
Journal of Telematics and Informatics (JTI) 
Vol.7, No.3, September 2019, pp. 166~173  ◼  166 
ISSN: 2303-3703   
 

 

 

 
JSON Implementation with Zlib Compression for 
Database Efficiency in Handling Dynamic Upload 

Multiple Images 

 
1Rianto, 2Alam Rahmatulloh, 3Iqbal Muhammad Fajar Nuralam, 

Departement of Informatics, Universitas Siliwangi 
Jalan Siliwangi No. 24 Kota Tasikmalaya, (0265) 330634  

e-mail : 1rianto@unsil.ac.id; 2alam@unsil.ac.id; 3iqbal.fajar.nuralam14@student.unsil.ac.id  

 

Abstract 
In this era, in an application it is often found that a dynamic input form is a form that can be 

filled in a lot of data, the application user is free to fill the data according to his wishes. To handle 
this dynamic input form, the developer usually adds a new table in a database specifically for 
storing dynamic data, it has the potential to waste tables and records in a database. Applying the 
JSON conversion technique is a solution to overcome this, dynamic data is stored in a special 
field so that the use of tables and records can be minimized, as well as to compress the JSON 
string length applied by the Zlib algorithm. In this study, dynamic data is a images file uploaded 
on an input form. The results of this study in the case of handling multiple dynamic form upload 
images shows that the JSON conversion technique is better than conventional techniques in 
terms of faster data storage speeds of 72.6%, in terms of simpler database structures, and in 
terms of 22.7% more data size small, so database management becomes more efficient. 

 
Keywords : Database, Data Donamics, JSON, Upload, Zlib 

 
1. Introduction 

Today the database is a very important need for a company or government agency. 
Databases are commonly used to manage internal records or records, present data to corporate 
consumers on the internet, and are widely used to support other commercial processes [1]. Over 
time, technological developments in application development are increasing rapidly. In web-
based application technology, for example, starting from web 1.0 (static web), web 2.0 (dynamic 
web), and now entering the era of web 3.0 (semantic web) [2]. 

Often found in an application there is a dynamic input form which is a form that can be filled 
with a lot of data, the application user is free to fill the data according to his wishes. To handle 
this dynamic input form, developers usually add special tables in the database to store dynamic 
data. This has the potential to waste tables and records, dynamic data is stored by utilizing foreign 
keys from other tables [3]. In addition to wasting the number of tables and records, this method 
causes the database file size to be larger and the data access speed will be longer. Therefore, it 
is very important to do efficiency in the database, because the database is the heart of the 
information system. Data must be available when the user wants to use, data must also be 
accurate and consistent. Apart from these requirements, the purpose of database design is the 
efficiency of data storage and the efficiency of reading and updating data [4]. 

JSON has a higher level of parsing and is easier to implement than XML [5] and the JSON 
flexibility is superior to XML [6]. In addition JSON is superior to XML in terms of execution time 
and CPU usage [7]. Therefore, based on these data, research is carried out to overcome 
inefficient database management in dynamic data storage by utilizing JSON. JSON is an object 
that was originally designed and developed with a lightweight, text-based data exchange format, 
the independent language of data exchange comes from the ECMAScript (javascript) literal object 
in standard language programming [8]. JSON objects are analyzed as string arrays, with higher 
parsing, efficiency and an easier format than transportation formats such as XML. JSON is made 
of two data structures namely a collection of name-value pairs and an ordered list of values and 
has a data format that can be exchanged with the built-in data structure in the programming 
language and reduces the complexity and processing time [5]. 

Zlib is one of the algorithms for compressing data. Using the Zlib algorithm aims to 
compress the JSON string length in the database. The use of this Zlib Algorithm is because it is 

mailto:rianto@unsil.ac.id
mailto:alam@unsil.ac.id
mailto:iqbal.fajar.nuralam14@student.unsil.ac.id


JTI  ISSN: 2303-3703 ◼ 167 

 
 

 

JSON Implementation with Zlib Compression for Database Efficiency in Handling Dynamic 
Upload Multiple Images (Rianto) 

 

lossless, where compression data compression techniques can be decompressed again and the 
results are the same as the data before the compression process, so the file transfer process will 
be maximized and the stored string length can be minimized [9]. 

 
Database Efficiency 

A database is a collection of data that is logically related and describes the integration 
between a table and other tables, which are designed to meet the information needs of an 
organization [10]. The purpose of database design is the efficiency of data storage and the 
efficiency of reading and updating data [4]. 

 

JSON 
JSON (JavaScript Object Notation) is a data exchange format that is lightweight, easy to 

read and written by humans, and easily translated and generated by a computer. This format is 
based on part of the JavaScript Programming Language, ECMA-262 Standard Edition 3rd - 
December 1999. JSON is a text format that does not depend on any programming language 
because it uses the style of language commonly used by C family programmers including C, C 
++, C # , Java, JavaScript, Perl, Python etc. Because of these properties, make JSON ideal as a 
data exchange language [8]. 

 

Image 
Image (digital image) is a discrete image that can be processed by a computer. This image 

can be generated through a digital camera and scanner or images that have undergone a 
digitization process [11]. 

 
Algoritma Zlib 

The Zlib algorithm is a derivative of the Deflate compression algorithm. This algorithm was 
created by Jean-Loup Gailly who created the data compression process and Mark Adler that 
created the data decompression process. The Zlib algorithm performs compression by 
compressing data consisting of a series of blocks, according to the data input block. Each block 
in the data is compressed using the Deflate data compression algorithm as a compressor which 
is a variation of the LZ77 algorithm combined with Huffman Coding [12]. 

 
Related Work 

The researcher [5] in his research explained that JSON is a lightweight data exchange 
format, where JSON makes time efficient for data translation, reduces complexity, and data 
processing time. Explaining that JSON has a higher parsing efficiency, and in conclusion the 
researcher recommends encryption by using the JSON format as an alternative to encryption 
using the XML format. The researcher [6] analyzes the data exchange format comparison on 
JSON and XML. The result in terms of the performance of the data exchange format in the form 
of JSON is better between the two and in the data parsing speed and JSON flexibility is superior 
to XML. Even when compression is enabled, XML generates more overhead on the data stream 
compared to JSON. 

The researcher [7] in his research shows that JSON is the best choice for storage and 
query speed. While XML and JSON technology are still relatively new to date compared to 
conventional databases. JSON technology does show a greater potential for database technology 
to handle huge data due to increased data every year. Results of previous research shows that 
JSON is better than XML, so it becomes a reference for using JSON as a medium for handling 
dynamic data in the case 

 
2. Research Method 

 The method proposed in this study can be seen in Figure 1. 

  
Figure 1. Research Method 



168    ◼      ISSN: 2303-3703  

 

 

 

JTI Vol.7, No.3, September 2019 

Data / File Input Process 
Data / file input is the first step to implement the JSON conversion technique in handling 

dynamic upload multiple images. In the application prototype that has implemented this JSON 
conversion the user is asked to enter several input forms including name, description, and image 
files to be uploaded. Users can upload images files dynamically as many times as users want, for 
illustrations can be seen in Figure 2. 

 
Figure 2. Display of Data / File Input Process 

 
If the choose file button is clicked, a file explorer pop-up window will appear on Windows, 

for an illustration, see Figure 3. 

 
Figure 3. Pop-Up File Explorer window on Windows 

 

File Selection Process 
This stage is done to filter what types of files are allowed to be uploaded. In this study the 

types of files that are allowed are those included in the image category including * .jpeg / *. Jpg, 
* .png, and * .gif. This file selection process is not done based on file extensions but based on the 
original file type to prevent the ImageTragick attack, which is a file that contains a special script, 
and the file is saved with an extension image. The way to attack is to upload the file to a form that 
has the file upload feature. 

The file selection process stage is carried out in two stages: the front-end and the back-
end. The first stage is done on the front-end as shown in Figure 3, the file selection on the front-
end is done when the user will select the images file to be uploaded, the file explorer windows 
pop-up window only raises the file types allowed to upload. 

The second stage is done on the back-end, which is when processing files after the user 
selects the file to be uploaded. As an illustration when the file selection process shows that the 
uploaded file does not include the permissible file type shown in Figure 4, an illustration shows 
that the file uploaded is one that is allowed for the file type shown in Figure 5. 

 
Figure 4. Upload Unauthorized File Types 

 
Figure 5. Upload Allowable File Types 

 
Convert Array to JSON 

The image file uploaded is actually processed in the form of an array, if it is stored in the 
database it must be repeated several times with the aim of each array element being broken back 
into an ordinary string and can be read in the database. As a result the storage process to the 
database is carried out many times as much as the repetition is done, besides the number of files 
uploaded also affects the number of records stored. For that purpose, the conversion from array 
to JSON form with the aim of the row of data stored in the array is converted into one string line. 



JTI  ISSN: 2303-3703 ◼ 169 

 
 

 

JSON Implementation with Zlib Compression for Database Efficiency in Handling Dynamic 
Upload Multiple Images (Rianto) 

 

 
Figure 6. Files in Array type 

 
Figure 7. Files in JSON type 

 

Figure 6 shows the file upload process, when the user selects 3 images files to upload and 
shows the results of the file upload process that is still in array form. And after being converted 
into JSON, the result is shown in Figure 7. The process of converting from array to JSON is done 
by using a json_enccode function in the PHP programming language which functions to convert 
the array to JSON. 

 
JSON String Compression with Zlib 

Data that has been converted to JSON will be compressed with the aim of the length of the 
JSON string to be trimmed. The JSON string compression process with this Zlib algorithm uses 
the zlib_encode () function with the Deflate algorithm as its compressor, the function has become 
a library in the PHP programming language. The JSON String compression result with the Zlib 
algorithm is shown in Figure 8, the compression string will be unique characters and the length 
of the string will be shorter. 

 
Figure 8. JSON String Compression Results with Zlib Algorithm 

Save the Zlib String to the Database 
The JSON string that has been compressed into a Zlib string is then saved to the database. 

 
Figure 9. Save the Zlib String to the Database 

Figure 9 shows that the Zlib string that is compressed from the JSON string is successfully 
saved to the database. By compressing the JSON string, it will further trim the length of the string 
stored in the database. When using conventional handling techniques the data storage process 
is carried out 3 times, and produces 3 records. By applying the JSON conversion technique, the 
storage process is only done once because 3 uploaded files are converted into one JSON string 
line and compressed with the Zlib algorithm so that it can save the use of tables, number of 
records, and time needed to store data to the database. 

 
Decompress the Zlib String to JSON 

To return the compression string with the Zlib algorithm to JSON form, the decompression 
process is performed. The decompression process is carried out using the Zlib library in the PHP 
programming language by calling the zlib_decode () function. 

 

Split the JSON String into an Array 
The compressed JSON string is split back into array form using the json_decode syntax in 

the PHP programming language. 
 

Display Data in Application 
The last step is to display the data converted from the JSON string to the array in the 

application. To be able to split each array element so that it can be read by the system, the 
repetition process is performed using the foreach function in the PHP programming language, the 
foreach function is a special repetition for reading array values. 

 
3. Result and Analysis 
Testing 

Testing is done by comparing the application of dynamic upload multiple images by using 
the JSON conversion technique and dynamic upload multiple images application that uses 
conventional handling techniques. The parameters used for this test are in terms of data storage 
speed, database structure, and data size. 



170    ◼      ISSN: 2303-3703  

 

 

 

JTI Vol.7, No.3, September 2019 

Data Storage Speed Testing 
The test was carried out as many as 10 types of experiments, where each type of 

experiment was carried out 5 times in applications that applied the JSON conversion technique 
and in conventional applications. Table 1 describes the test history in the application that applies 
the JSON conversion technique and Table 2 describes the testing history in conventional 
applications. 

Table 1. Testing JSON version data storage speed 

No Jenis Pengujian 

Pengujian Ke - 
Rata – Rata 

(detik) 1 (detik) 
2 

(detik) 
3 

(detik) 
4 

(detik) 
5 

(detik) 

1 Upload 1 File 0,0792 0,0544 0,0864 0,1110 0,0491 0,0760 

2 Upload 2 File 0,0861 0,0724 0,1010 0,0919 0,0719 0,0847 

3 Upload 3 File 0,1200 0,0849 0,0847 0,0659 0,1236 0,0958 

4 Upload 4 File 0,1103 0,0757 0,0967 0,1427 0,0849 0,1021 

5 Upload 5 File 0,0951 0,0849 0,2701 0,0407 0,1170 0,1216 

6 Upload 6 File 0,1046 0,0937 0,0836 0,0606 0,1216 0,0928 

7 Upload 7 File 0,0811 0,0593 0,0797 0,0783 0,0853 0,0767 

8 Upload 8 File 0,0770 0,0693 0,0673 0,0583 0,0653 0,0674 

9 Upload 9 File 0,0746 0,0908 0,0906 0,0986 0,0975 0,0904 

10 Upload 10 File 0,1261 0,0600 0,0702 0,0682 0,0663 0,0782 

 
Table 2. Testing conventional data storage speed 

No Jenis Pengujian 

Pengujian Ke - 
Rata – Rata 

(detik) 1 (detik) 
2 

(detik) 
3 

(detik) 
4 

(detik) 
5 

(detik) 

1 Upload 1 File 0,1201 0,2202 0,1225 0,2465 0,1066 0,1632 

2 Upload 2 File 0,3271 0,1664 0,1941 0,1218 0,2697 0,2158 

3 Upload 3 File 0,3353 0,2222 0,1732 0,2701 0,2652 0,2532 

4 Upload 4 File 0,2818 0,2825 0,3101 0,3037 0,213 0,2782 

5 Upload 5 File 0,3049 0,273 0,3013 0,2603 0,2701 0,2819 

6 Upload 6 File 0,2953 0,3045 0,3013 0,3337 0,3206 0,3111 

7 Upload 7 File 0,3144 0,3166 0,3379 0,3258 0,3181 0,3226 

8 Upload 8 File 0,2799 0,3896 0,2599 0,5152 0,3533 0,3596 

9 Upload 9 File 0,5197 0,426 0,4076 0,6162 0,6147 0,5168 

10 Upload 10 File 0,4539 0,4323 0,5619 0,6106 0,6197 0,5357 

 

 
Figure 10. Comparison of data storage speed graphs 

 
Figure 10 shows a graph of data storage speed in dynamic upload multiple images 

applications using the JSON conversion technique and dynamic upload multiple images 
application using conventional handling techniques. 

 
Database Structure Testing 

This test is done by comparing the database structure used in dynamic upload multiple 
images applications by using JSON conversion handling techniques and multiple dynamic images 
upload applications that use conventional handling techniques. 

 

 
Figure 11. JSON version database structure 

 



JTI  ISSN: 2303-3703 ◼ 171 

 
 

 

JSON Implementation with Zlib Compression for Database Efficiency in Handling Dynamic 
Upload Multiple Images (Rianto) 

 

 
Figure 12. Number of post table records JSON version 

 
 Figure 11 shows the database structure for dynamic upload multiple images applications 
using the JSON conversion handling technique. Database with the name db_upload_json only 
requires 1 table with the name of the post because dynamic image file data in the form of a JSON 
string can be stored in a field named file. In testing the data storage speed, the data is inputted 
50 times, then the record stored in the database is 50 records, shown in Figure 12. 

 
Figure 13. Conventional version database structure 

 

Figure 13 shows the database structure in dynamic upload multiple images applications 
with conventional handling techniques. The database is named db_upload_conventional, to be 
able to store dynamic image file data on conventional handling techniques it takes 1 special table. 
The first table is a post table whose function is to accommodate non-dynamic data such as names 
and captions, while the second table is an image table whose function is to accommodate 
dynamic image file data. Figure 14 shows the number of records in the post table and Figure 15 
shows the number of records in the picture table. 

 
Figure 14. Number of conventional post table records 

 

 
Figure 15. Number of conventional image table records 

 
Large Data Size Test 
 This test is done by comparing the size of the data in the application database dynamic 
upload multiple images by using JSON conversion handling techniques with applications with 
conventional handling techniques. The number of uploaded image files is 1000 files with the 
number of characters in the file name and the same file type where every 1 time the data input is 
uploaded as many as 10 files. Table 3 shows each database. 



172    ◼      ISSN: 2303-3703  

 

 

 

JTI Vol.7, No.3, September 2019 

Table 3. Large size of data in the database 

No Database Name 
Size 

(bytes) 

Size on 
Disk 

(bytes 

1 db_upload_json 35.351 36.864 

2 db_upload_konvensional 45.731 49.152 
 

 
Figure 16. Graph comparison of the size of the 

data in the database 

Figure 16 shows a large graph of the size of the data in the database used in dynamic 
upload multiple images applications by using JSON conversion handling techniques and 
databases in applications with conventional handling techniques. 

4. Conclusion 
The JSON conversion technique can handle form dynamic upload multiple images to be 

more efficient, and shows the JSON function not only as a data exchange format. In testing in 
terms of speed of data storage results in applications that use JSON conversion handling 
techniques the data storage speed is 72.6% faster than applications that use conventional 
handling techniques. 

In the tests carried out by comparing the database structure in applications that use JSON 
conversion handling techniques only need 1 table and to accommodate dynamic image file data 
simply stored in a special field to accommodate the data so that the database structure becomes 
simpler and the number of records stored less and less. In the tests carried out by comparing the 
size of the data in the database, the results of applications that use JSON conversion handling 
techniques have a data size of 22.7% smaller than applications that use conventional handling 
techniques. 

Suggestions for further research are to recompile the JSON conversion technique with a 
special library to handle dynamic input forms, using other test parameters with the hope that the 
results of the compilation will be more accurate. 
 
References 

[1]  Molina, Ulman dan Widom, Database Systems : The Complete Book, New Jersey: Prentice Hall, 2001.  

[2]  M. R. Arief, Pemrograman Web Dinamis menggunakan PHP dan MySQL, Yogyakarta: C.V ANDI 

OFFSET, 2011.  

[3]  M. A. Rosid, “Implementasi JSON untuk Minimasi Penggunaan Jumlah Kolom Suatu Tabel Pada 

Database PostgreSQL,” Journal Of Informatics, Network, and Computer Science, vol. 1, pp. 33-42, 

2016.  

[4]  A. Noertjahyana, S. Rostianingsih dan A. Handojo, “Pengaruh Desain Terhadap Penerapan Efektifitas 

Database Melalui Beberapa Contoh Kasus,” Jurnal Informatika, vol. 6, pp. 1-6, 2015.  

[5]  A. El-Aziz dan A. Kannan, “JSON Encryption,” International Conference on Computer Communication 

and Informatics (ICCCI -2014), pp. 1-6, 2014.  

[6]  S. Zunke dan V. D'Souza, “JSON vs XML: A Comparative Performance Analysis of Data Exchange 

Formats,” IJCSN International Journal of Computer Science and Network, vol. 3, no. 4, pp. 257-261, 

2014.  

[7]  M. K. Yusof dan M. Man, “Efficiency of JSON approach for Data Extraction and Query Retrieval,” 

Indonesian Journal of Electrical Engineering and Computer Science Vol. 4, No. 1, pp. 203-214, 2016.  

[8]  JSON, “Pengenalan JSON,” 2 Juni 2018. [Online]. Available: https://www.json.org/json-id.html. 

[Diakses 2 Juni 2018]. 

[9]  P. Deutsch dan J.-L. Gailly, ZLIB Compressed Data Format Specification version 3.3, NetworkWorking 

Group, 1996.  

[10]  T. Connoly dan C. Begg, Database Systems : A Practical Approach to Design, Implementation, and 

Management, University of the west of Scotland: Addison Wesley, 2002.  



JTI  ISSN: 2303-3703 ◼ 173 

 
 

 

JSON Implementation with Zlib Compression for Database Efficiency in Handling Dynamic 
Upload Multiple Images (Rianto) 

 

[11]  P. Fahzuanta, “Analisis Perbandingan Pendeteksi Garis Tepi pada Citra Digital Antara Metode Edge 

Linking dan Operator Sobe,” Universitas Sumatera Utara, 2010.  

[12]  ZLIB, “Zlib Algorithm,” 15 December 2017. [Online]. Available: http://www.zlib.net. [Diakses 7 

September 2018]. 

 

  


