Selecting Root Exploit Features Using Flying Animal-Inspired Decision

Ahmad Firdaus, Mohd Faizal Ab Razak, Wan Isni Sofiah Wan Din, Danakorn Nincarean, Shahreen Kasim, Tole Sutikno, Rahmat Budiarto

Abstract


Malware is an application that executes malicious activities to a computer system, including mobile devices. Root exploit brings more damages among all types of malware because it is able to run in stealthy mode. It compromises the nucleus of the operating system known as kernel to bypass the Android security mechanisms. Once it attacks and resides in the kernel, it is able to install other possible types of malware to the Android devices. In order to detect root exploit, it is important to investigate its features to assist machine learning to predict it accurately. This study proposes flying animal-inspired (1) bat, 2) firefly, and 3) bee) methods to search automatically the exclusive features, then utilizes these flying animal-inspired decision features to improve the machine learning prediction. Furthermore, a boosting method (Adaboost) boosts the multilayer perceptron (MLP) potential to a stronger classification. The evaluation jotted the best result is from bee search, which recorded 91.48 percent in accuracy, 82.2 percent in true positive rate, and 0.1 percent false positive rate.


Keywords


root exploit; Android; static analysis; machine learning; bee; bat; firefly

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

503 Service Unavailable

Service Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.

Additionally, a 503 Service Unavailable error was encountered while trying to use an ErrorDocument to handle the request.