A Cost Sensitive SVM and Neural Network Ensemble Model for Breast Cancer Classification
Abstract
Keywords
References
K. Sathishkumar et al., “Trends in breast and cervical cancer in India under National Cancer Registry Programme: an age-period-cohort analysis,” Cancer Epidemiol., vol. 74, p. 101982, 2021.
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, 2018.
H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021.
S. Malvia, S. A. Bagadi, U. S. Dubey, and S. Saxena, “Epidemiology of breast cancer in Indian women,” Asia Pac. J. Clin. Oncol., vol. 13, no. 4, pp. 289–295, 2017.
K. K. Thakur, D. Bordoloi, and A. B. Kunnumakkara, “Alarming burden of triple-negative breast cancer in India,” Clin. Breast Cancer, vol. 18, no. 3, pp. e393–e399, 2018.
P. K. Dhillon et al., “The burden of cancers and their variations across the states of India: the Global Burden of Disease Study 1990–2016,” Lancet Oncol., vol. 19, no. 10, pp. 1289–1306, 2018.
P. Priyadarshini, V. Hemavathy, and S. Sarathi, “RISING INCIDENCE OF BREAST CANCER IN INDIA,” NVEO-Nat. VOLATILES Essent. OILS J. NVEO, pp. 2284–2288, 2021.
Kumar, N., Narayan Das, N., Gupta, D., Gupta, K., & Bindra, J. (2021). Efficient automated disease diagnosis using machine learning models. Journal of Healthcare Engineering, 2021.
K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis, “Machine learning applications in cancer prognosis and prediction,” Comput. Struct. Biotechnol. J., vol. 13, pp. 8–17, 2015.
T. E. Mathew and K. A. Kumar, “A Logistic Regression Based Hybrid Model For Breast Cancer Classification,” Indian J. Comput. Sci. Eng., vol. 11, no. 6, pp. 899–906, 2020, doi: DOI : 10.21817/indjcse/2020/v11i6/201106201.
Uddin, S., Khan, A., Hossain, M. et al. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19, 281 (2019). https://doi.org/10.1186/s12911-019-1004-8
Hatem, M.Q. Skin lesion classification system using a K-nearest neighbor algorithm. Vis. Comput. Ind. Biomed. Art 5, 7 (2022). https://doi.org/10.1186/s42492-022-00103-6
T. E. Mathew, “A logistic regression with recursive feature elimination model for breast cancer diagnosis,” Int. J. Emerg. Technol., vol. 10, no. 3, pp. 55–63, 2019.
M. Islam, M. Haque, H. Iqbal, M. Hasan, M. Hasan, and M. N. Kabir, “Breast cancer prediction: a comparative study using machine learning techniques,” SN Comput. Sci., vol. 1, no. 5, pp. 1–14, 2020.
F. J. M. Shamrat, M. A. Raihan, A. S. Rahman, I. Mahmud, and R. Akter, “An analysis on breast disease prediction using machine learning approaches,” Int. J. Sci. Technol. Res., vol. 9, no. 02, pp. 2450–2455, 2020.
M. A. Aswathy and M. Jagannath, “An SVM approach towards breast cancer classification from H&E-stained histopathology images based on integrated features,” Med. Biol. Eng. Comput., vol. 59, no. 9, pp. 1773–1783, 2021.
M.-W. Huang, C.-W. Chen, W.-C. Lin, S.-W. Ke, and C.-F. Tsai, “SVM and SVM ensembles in breast cancer prediction,” PloS One, vol. 12, no. 1, p. e0161501, 2017.
N. Liu, J. Shen, M. Xu, D. Gan, E.-S. Qi, and B. Gao, “Improved cost-sensitive support vector machine classifier for breast cancer diagnosis,” Math. Probl. Eng., vol. 2018, 2018.
C. Aroef, Y. Rivan, and Z. Rustam, “Comparing random forest and support vector machines for breast cancer classification,” Telkomnika, vol. 18, no. 2, pp. 815–821, 2020.
H. Turabieh, “Comparison of NEAT and Backpropagation Neural Network on Breast Cancer Diagnosis.,” Int. J. Comput. Appl., vol. 139, no. 8, pp. 40–44, 2016.
S. Singh, H. Sushmitha, J. Harini, and B. R. Surabhi, “An efficient neural network based system for diagnosis of breast cancer,” Breast Cancer, vol. 8, no. 10, p. 12, 2014.
K. Kaushik and A. Arora, “Breast cancer diagnosis using artificial neural network,” Int. J. Latest Trends Eng. Technol. IJLTET, vol. 7, pp. 41–48, 2016.
T. E. Mathew, “A comparative study of the performance of different Support Vector machine Kernels in Breast Cancer Diagnosis,” Int. J. Inf. Comput. Sci., vol. 6, no. 6, pp. 432–441, 2019.
L. Wang, Z. Wang, G. Wei, and F. E. Alsaadi, “Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1046–1057, 2017.
M. M. Saritas and A. Yasar, “Performance analysis of ANN and Naive Bayes classification algorithm for data classification,” Int. J. Intell. Syst. Appl. Eng., vol. 7, no. 2, pp. 88–91, 2019.
A. Alzubaidi, G. Cosma, D. Brown, and A. G. Pockley, “Breast cancer diagnosis using a hybrid genetic algorithm for feature selection based on mutual information,” in 2016 International Conference on Interactive Technologies and Games (ITAG), 2016, pp. 70–76.
M. A. Rahman and R. C. Muniyandi, “An enhancement in cancer classification accuracy using a two-step feature selection method based on artificial neural networks with 15 neurons,” Symmetry, vol. 12, no. 2, p. 271, 2020.
M. Kumar and H. S. Sheshadri, “On the classification of imbalanced datasets,” Int. J. Comput. Appl., vol. 44, no. 8, pp. 1–7, 2012.
R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector machines to imbalanced datasets,” in European conference on machine learning, 2004, pp. 39–50.
S. Chand, “A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method,” Mach. Vis. Appl., vol. 31, no. 6, pp. 1–10, 2020.
Kaur, S., Kumar, Y., Koul, A. et al. A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges. Arch Computat Methods Eng 30, 1863–1895 (2023). https://doi.org/10.1007/s11831-022-09853-1
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.
Ali, E. E. E., & Feng, W. Z. (2016). Breast cancer classification using support vector machine and neural network. International Journal of Science and Research, 5(3), 1-6.
Huang M-W, Chen C-W, Lin W-C, Ke S-W, Tsai C-F (2017) SVM and SVM Ensembles in Breast Cancer Prediction. PLoS ONE 12(1): e0161501. https://doi.org/10.1371/journal.pone.0161501
Abdar, M., & Makarenkov, V. (2019). CWV-BANN-SVM ensemble learning classifier for an accurate diagnosis of breast cancer. Measurement, 146, 557-570.
Wang, H., Zheng, B., Yoon, S. W., & Ko, H. S. (2018). A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2), 687-699.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.