Machine Learning Centered Energy Optimization In Cloud Computing: A Review
Abstract
Keywords
References
Nagaraju K, “Cloud Computing-An Overview & Evolution,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 3, no. 1, pp. 2456–3307, 2018.
J. Surbiryala and C. Rong, “Cloud computing: History and overview,” in Proceedings - 2019 3rd IEEE International Conference on Cloud and Fog Computing Technologies and Applications, Cloud Summit 2019, 2019. doi: 10.1109/CloudSummit47114.2019.00007.
R. Shaw, E. Howley, and E. Barrett, “Applying Reinforcement Learning towards automating energy efficient virtual machine consolidation in cloud data centers,” Inf Syst, vol. 107, p. 101722, Jul. 2022. doi: 10.1016/j.is.2021.101722.
B. Wang, F. Liu, and W. Lin, “Energy-efficient VM scheduling based on deep reinforcement learning,” Future Generation Computer Systems, vol. 125, pp. 616–628, Dec. 2021. doi: 10.1016/j.future.2021.07.023.
N. Al Mudawi, N. Beloff, and M. White, “Issues and challenges: Cloud computing e-government in developing countries,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, 2020. doi: 10.14569/IJACSA.2020.0110402.
I. Odun-Ayo, O. Ajayi, and C. Okereke, “Virtualization in cloud computing: Developments and trends,” in Proceedings - 2017 International Conference on Next Generation Computing and Information Systems, ICNGCIS 2017, doi: 10.1109/ICNGCIS.2017.10.
N. Jain and S. Choudhary, “Overview of virtualization in cloud computing,” in 2016 Symposium on Colossal Data Analysis and Networking, CDAN 2016, 2016. doi: 10.1109/CDAN.2016.7570950.
M. Abu-Alhaija, N. M. Turab, and A. R. Hamza, “Extensive study of cloud computing technologies, threats and solutions prospective,” Computer Systems Science and Engineering, vol. 41, no. 1, pp. 225–240, 2022. doi: 10.32604/csse.2022.019547.
U. Arshad, M. Aleem, G. Srivastava, and J. C.-W. ’Lin, “Utilizing power consumption and SLA violations using dynamic VM consolidation in cloud data centers,” Elsevier, pp. 1–14, Jul. 2022.
S. Supreeth and K. Patil, “VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment,” KSII Transactions On Internet And Information Systems, vol. 16, no. 6, pp. 1892–1912, Jun. 2022.
J. Zeng, D. Ding, K. Kang, H. M. Xie, and Q. Yin, “Adaptive DRL-Based Virtual Machine Consolidation in Energy-Efficient Cloud Data Center,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11, 2022. doi: 10.1109/TPDS.2022.3147851.
J. Wang, H. Gu, J. Yu, Y. Song, X. He, and Y. Song, “Research on virtual machine consolidation strategy based on combined prediction and energy-aware in cloud computing platform,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1–18, 2022.
A. K. Singh, S. R. Swain, D. Saxena, and C.-N. ’Lee, “A Bio-Inspired Virtual Machine Placement Toward Sustainable Cloud Resource Management,” IEEE Systems Journal ( Early Access ), pp. 1–12, Mar. 2023.
M. H. Sayadnavard, A. Toroghi Haghighat, and A. M. Rahmani, “A multi-objective approach for energy-efficient and reliable dynamic VM consolidation in cloud data centers,” Engineering Science and Technology, an International Journal, vol. 26, 2022. doi: 10.1016/j.jestch.2021.04.014.
M. ’Imran, M. ’Ibrahim, M. S. U. ’Din, M. A. U. ’Rehman, and B. S. ’Kim, “Live virtual machine migration: A survey, research challenges, and future directions,” Elsevier, pp. 1–18, Aug. 2022.
S. Talwani, K. Alhazmi, J. Singla, H. J. Alyamani, and A. K. Bashir, “Allocation and migration of virtual machines using machine learning,” Computers, Materials and Continua, vol. 70, no. 2, 2022. doi: 10.32604/cmc.2022.020473.
C. H. Tran, T. K. Bui, and T. V. Pham, “Virtual machine migration policy for multi-tier application in cloud computing based on Q-learning algorithm,” Computing, vol. 104, no. 6, 2022. doi: 10.1007/s00607-021-01047-0.
H. Li, J. Liu, and Q. Zhou, “Research on energy-saving virtual machine migration algorithm for green data center,” IET Control Theory and Applications, 2022. doi: 10.1049/cth2.12401.
B. B. Naik, D. Singh, and A. B. Samaddar, “Multi-objective Virtual Machine Selection in Cloud Data Centers Using Optimized Scheduling,” Wirel Pers Commun, vol. 116, no. 3, 2021. doi: 10.1007/s11277-020-07807-z.
X.-B. Cai, Y.-X. Ji, and K. Han, “Energy Efficiency Optimizing Based on Characteristics of Machine Learning in Cloud Computing,” ITM Web of Conferences, vol. 12, p. 03047, Sep. 2017. doi: 10.1051/itmconf/20171203047.
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, 2021. doi: 10.1007/s12525-021-00475-2.
J. Schmitt, J. Bönig, T. Borggräfe, G. Beitinger, and J. Deuse, “Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing,” Advanced Engineering Informatics, vol. 45, 2020. doi: 10.1016/j.aei.2020.101101.
A. Trisal and D. Mandloi, “Machine Learning: An Overview,” International Journal of Research -GRANTHAALAYAH, vol. 9, no. 7, 2021. doi: 10.29121/granthaalayah.v9.i7.2021.4120.
D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning based dynamic task scheduling for energy-efficient cloud computing,” Future Generation Computer Systems, vol. 108, pp. 361–371, Jul. 2020. doi: 10.1016/j.future.2020.02.018.
W. Zhong, Y. Zhuang, J. Sun, and J. Gu, “The cloud computing load forecasting algorithm based on wavelet support vector machine,” in Proceedings of the Australasian Computer Science Week Multiconference, New York, NY, USA: ACM, Jan. 2017, pp. 1–5. doi: 10.1145/3014812.3014852.
A. Jayanetti, S. Halgamuge, and R. Buyya, “Deep reinforcement learning for energy and time optimized scheduling of precedence-constrained tasks in edge–cloud computing environments,” Future Generation Computer Systems, vol. 137, pp. 14–30, Dec. 2022. doi: 10.1016/j.future.2022.06.012.
N. Liu et al., “A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning,” in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), IEEE, 2Jun. 2017, pp. 372–382. doi: 10.1109/ICDCS.2017.123.
A. S. McGough, M. Forshaw, J. Brennan, N. Al Moubayed, and S. Bonner, “Using Machine Learning to reduce the energy wasted in Volunteer Computing Environments,” Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.08675.
H. Li, R. Cai, N. Liu, X. Lin, and Y. Wang, “Deep reinforcement learning: Algorithm, applications, and ultra-low-power implementation,” Nano Commun Netw, vol. 16, pp. 81–90, Jun. 2018. doi: 10.1016/j.nancom.2018.02.003.
J. Zhang, N. Xie, X. Zhang, K. Yue, W. Li, and D. Kumar, “Machine learning based resource allocation of cloud computing in auction,” Computers, Materials and Continua, vol. 56, no. 1, 2018. doi: 10.3970/cmc.2018.03728.
Y. Jararweh, M. B. Issa, M. Daraghmeh, M. Al-Ayyoub, and M. A. Alsmirat, “Energy efficient dynamic resource management in cloud computing based on logistic regression model and median absolute deviation,” Sustainable Computing: Informatics and Systems, vol. 19, pp. 262–274, Sep. 2018. doi: 10.1016/j.suscom.2018.07.005.
R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente, “Efficient resource provisioning for elastic Cloud services based on machine learning techniques,” Journal of Cloud Computing, vol. 8, no. 1, 2019. doi: 10.1186/s13677-019-0128-9.
N. R. Rajalakshmi, G. Arulkumaran, and J. Santhosh, “Virtual machine consolidation for performance and energy efficient cloud data center using reinforcement learning,” Int J Eng Adv Technol, vol. 8, no. 3 Special Issue, 2019.
X. Sui, D. Liu, L. Li, H. Wang, and H. Yang, “Virtual machine scheduling strategy based on machine learning algorithms for load balancing,” EURASIP J Wirel Commun Netw, vol. 2019, no. 1, p. 160, Dec. 2019. doi: 10.1186/s13638-019-1454-9.
T. Thein, M. M. Myo, S. Parvin, and A. Gawanmeh, “Reinforcement learning based methodology for energy-efficient resource allocation in cloud data centers,” Journal of King Saud University - Computer and Information Sciences, vol. 32, no. 10, 2020. doi: 10.1016/j.jksuci.2018.11.005.
Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling scheme in the cloud computing environment using deep Q-learning,” Inf Sci (N Y), vol. 512, pp. 1170–1191, Feb. 2020. doi: 10.1016/j.ins.2019.10.035.
A. Asghari, M. K. Sohrabi, and F. Yaghmaee, “A cloud resource management framework for multiple online scientific workflows using cooperative reinforcement learning agents,” Computer Networks, vol. 179, p. 107340, Oct. 2020. doi: 10.1016/j.comnet.2020.107340.
M. H. Madhududhan, S. Kumar T, S. M. F. D. S. Mustapha, P. Gupta, and R. P. Tripathi, “Hybrid Approach for Resource Allocation in Cloud Infrastructure Using Random Forest and Genetic Algorithm,” Sci Program, vol. 2021, pp. 1–10, Oct. 2021. doi: 10.1155/2021/4924708.
J. Yan, J. Xiao, and X. Hong, “Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems,” in 2021 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, Jul. 2021, pp. 294–299. doi: 10.1109/ICCC52777.2021.9580393.
L. Caviglione, M. Gaggero, M. Paolucci, and R. Ronco, “Deep reinforcement learning for multi-objective placement of virtual machines in cloud datacenters,” Soft comput, vol. 25, no. 19, pp. 12569–12588, Oct. 2021. doi: 10.1007/s00500-020-05462-x.
G. Chen, J. Qi, Y. Sun, X. Hu, Z. Dong, and Y. Sun, “A collaborative scheduling method for cloud computing heterogeneous workflows based on deep reinforcement learning,” Future Generation Computer Systems, vol. 141, pp. 284–297, Apr. 2023. doi: 10.1016/J.FUTURE.2022.11.032.
T. Cui, R. Yang, C. Fang, and S. Yu, “Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments,” Symmetry (Basel), vol. 15, no. 1, 2023. doi: 10.3390/sym15010217.
T. Sen and H. Shen, “Machine learning based timeliness-guaranteed and energy-efficient task assignment in Edge Computing Systems,” in Proceedings - IEEE 3rd International Conference on Fog and Edge Computing (ICFEC), 2019, doi:10.1109/cfec.2019.8733153.
Y. Kumar, S. Kaul, and Y. Hu, “Machine Learning for Energy-resource allocation, workflow scheduling and live migration in cloud computing: State-of-the-art survey,” Sustainable Computing: Informatics and Systems, vol. 36, pp. 100780, 2022. doi:10.1016/j.suscom.2022.100780
M. Demirci, “A survey of machine learning applications for energy-efficient resource management in Cloud Computing Environments,” in Proceedings 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), 2015. doi:10.1109/icmla.2015.205
T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, and R. Buyya, “Machine learning (ML)-centric resource management in cloud computing: A review and future directions,” Journal of Network and Computer Applications, vol. 204, pp. 103405, Aug. 2022. doi: 10.1016/J.JNCA.2022.103405.
D. Soni and N. Kumar, “Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy,” Journal of Network and Computer Applications, vol. 205, pp. 103419, Sep. 2022. doi: 10.1016/J.JNCA.2022.103419.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.