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Abstract 

 In this paper an Improved Particle Swarm Optimization (IPSO) algorithm is proposed   to 
solve the optimal reactive power Problem. In order to overcome the drawbacks of standard 
genetic algorithm (GA)  and particle swarm optimization (PSO) , some improved mechanisms 
based on non-linear ranking selection, competition and selection among several crossover 
offspring and adaptive change of mutation scaling are adopted in the genetic algorithm, & 
dynamical parameters are adopted in PSO. The new population is produced through three 
approaches to improve the global optimization performance, which are elitist strategy, PSO 
strategy and enhanced genetic algorithm strategy. The effectiveness of the proposed algorithm 
has been compared with Gas and PSO, synthesizing a circular array, a linear array and a base 
station array. In order to evaluate the efficiency of the proposed algorithm, it has been tested in 
standard IEEE 118 & practical 191 bus test systems and compared other algorithms.  Simulation 
results show that real power loss considerably reduced and control variables are within the limits. 

  
Keywords: Particle Swarm Optimization, Genetic Algorithm, Optimal Reactive Power. 
  
 
1. Introduction 

Various algorithms are employed to solve the Reactive Power problem. Dissimilar types 
of arithmetical methods like the gradient method [1-2], Newton method [3] and linear programming 
[4-7] have been previously used to solve the optimal reactive power problem. The voltage stability 
problem plays a central role in power system planning and operation [8].Evolutionary algorithms 
such as genetic algorithm, Hybrid differential evolution algorithm, Biogeography Based algorithm, 
a fuzzy based approach, an improved evolutionary programming [9-15] have been already utilized 
to solve the reactive power flow problem In [16-18] different methodologies are effectively handled 
the optimal power problem. In [19-20], a programming based approach and probabilistic algorithm 
is used to solve the optimal reactive power problem. In this paper an Improved Particle Swarm 
Optimization (IPSO) algorithm is proposed   to solve the optimal reactive power Problem. Particle 
swarm optimization (PSO) and genetic algorithm (GA) both work with a population of solutions, 
combining the searching abilities of both methods seems to be a good approach. Some attempts 
have been made in this direction, but with a weak integration of the two strategies. Precisely, most 
of the time one technique has been used just as a pre-optimizer for the initial population of the 
other technique. Firstly, some improved mechanisms such as non-linear ranking selection, 
competition and selection among several crossover offspring and adaptive change of mutation 
scaling are adopted in the genetic algorithm. Then, the enhanced genetic algorithm is combined 
with PSO that is improved by dynamical parameters. During each iteration, the population is 
divided into three parts, which are evolved with the elitist strategy, PSO strategy and the 
enhanced genetic algorithm strategy respectively. Therefore, this kind of technique can make 
balance between acceleration convergence and averting precocity as well as stagnation. The 
simulation results show the effectiveness of the algorithm in synthesizing conformal array, linear 
array with prescribed nulls and array with complex pattern. In order to evaluate the efficiency of 
the proposed algorithm, it has been tested in standard IEEE 118 & practical 191 bus test systems 
and compared other algorithms. Simulation results show that real power loss considerably 
reduced and control variables are within the limits. 
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2. Research Method 
2.1. Problem Formulation 

The objective of the optimal reactive power problem is to minimize one or more objective 
functions while satisfying a number of constraints such as load flow, generator bus voltages, load 
bus voltages, switchable reactive power compensations, reactive power generation, transformer 
tap setting and transmission line flow.  
 
2.1.1. Minimization of Real Power Loss 

It is aimed in this objective that minimizing of the real power loss (Ploss) in transmission 
lines of a power system. This is mathematically stated as follows. 
 

𝑃𝑙𝑜𝑠𝑠= ∑ 𝑔𝑘(𝑉𝑖
2+𝑉𝑗

2−2𝑉𝑖 𝑉𝑗 cos𝜃𝑖𝑗
)

𝑛
𝑘=1

𝑘=(𝑖,𝑗)

                 (1) 

 
Where n is the number of transmission lines, gk is the conductance of branch k, Vi and Vj 

are voltage magnitude at bus i and bus j, and θij is the voltage angle difference between bus i and 
bus j. 
 
2.1.2. Minimization of Voltage Deviation 

It is aimed in this objective that minimizing of the Deviations in voltage magnitudes (VD) 
at load buses. This is mathematically stated as follows. 
 

Minimize VD = ∑ |𝑉𝑘 − 1.0|𝑛𝑙
𝑘=1                       (2) 

 
Where nl is the number of load busses and Vk is the voltage magnitude at bus k. 

 
2.1.3. System Constraints 

In the minimization process of objective functions, some problem constraints which one 
is equality and others are inequality had to be met. Objective functions are subjected to these 
constraints shown below. 
Load flow equality constraints: 
 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉
𝑖 ∑ 𝑉𝑗

𝑛𝑏
𝑗=1

[
𝐺𝑖𝑗 cos𝜃𝑖𝑗

+𝐵𝑖𝑗 sin 𝜃𝑖𝑗
] = 0, 𝑖 = 1,2… . , 𝑛𝑏         (3) 

𝑄𝐺𝑖 − 𝑄𝐷𝑖  𝑉𝑖 ∑ 𝑉𝑗
𝑛𝑏
𝑗=1

[
𝐺𝑖𝑗 cos 𝜃𝑖𝑗

+𝐵𝑖𝑗 sin 𝜃𝑖𝑗
] = 0, 𝑖 = 1,2… . , 𝑛𝑏             (4) 

      
where, nb is the number of buses, PG and QG are the real and reactive power of the 

generator, PD and QD are the real and reactive load of the generator, and Gij and Bij are the mutual 
conductance and susceptance between bus i and bus j. 
 
Generator bus voltage (VGi) inequality constraint: 

𝑉𝐺𝑖 
𝑚𝑖𝑛 ≤  𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑔                                       (5) 

 
Load bus voltage (VLi) inequality constraint: 

𝑉𝐿𝑖 
𝑚𝑖𝑛 ≤  𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑙                                       (6) 

 
Switchable reactive power compensations (QCi) inequality constraint: 

𝑄𝐶𝑖 
𝑚𝑖𝑛 ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑐                                      (7) 

 
Reactive power generation (QGi) inequality constraint: 

𝑄𝐺𝑖 
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑔                                      (8) 

 
 

Transformers tap setting (Ti) inequality constraint: 

𝑇𝑖 
𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑡                                           (9) 
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Transmission line flow (SLi) inequality constraint: 

𝑆𝐿𝑖 
𝑚𝑖𝑛 ≤ 𝑆𝐿𝑖

𝑚𝑎𝑥 , 𝑖 ∈ 𝑛𝑙                                                   (10) 

 
Where, nc, ng and nt are numbers of the switchable reactive power sources, generators 

and transformers. 
 
2.2. Hybridization of Genetic algorithm with Particle swarm optimization 

The proposed Improved Particle Swarm Optimization (IPSO) algorithm combines Particle 
swarm optimization (PSO) and genetic algorithm (GA) to form a hybrid algorithm. Due to 
combination of different optimization mechanisms, not only the offspring can keep diversity, but 
also PSO can keep the balance of global search and local search, so the entire search ability of 
the algorithm can be improved.  

 
2.2.1. Genetic Algorithm 

Floating-point GA uses floating-point number representation for the real variables and 
thus is free from binary encoding and decoding. It takes less memory space and works faster 
than binary GA. Some practical schemes to improve GA performance are introduced in this paper. 
According to the optimal results, we can conclude that these measures are effective and helpful 
in improving convergence property and accuracy. 
 
1. Nonlinear Ranking Selection 

Ranking methods only require the evaluation function to map the solutions to a partially 

ordered set. All individuals in a population are ranked from best to worst based on their fitness 

values. It assigns the probability of an individual based on its rank (r) and it is expressed as 

follows: 

{
𝑝(𝑟) = 𝑞′(1 − 𝑞)𝑟−1

𝑞′ =
𝑞

1−(1−𝑞)𝑝
                         (11) 

 
Such that 
 

∑ 𝑝(𝑟) = 1𝑃
𝑟=1                                      (12) 

 
Where : 

q = the probability of selecting the best individual = [0, 1], 
r = the rank of the individual = 

{
1, for the best individual

𝑃, for the worst individual
  

P = the population size 
 
It can be seen that this selection probability doesn’t use the absolute value information of 

fitness value so that it avoid the fitness value scale transformation and control the prematurity to 
some extent. 
 
2. Competition and Selection 

In natural biological evolution, two parents after crossover can produce several offspring, 

and the competition also exists among the offspring which are produced by the same parents. 

Motivate by this phenomenon, we adopt competition and selection among several crossover 

offspring. Different from the conventional algorithm in which two parents only produce two 

offspring, the two parents, chromosomes as 𝑎𝑠 = [𝑥1
𝑠, 𝑥2

𝑠, … , 𝑥𝑛
𝑠]and 𝑎𝑡 = [𝑥1

𝑡, 𝑥2
𝑡 , . . , 𝑥𝑛

𝑡 ] in this 

algorithm will produce four chromosomes according to the following mechanisms : 

𝑏1 = [𝑏1
1, 𝑏2

1, . . , 𝑏𝑛
1]=  

𝑎𝑠+𝑎𝑡

2
                      (13) 

 

𝑏2 = [𝑏1
2, 𝑏2

2, . . , 𝑏𝑛
2] = 𝑎𝑚𝑎𝑥(1 − 𝜔) + 𝑚𝑎𝑥(𝑎𝑠, 𝑎𝑡)𝜔                  (14) 
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𝑏3 = [𝑏1
3, 𝑏2

3, . . , 𝑏𝑛
3] =  𝑎𝑚𝑖𝑛(1 − 𝜔) + 𝑚𝑖𝑛(𝑎𝑠, 𝑎𝑡)𝜔       (15) 

 

𝑏4 = [𝑏1
4, 𝑏2

4, . . , 𝑏𝑛
4] =  

(𝑎𝑚𝑎𝑥+𝑎𝑚𝑖𝑛)(1−𝜔)+(𝑎1+𝑎2)𝜔

2
                       (16) 

 

𝑎𝑚𝑎𝑥 = [𝑥1
𝑚𝑎𝑥 , 𝑥2

𝑚𝑎𝑥 , . . , 𝑥𝑛
𝑚𝑎𝑥]                 (17) 

 

𝑎𝑚𝑖𝑛 = [𝑥1
𝑚𝑖𝑛, 𝑥2

𝑚𝑖𝑛, . . , 𝑥𝑛
𝑚𝑖𝑛]                    (18) 

 
Where 𝜔ϵ [0, 1] denotes the weight to be determined by users, 𝑚𝑎𝑥(𝑎𝑠 , 𝑎𝑡) denotes the 

vector with each element obtained by taking the maximum among the corresponding element 
of 𝑎𝑠 and 𝑎𝑡.Among b1 to b4, the two with the largest fitness value are used as the offspring of the 
crossover operation. As seen from Eqs. (13) to (17), the potential offspring spreads over the 
domain. At the same time, (13) and (17) results in searching around the centre region of the 

domain, (14) and (15) can move b2 and b3 to be near 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 respectively. Thus, the 
offspring generated by this operator, is better than that obtained by arithmetic crossover or 
heuristic crossover. 
 
3. Mutation 

This is the unary operator responsible for the fine tuning capabilities of the system, so 

that it can escape from the trap of local optimum. It is defined as follows: For a parent p, if variable 

pk was selected at random for this mutation, the result is: 

�̅� = (𝑃1, . . , 𝑃𝑘
̅̅ ̅, . . , 𝑃𝑛)     (19) 

 

𝑃𝑘
̅̅ ̅=ϵ{𝑚𝑎𝑥 (𝑃𝑘 − 𝜇

𝑃𝑘
𝑚𝑎𝑥−𝑃𝑘

𝑚𝑖𝑛

2
, 𝑃𝑘

𝑚𝑖𝑛) ,𝑚𝑖𝑛 (𝑃𝑘 + 𝜇
𝑃𝑘

𝑚𝑎𝑥−𝑃𝑘
𝑚𝑖𝑛

2
, 𝑃𝑘

𝑚𝑎𝑥)}                   (10) 

 

and 𝑃𝑘
𝑚𝑎𝑥 , 𝑃𝑘

𝑚𝑖𝑛 are upper and lower bounds of Pk respectively,𝜇 decreased with the increase of 

iterations. 

𝜇(𝜏) = 1 − 𝑟[1−(𝜏 𝑇⁄ )]𝑏    (11) 
 

Where r is uniform random number in [0, 1], T is the maximum number of iterations, 𝝉 is 
the current iteration number, and b is the shape parameter. From (11), at the initial stage of 
evolution, for small value of r, μ (𝝉) ≈1, the mutation domain is large in this case. However, in the 

later evolution, when 𝝉  approaches T, μ (𝝉) ≈ 0, the mutation domain become small and search 
in the local domain. 
 
2.2.2. Particle Swarm Algorithm 

The PSO conducts searches using a population of particles which correspond to 
individuals in GAs. The population of particles is randomly generated initially. Each particle 

represents a potential solution and has a position represented by a position vector 𝑥𝑖⃗⃗⃗   . A swarm 
of particles moves through the problem space, with the moving velocity of each particle 

represented by a position vector𝑣𝑖⃗⃗⃗   At each time step, a function 𝑓𝑖 representing a quality measure 
is calculated by using 𝑥𝑖   ⃗⃗ ⃗⃗  ⃗ as input. Each particle keeps track of its own best position, which is 

associated with the best fitness it has achieved so far in a vector 𝑝𝑖⃗⃗⃗  . Furthermore, the best position 
among all the particles obtained so far in the population is kept track of as 𝑝𝑔⃗⃗⃗⃗ . At each time step 

𝛕, by using the individual best position, 𝑝𝑖⃗⃗⃗  (𝝉) and global best position, 𝑝𝑔⃗⃗⃗⃗ (𝝉)a new velocity for 

particle i is updated by 
𝑣𝑖⃗⃗⃗   (𝝉 + 𝟏) = 𝝎𝒗𝒊⃗⃗  ⃗(𝝉) + 𝒄𝟏∅𝟏(𝒑𝒊⃗⃗  ⃗(𝛕)-𝒙𝒊⃗⃗  ⃗(𝝉)) + 𝒄𝟐∅𝟐(𝒑𝒈⃗⃗ ⃗⃗  (𝝉) − 𝒙𝒊⃗⃗  ⃗(𝝉))                                 (12) 

Where 𝒄𝟏 and 𝒄𝟐 are acceleration constants and ∅𝟏&∅𝟐 are uniformly distributed random 
numbers in [0, 1]. The term 𝑣𝑖⃗⃗⃗    is limited to its bounds. If the velocity violates this limit, it is set to 
its proper limit. 
𝜔 is the inertia weight factor and in general, it is set according to the following equation: 
 

𝜔 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑇
 .𝛕                        (13) 
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Where 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 is maximum and minimum value of the weighting factor 
respectively. T is the maximum number of iterations and τ is the current iteration number. Based 
on the updated velocities, each particle changes its position according to the following: 
  

𝑥𝑖⃗⃗⃗  (𝜏 + 1) = 𝑥𝑖⃗⃗⃗  (𝜏) + ℎ(𝜏)𝑣𝑖⃗⃗⃗  (𝜏 + 1)         (14) 

Where  
 

ℎ(𝜏) = ℎ𝑚𝑎𝑥 −
(ℎ𝑚𝑎𝑥−ℎ0).𝜏

𝑇
                         (15) 

Where ℎ𝑚𝑎𝑥 and ℎ0  are positive constants 
 

According to (12) and (14), the populations of particles tend to cluster together with each 
particle moving in a random direction. The computation of PSO is easy and adds only a slight 
computation load when it is incorporated into GA. Furthermore, the flexibility of PSO to control 
the balance between local and global exploration of the problem space helps to overcome 
premature convergence of elite strategy in GAs, and also enhances searching ability. The global 
best individual is shared by the two algorithms, which means the global best individual can be 
achieved. Also it can avoid the premature convergence in PSO. 
 
Step 1: Randomly initialize the population of P individuals within the variable constraint range. 
Step 2: Calculate the fitness of the population from the fitness function, and order ascendingly. 
Step 3: The top N individuals are selected as the elites and reproduce them directly to the next 
generation. 
Step 4: The S individuals followed are evolved with PSO and their best positions are updated. 
Step 5: The bottom individuals are evolved with GA and produce P-S-N offspring. 
Step 6: Combine the three parts as the new generation and calculate the fitness of the population. 
Choose the best position among all the individuals obtained so far kept as the global best. 
Step 7: Repeat steps 3–6 until a stopping criterion, such as a sufficiently good solution being 
discovered or a maximum number of generations being completed, is satisfied. The best scoring 
individual in the population is taken as the final answer. 
 
3. Results and Analysis 

At first Improved Particle Swarm Optimization (IPSO) algorithm has been tested in 
standard IEEE 118-bus test system [28].The system has 54 generator buses, 64 load buses, 186 
branches and 9 of them are with the tap setting transformers. The limits of voltage on generator 
buses are 0.95 -1.1 per-unit., and on load buses are 0.95 -1.05 per-unit. The limit of transformer 
rate is 0.9 -1.1, with the changes step of 0.025. The limitations of reactive power source are listed 
in Table 1, with the change in step of 0.01. 
 

       Table 1. Limitation of reactive power sources 

BUS 5 34 37 44 45 46 48 

QCMAX 0 14 0 10 10 10 15 

QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 

QCMAX 12 20 20 10 20 6 6 

QCMIN 0 0 0 0 0 0 0 

 
The statistical comparison results have been listed in Table 2 and the results clearly show 

the better performance of proposed Improved Particle Swarm Optimization (IPSO) algorithm. 
 

Table 2. Comparison results 

Active power loss (p.u) BBO 
[29] 

ILSBBO/ 
strategy1 

[29] 

ILSBBO/ 
strategy1 

[29] 

Proposed 
IPSO 

Min 128.77 126.98 124.78 106.52 

Max 132.64 137.34 132.39 112.68 

Average  130.21 130.37 129.22 108.38 
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Then the Improved Particle Swarm Optimization (IPSO) algorithm has been tested in 
practical 191 test system and the following results have been obtained. In Practical 191 test bus 
system – Number of Generators = 20, Number of lines = 200, Number of buses = 191 Number of 
transmission lines = 55. Table 3 shows the optimal control values of practical 191 test system 
obtained by IPSO method. And table 4 shows the results about the value of the real power loss 
by obtained by Improved Particle Swarm Optimization (IPSO) algorithm. 

 
Table 3. Optimal Control values of Practical 191 utility (Indian) system by IPSO method 

VG1 1.10  VG 11 0.90 

VG 2 0.76 VG 12 1.00 

VG 3 1.01 VG 13 1.00 

VG 4 1.01 VG 14 0.90 

VG 5 1.10 VG 15 1.00 

VG 6 1.10 VG 16 1.00 

VG 7 1.10 VG 17 0.90 

VG 8 1.01 VG 18 1.00 

VG 9 1.10 VG 19 1.10 

VG 10 1.01 VG 20 1.10 

                               

T1 1.00  T21 0.90  T41 0.90 

T2 1.00 T22 0.90 T42 0.90 

T3 1.00 T23 0.90 T43 0.91 

T4 1.10 T24 0.90 T44 0.91 

T5 1.00 T25 0.90 T45 0.91 

T6 1.00 T26 1.00 T46 0.90 

T7 1.00 T27 0.90 T47 0.91 

T8 1.01 T28 0.90 T48 1.00 

T9 1.00 T29 1.01 T49 0.90 

T10 1.00 T30 0.90 T50 0.90 

T11 0.90 T31 0.90 T51 0.90 

T12 1.00 T32 0.90 T52 0.90 

T13 1.01 T33 1.01 T53 1.00 

T14 1.01 T34 0.90 T54 0.90 

T15 1.01 T35 0.90 T55 0.90 

T19 1.02 T39 0.90   

T20 1.01 T40 0.90   

 
 

Table 4. Optimum real power loss values obtained for practical 191 utility (Indian) system by 
IPSO method. 

Real power Loss 
(MW) 

IPSO 

Min 138.128 

Max 144.146 

Average 140.162 

 
4. Conclusion 

In this paper, Improved Particle Swarm Optimization (IPSO) algorithm successfully 
solved the optimal reactive power problem. The proposed algorithm combines Particle swarm 
optimization (PSO) and genetic algorithm (GA) to form a hybrid algorithm. Due to combination of 
different optimization mechanisms, not only the offspring can keep diversity, but also PSO can 
keep the balance of global search and local search, so the entire search ability of the algorithm 
can be improved. In order to evaluate the efficiency of the proposed algorithm, it has been tested 
in standard IEEE 118 & practical 191 bus test systems and compared other algorithms.  
Simulation results show that real power loss considerably reduced and control variables are within 
the limits. 
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