threshold value to get the most similar images. All images that have similarity percentage above
the threshold are considered as perceptually similar images with query image. The images are
exactly the same if they have the same hash or in other word they have 100% similarity
percentage. In this application we are focusing to find all perceptually similar images. The
process after the images found is part of development of the application, for example to remove
or to move the images found into another storage location will be considered based on the need
of the users.

3. Results and Analysis

The application we built for this study runs under Android mobile phone platform with
specification of 2Gb of RAMs, Cortex-A7 Quad-core 1.6 GHz CPU, 13 MP primary back camera
and 6.0.1 Marshmallow Android OS. This specification was common specification for mobile
phone released the last few years. We have tested the application using selectively chosen
images we get from http://www.gettyimages.com and http://www.kapanlagi.com. For the test we
categorize the images based on five category, that is Person, People, Building, Landscape and
Objects. This category was selected based on the category that commonly saved or taken by
the users using their mobile phone camera. Figure 2 shows the whole images used in this test.

Figure 2. Images set used in the test

Due to the limited availability of images in every category that perceptually similar in

source sites, the number of images we could get for every category are different between 6 to
11 images. The total image we could collect is 42 images for all category. The image sizes are
varies between 42 Kb to 246 Kb. The dimension of the images also varies. In addition to the
main image sets, we also test the application using previously found images in DCIM folder and
WhatsApp Media folder in the device we use. This two other category was intended to test the
application for more numbers and sizes of images. DCIM and WhatsApp Media folder are

 ISSN: 2303-3703

 JTI Vol. 4, No. 1, March 2016 : 12 – 18

16

commonly used by camera application and WhatsApp messaging application to save the
images in real usage of mobile phone. The way we test is by choosing a random query image
for every image category then run the application search function. The results are recorded an
analyzed.

What we want to achieve from the test is the ability of implemented methods we built to
find perceptually similar image in acceptable running time under limited resource. We also
analyze the method fitness for all image categories, so as the most suitable threshold value for
the method. Last, we observing the application running behavior to make sure that the
implemented method is running well. Figure 3 show screenshot of application running under
testing device.

Figure 3. Application screenshot under testing device

The result of the test discussed in the following discussion.
Table 2 show the results obtained from main image set test. Percentage of Accuracy

value on Table 2 was calculated using:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑓𝑜𝑢𝑛𝑑 − 𝑒𝑟𝑟𝑜𝑟 𝑖𝑚𝑎𝑔𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
 𝑥 100%

number of images found was the images that successfully displayed from the search results
which have similarity percentage above the specified threshold value. Error images are the
images that displayed in the search results but does not came from the same category with
query image. Number of images in category is the number of images in category where the
query image belong.

Table 2. Main Image Set Test Results

Image
category

Total image
in category

Accuracy within Threshold

95 90 85 80 75

Person 10 80% 100% 100% 100% 100%

People 9 11% 44% 100% 100% 100%

Landscape 11 18% 27% 36% 82% 82%

Building 6 17% 17% 67% 67% 83%

Objects 6 17% 17% 17% 17% 50%

JTI ISSN: 2303-3703

Title of manuscript is short and clear, implies research results (First Author)

17

From Table 2 we found that Person category has the highest accuracy in almost all
threshold value. This is because the images in Person category have the simplest color
composition and with high color contrast. From this we obtain that Average Hashing is suitable
for the type of image that has simple color composition. This is also confirmed by the result in
Objects category that show the lowest accuracy of all, where object category has the most
complex color composition. The threshold value, from the result in Table 2, we found that value
around 75 to 80 percent was the best value in this study. This threshold value show more
accurate results.

Another test was to test running time of application in more image set. All three image
sets were tested, and the results shown in Table 3.

Table 3. Running Time Test Result

Dataset Average running
time (seconds)

Number of
Images

Average Size of
Images (kb)

Average
processing

time (seconds)
Main Image Test Files 1.616 42 145 0.0385

DCIM Camera Images 38.2432 44 2.656 0.8692

WhatsApp Images 34.5788 555 132 0.0623

From the results in Table 3 we obtain that the method we implement is fast enough

running under the test device. The test against relatively big image size, above 2Mb, only need
less than one second in average to process. On smaller images, show even more promising
processing time, only less than 0.1 second in average. This time was achieved by dividing
average running time with the number of files. Of course this running time was directly
proportional to the number and image size.

4. Conclusion

The method we implement was working good and quite promising. Show really good
results on images with simple color composition, this is shown in Table 2. But this method also
show less accurate result on images that have complex color composition, this means images
with complex color content was relatively difficult to perceptually compared using our method,
this is also shown in Table 2. The best threshold value was around 75 to 80 percent similarity
according to the results also on Table 2. More threshold value resulting less accuracy. In term of
running time, the implementation of our method was very promising, like shown in Table 3. The
application running under limited resources device runs very well and at acceptable running
time even can be considered that this implementation is running fast.

References
[1] R. Venkatesan, S. Koon, M. H. Jakubowski, P. Moulin, B. Inst, and N. M. Ave, “Robust Image

Hashing,” in IEEE International Conference on Image Processing: ICIP 2000, 2000, pp. 1–3.
[2] F. Khelifi and J. Jiang, “Perceptual image hashing based on virtual watermark detection,” IEEE

Trans. Image Process., vol. 19, no. 4, pp. 981–994, 2010.

[3] J. Fridrich and M. Goljan, “Robust hash functions for digital watermarking,” Proc. - Int. Conf. Inf.

Technol. Coding Comput. ITCC 2000, pp. 178–183, 2000.
[4] S. S. Kozat, R. Venkatesan, and M. K. Mihcak, “Robust perceptual image hashing via matrix

invariants,” 2004 Int. Conf. Image Process. 2004. ICIP ’04., vol. 5, pp. 0–3, 2004.
[5] M. K. Mihçak and R. Venkatesan, “New Iterative Geometric Methods for Robust Perceptual

Image Hashing,” Digit. Rights Manag. Work., vol. 2320, pp. 13–21, 2001.
[6] A. Swaminathan, Y. Mao, and M. Wu, “Robust and secure image hashing,” IEEE Trans. Inf.

Forensics Secur., vol. 1, no. 2, pp. 215–230, 2006.
[7] M. Schneider and S.-F. C. S.-F. Chang, “A robust content based digital signature for image

authentication,” Proc. 3rd IEEE Int. Conf. Image Process., vol. 3, pp. 227–230, 1996.
[8] C. Y. Lin and S. F. Chang, “A robust image authentication method distinguishing JPEG

compression from malicious manipulation,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no.

 ISSN: 2303-3703

 JTI Vol. 4, No. 1, March 2016 : 12 – 18

18

2, pp. 153–168, 2001.
[9] B. E. Rogowitz, T. Frese, J. R. Smith, C. a Bouman, E. Kalin, P. O. Box, and W. Lafayette,

“Perceptual Image Similarity Experiments,” Proc. SPIE, pp. 1–15, 1998.
[10] D. Neumann and K. R. Gegenfurtner, “Image retrieval and perceptual similarity,” ACM Trans.

Appl. Percept., vol. 3, no. 1, pp. 31–47, 2006.
[11] C. Zauner, “Implementation and benchmarking of perceptual image hash functions,” 2010.
[12] A. Hadmi, W. Puech, B. A. E. Said, and A. A. Ouahman, “Perceptual image hashing,”

Watermarking - Vol. 2, pp. 17–42, 2012.
[13] C. S. Lu and H. Y. M. Liao, “Structural digital signature for image authentication: An incidental

distortion resistant scheme,” IEEE Trans. Multimed., vol. 5, no. 2, pp. 161–173, 2003.
[14] S. Bhattacharjee and M. Kutter, “Compression Tolerant Image Authentication,” Statew. Agric. L.

Use Baseline 2015, vol. 1, pp. 3–7, 2015.
[15] V. Monga and B. L. Evans, “Perceptual image hashing via feature points: Performance evaluation

and tradeoffs,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 3452–3465, 2006.
[16] W. Shuo-Zhong and Z. Xin-Peng, “Recent development of perceptual image hashing,” J. Shanghai

Univ., vol. 11, no. 4, pp. 323–331, 2007.
[17] L. Creusot, “Image retrieval with binary hamming distance,” Computing, pp. 237–240, 2005.

