Autoencoder-Based Representational Learning for the Determination of Corrosion Severity
Abstract
Keywords
References
Shreir, L. L. Basic Concepts of Corrosion. Shreir's Corrosion. Oxford: Elsevier, (2010), 89-100.
Cicek, V. and Al-Numan B. Corrosion chemistry. John Wiley & Sons, (2011).
Mattsson, E. Basic corrosion technology for scientists and engineers. CRC Press, 2023.
Daoudi, W. El Aatiaoui, A. Echihi, S. El Ibrahimi, B. and Oussaid, A. Corrosion inhibition: current trends and challenges. Computational Modelling and Simulations for Designing of Corrosion Inhibitors, (2023), 3-21.
Davis, J. R. The effects and economic impact of corrosion. In Corrosion: Understanding the basics, Materials Park: ASM International, 2000, Vol. 164, pp. 62-66.
Oguzie, E. E. Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corrosion science, (2007), 49(3), 1527-1539.
Fayomi, O. S. I. Akande, I. G. and Odigie, S. Economic impact of corrosion in oil sectors and prevention: an overview. In Journal of Physics: Conference Series, 2019, December, Vol. 1378, No. 2, p. 022037. IOP Publishing.
Coelho, L. C. C. dos Santos, P. S. S. da Silva Jorge, P. A. Santos, J. L. and de Almeida, J. M. M. M. Real-time early warning strategies for corrosion mitigation in harsh environments. Journal of Lightwave Technology, (2018), 36(4), 1152-1158.
Thakur, A. and Kumar, A. Sustainable inhibitors for corrosion mitigation in aggressive corrosive media: a comprehensive study. Journal of Bio-and Tribo-Corrosion, (2021), 7, 1-48.
Popoola, L. T. Grema, A. S. Latinwo, G. K. Gutti, B. and Balogun, A. S. Corrosion problems during oil and gas production and its mitigation. International Journal of Industrial Chemistry, (2013), 4, 1-15.
Wu, R. Zhang, H. Yang, R. Chen, W. and Chen, G. Nondestructive testing for corrosion evaluation of metal under coating. Journal of Sensors, (2021), 1-16.
Yu, L. Yang, E. Luo, C. and Ren, P. AMCD: an accurate deep learning-based metallic corrosion detector for MAV-based real-time visual inspection. Journal of Ambient Intelligence and Humanized Computing, (2021), 1-12.
Sudevan, V. Shukla, A. and Karki, H. Current and future research focus on inspection of vertical structures in oil and gas industry. In 18th International Conference on Control, Automation and Systems (ICCAS), 2018, pp. 144-149. IEEE
Brandoli, B. de Geus, A. R. Souza, J. R. Spadon, G. Soares, A. Rodrigues Jr J. F., and Matwin, S. Aircraft fuselage corrosion detection using artificial intelligence. Sensors, (2021), 21(12), 4026.
Rusakov, K. D. and Chekhov, A. V. Two-step Approach to Corrosion Detection of Metal Structures Using Convolutional Neural Networks When Inspecting Industrial Facilities. Proceedings of the Southwest State University, 2022, 25(3), 152–166. https://doi.org/10.21869/2223-1560-2021-25-3-152-166.
Hoang, N. D. Image processing-based pitting corrosion detection using metaheuristic optimized multilevel image thresholding and machine-learning approaches. Mathematical Problems in Engineering, 2020, 1-19.
Dhonde, K. Mirhassani, M. Tam, E. and Sawyer-Beaulieu, S. Design of a Real-Time Corrosion Detection and Quantification Protocol for Automobiles. Materials, (2022), 15(9), 3211.
Yin, B. Josselyn, N. Considine, T. Kelley, J. Rinderspacher, B. Jensen, R.... and Site, A. N. R. E. (2021), Corrosion Image Data Set for Automating Scientific Assessment of Materials.
M. Enikeev, I. Gubaydullin, and M. Maleeva, Analysis of corrosion process development on metals by means of computer vision. Engineering Journal, (2017), 21(4), 183-192.
Yan, L. Diao, Y. Lang, Z. and Gao, K. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. Science and technology of Advanced Materials, (2020), 21(1), 359-370.
Khayatazad, M. De Pue, L. and De Waele, W. Detection of corrosion on steel structures using automated image process
sing. Developments in the Built Environment, (2020), 3, 100022.
Sumi, M. S. and Narayanan, A. Improving classification accuracy using combined filter+ wrapper feature selection technique. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2019, pp. 1-6). IEEE.
Sun, X. Liu, Y. Xu, M. Chen, H. Han, J. and Wang, K. Feature selection using dynamic weights for classification. Knowledge-Based Systems, (2013), 37, 541-549.
Karabulut, E. M. Özel, S. A. and Ibrikci, T. A comparative study on the effect of feature selection on classification accuracy. Procedia Technology, (2012), 1, 323-327.
Duboue, P. The art of feature engineering: essentials for machine learning. Cambridge University Press. 2020.
Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings, 2012, June, pp. 37-49.
Chen, Y. Zheng, B. Zhang, Z. Wang, Q. Shen, C. and Zhang, Q. Deep learning on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM Computing Surveys (CSUR), (2020), 53(4), 1-37.
Deng, Y. Deep learning on mobile devices: a review. In Mobile Multimedia/Image Processing, Security, and Applications, SPIE, 2019, Vol. 10993, pp. 52-66.
Prabhu, D. R. and Winfree, W. P. Neural Network Based Processing of Thermal NDE Data for Corrosion Detection. In Review of Progress in Quantitative Non-destructive Evaluation; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1993; Volume 12, pp. 775–782.
Bellinger, N. C. and Komorowski, J. P. Corrosion pillowing stresses in fuselage lap joints. AIAA journal, (1997), 35(2), 317-320.
Tan, X. M. Chen, Y. L.and Ping, J. I. N. Corrosion Fatigue Life Prediction of Aircraft Structure Based on Fuzzy Reliability Approach. Chin. J. Aeronaut, 2005,18, 346–351.
Rusakov, K. D. and Chekhov, A. V. Two-step Approach to Corrosion Detection of Metal Structures Using Convolutional Neural Networks When Inspecting Industrial Facilities. Proceedings of the Southwest State University, 2022, 25(3), 152–166. https://doi.org/10.21869/2223-1560-2021-25-3-152-166.
Lemos, R. Cabral, R. Ribeiro, D. Santos, R. Alves, V. and Dias, A. Automatic Detection of Corrosion in Large-Scale Industrial Buildings Based on Artificial Intelligence and Unmanned Aerial Vehicles. Applied Sciences, (2023), 13(3), 1386.
Nash, W. Zheng, L. and Birbilis, N. Deep learning corrosion detection with confidence. npj Materials Degradation, (2022), 6(1), 26.
Thompson, N. C. Greenewald, K. Lee, K. and Manso, G. F. The computational limits of deep learning. arXiv preprint arXiv:2007.05558, 2020.
Goodfellow, I., Y. Bengio and Courville, A. Deep Learning. Cambridge, MA, USA: The MIT Press, 2016. Retrieved from https://www.deeplearningbook.org/
Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science. 2006, 313, 5786, 504–507
Wold, S. Esbensen, K. and Geladi, P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems. 1987, 2, 37–52.
Maas, A. L. Le, Q. V. O’Neil, T. M. Vinyals, O. Nguyen, P. and Ng, A. Y. Recurrent neural networks for noise reduction in robust ASR. INTERSPEECH, 2012, 22–25.
Ma, X. Lin, Y. Nie, Z. and Ma, H. Structural damage identification based on unsupervised feature-extraction via Variational Auto-encoder. Measurement, (2020), 160, 107811.
Xing, C. Ma, L. and Yang, X. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. Journal of Sensors, 2016.
Kingma, D. P. and Welling, M. An introduction to variational autoencoders. Foundations and Trends in Machine Learning, (2019), 12(4), 307-392.
Higgins, I. Matthey, L. Pal, A. Burgess, C. Glorot, X. Botvinick, M. and Lerchner, A. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations, 2017, April.
Bosch, N. and Paquette, L. Unsupervised deep autoencoders for feature extraction with educational data. In Deep learning with educational data workshop at the 10th international conference on educational data mining, 2017, June.
Kingma, D. P. and Welling, M. Auto-encoding variational bayes., 2013, arXiv:1312.6114.
Cao, S. Li, J. Nelson, K. P. and Kon, M. A. Coupled VAE: Improved accuracy and robustness of a variational autoencoder. Entropy, (2022), 24(3), 423.
Doersch, C. Tutorial on Variational Autoencoders. Pittsburgh, PA, USA: Carnegie Mellon University, 2016, Retrieved from https://arxiv.org/abs/1606.05908
Zhang, M. Jiang, S. Cui, Z. Garnett, R. and Chen, Y. D-vae: A variational autoencoder for directed acyclic graphs. Advances in Neural Information Processing Systems, (2019), 32.
Sønderby, C. K. Raiko, T. Maaløe, L. Sønderby, S. K. and Winther, O. 2016. Ladder Variational Autoencoders. Advances in Neural Information Processing Systems, 29, (2016), 3738–3746.
Mumuni, A. and F. Mumuni, Data augmentation: A comprehensive survey of modern approaches. Array, (2022), 100258.
Oza, P. Sharma, P. Patel, S. Adedoyin, F.and Bruno, A. Image augmentation techniques for mammogram analysis. Journal of Imaging, (2022), 8(5), 141.
Frazier, P. I. Bayesian optimization. In Recent advances in optimization and modeling of contemporary problems. Informs, (2018), pp. 255-278.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.