Fault Classification in a DG Connected Power System using Artificial Neural Network

Anshuman Bhuyan, Basanta K. Panigrahi, Subhendu Pati

Abstract


Distributed generation is playing an important role in power system to meet the increased load demand. Integration of Distributed Generator (DG) to grid leads to various issues of   protection and control of power system structure.  The effect of the distributed generators to the grid is changes the fault current level, which makes the fault analysis more complex. From the different fault issues occurs in a distributed generator integrated power system, classification of fault remains as one of the most vital issue even after years of in-depth research. This paper emphasis on the classification of faults in DG penetrated power system using Artificial Neural Network (ANN). Because researchers are attempting to detect and diagnose these faults as soon as possible in order to avoid financial losses, this work aims to investigate the sort of fault that happened in the hybrid system. This paper proposed artificial neural network based approaches for fault disturbances in a microgrid made up of wind turbine generators, fuel cells, and diesel generator. The voltage signal is retrieved at the point of common coupling (PCC). The extracted data are used for training and testing purpose.  Artificial neural network technique is utilized for the classification of fault in the simulated model. Furthermore, performance indices (PIs) such as standard deviation and skewness are calculated for reduction of data size and better accuracy. Both the fault and parameters are varied to check the usefulness of the proposed method. Finally, the results are discussed and compared with different DG penetration.


Keywords


Distributed Generators (DG); Artificial Neural Network (ANN); Point of Common Coupling (PCC)

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats