Acute Lymphoblastic Leukemia Blood Cells Prediction Using Deep Learning & Transfer Learning Technique
Abstract
Keywords
References
L. H. S. Vogado, R. D. M. S. Veras, A. R. Andrade, F. H. D. de Araujo, R. R. V. Silva, and K. R. T. Aires, “Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks,” in Proceedings of the 30th SIBGRAPI Conference On Graphics, Patterns And Images (SIBGRAPI), pp. 367–373, Niteroi, Brazil, October 2017.
M. Loey, M. Naman, and H. Zayed, “Deep transfer learning InDiagnosing leukemia in blood cells,” Computers, vol. 9, no. 2, 2020.
A. Lavric and P. Valentin, “KeratoDetect: keratoconus detection algorithm using convolutional neural networks,” Computational Intelligence and Neuroscience, vol. 9, 2019.
P. H. Kasani, S.-W. Park, and J.-W. Jang, “An aggregated-based deep learning method for leukemic B- lymphoblast classification,” Diagnostics, vol. 10, no. 12, p. 1064, 2020.
M. Macawile, V. Quiñones, A. Ballado, J. Cruz, and M. Caya, “White blood cell classification and
counting using convolutional neural network,” in Proceedings of the 2018 3rd International Conference on Control and Robotics Engineering (ICCRE), pp. 259–263, Nagoya, Japan, April 2018.
S. N. M. Safuan, M. R. M. Tomari, W. N. W. Zakaria, N. Othman, and N. S. Suriani, “Computer aided system (CAS) of lymphoblast classification for acute lymphoblastic leukemia (ALL) detection using various pre-trained models,” in Proceedings of the IEEE Student Conference on Research and Development (SCOReD), pp. 411–415, Batu Pahat, Malaysia, September 2020.
U. Pawar, D. O’Shea, S. Rea, and R. O’Reilly, “Explainable AI in Healthcare,” in Proceedings of the 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, June 2020.
T. Pansombut, S. Wikaisuksakul, K. Khongkraphan, and A. Phon-On, “Convolutional neural networks for recognition of lymphoblast cell images,” Computational Intelligence and Neuroscience, vol. 2019, Article ID 7519603, 2019.
O. S. Ghongade, S. K. S. Reddy, S. Tokala, K. Hajarathaiah, M. K. Enduri and S. Anamalamudi, "A Comparison of Neural Networks and Machine Learning Methods for Prediction of Heart Disease," 2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 2023, pp. 1-7, doi: 10.1109/ICCT56969.2023.10076174.
Weng, R., Yu, H., Huang, S., Cheng, S., & Luo, W. (2020). Acquiring Knowledge from Pre-Trained Model to Neural Machine Translation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 9266-9273.
Y. Zhai, H. Cao, W. Deng, J. Gan, V. Piuri, and J. Zeng, “BeautyNet: joint multiscale CNN and transfer learning method for unconstrained facial beauty prediction,” Computational Intelligence and Neuroscience, vol. 2019, pp. 1–14, 2019.
R. Zemouri, N. Zerhouni, and D. Racoceanu, “Deep learning in the biomedical applications: recent and future status,” Applied Sciences, vol. 9, no. 8, p. 1526, 2019.
K. Suzuki, “Overview of deep learning in medical imaging,” Radiological Physics and Technology, vol. 10, no. 3, pp. 257–273, 2017.
M. Hasan, M. Fatemi, M. Khan, M. Kaur, and A. Zaguia, “Comparative analysis of skin cancer (benign vs. malignant) detection using convolutional neural networks,” Journal of Healthcare Engineering, vol. 2021, 17 pages, 2021.
A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, Legg, and D. P. Hughes, “Deep learning for image-based cassava disease detection,” Frontiers of Plant Science, vol. 8, p. 1852, 2017.
Yanada, M., Jinnai, I., Takeuchi, J., Ueda, T., Miyawaki, S., Tsuzuki, M., ... & Naoe, T. (2007). Clinical features and outcome of T-lineage acute lymphoblastic leukemia in adults: a low initial white blood cell count, as well as a high count predict decreased survival rates. Leukemia research, 31(7), 907-914.
Boldú, L., Merino, A., Acevedo, A., Molina, A., & Rodellar, J. (2021). A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202, 105999.
Alam, M. M., & Islam, M. T. (2019). Machine learning approach of automatic identification and counting of blood cells. Healthcare technology letters, 6(4), 103-108.
Dwivedi, K., & Dutta, M. K. (2023). Microcell‐Net: A deep neural network for multi‐class classification of microscopic blood cell images. Expert Systems, e13295.
Rohaziat, N., Tomari, M. R. M., Zakaria, W. N. W., & Othman, N. (2020). White Blood Cells Detection using YOLOv3 with CNN Feature Extraction Models. International Journal of Advanced Computer Science and Applications, 11(10).
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.