Design and Implementation of Multiplexed and Obfuscated Physical Unclonable Function

Mohd Syafiq Mispan, Hafez Sarkawi, Aiman Zakwan Jidin, Radi Husin Ramlee, Haslinah Mohd Nasir


Model building attack on Physical Unclonable Functions (PUFs) by using machine learning (ML) techniques has been a focus in the PUF research area. PUF is a hardware security primitive which can extract unique hardware characteristics (i.e., device-specific) by exploiting the intrinsic manufacturing process variations during integrated circuit (IC) fabrication. The nature of the manufacturing process variations which is random and complex makes a PUF realistically and physically impossible to clone atom-by-atom. Nevertheless, its function is vulnerable to model-building attacks by using ML techniques. Arbiter-PUF is one of the earliest proposed delay-based PUFs which is vulnerable to ML-attack. In the past, several techniques have been proposed to increase its resiliency, but often has to sacrifice the reproducibility of the Arbiter-PUF response. In this paper, we propose a new derivative of Arbiter-PUF which is called Mixed Arbiter-PUF (MA-PUF). Four Arbiter-PUFs are combined and their outputs are multiplexed to generate the final response. We show that MA-PUF has good properties of uniqueness, reliability, and uniformity. Moreover, the resilient of MA-PUF against ML-attack is 15% better than a conventional Arbiter-PUF. The predictability of MA-PUF close to 65% could be achieved when combining with challenge permutation technique.


Physical Unclonabel Function;process variation;machine learning;model-building;hardware security

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats