Solving Dynamic Combined Economic Environemental Dispatch Problem with Renewable Energies and Constraints Using Gorilla Troops Optimizer

Amel Abrouche, Hamid Bouzeboudja, Kaouthar Lalia Dahmani, Bakhta Naama

Abstract


The primary goal is to optimize the hourly allocation of power generation outputs by minimizing operational costs, pollutant emissions, and transmission losses, and ensuring compliance with a range of equality and inequality constraints. To tackle this challenge, a novel metaheuristic algorithm inspired by gorilla’s behavior is proposed. Gorilla Troops Optimizer (GTO) was applied to 5- and 10-generator unit systems, integrating variable wind and solar energies over a day with varying load demands. To demonstrate the effectiveness of the GTO algorithm in handling the hybrid dynamic combined economic and environmental dispatch problem, including equality constraints, transmission losses, valve-point effects, prohibited operating zones, ramp rates, and power limits, its performance was compared with other optimization techniques. The findings indicate that GTO provides the optimal scheduling of power generators, leading to significant reductions in daily operational costs and emissions with high percentages. Moreover, the integration of renewable energy significantly reduces pollutant gas emissions, fuel costs, and transmission losses, while meeting all imposed constraints. This research positively contributes to enhancing the reliability of power supply systems, while simultaneously reducing environmental pollution, transmission losses, and fuel costs.

Keywords


Hybrid dynamic economic Emission dispatch; Renewable energies; Metaheuristics; Gorilla troops optimizer; Ramp rate limits

References


M. Ellahi et G. Abbas, « A hybrid metaheuristic approach for the solution of renewables-incorporated economic dispatch problems », IEEE Access, vol. 8, p. 127608‑127621, 2020.

L.-L. Li, Q. Shen, M.-L. Tseng, et S. Luo, « Power system hybrid dynamic economic emission dispatch with wind energy based on improved sailfish algorithm », J. Clean. Prod., vol. 316, p. 128318, 2021.

Z. Li, D. Zou, et Z. Kong, « A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss », Eng. Appl. Artif. Intell., vol. 84, p. 18‑40, 2019.

A. K. Sahoo, T. K. Panigrahi, G. Dhiman, K. K. Singh, et A. Singh, « Enhanced emperor penguin optimization algorithm for dynamic economic dispatch with renewable energy sources and microgrid », J. Intell. Fuzzy Syst., vol. 40, no 5, p. 9041‑9058, 2021.

L.-L. Li, Z.-F. Liu, M.-L. Tseng, S.-J. Zheng, et M. K. Lim, « Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems », Appl. Soft Comput., vol. 108, p. 107504, 2021.

E. G. Talbi, « Metaheuristics: From Design to Implementation », John Wiley Sons Google Sch., vol. 2, p. 268‑308, 2009.

B. Larouci et al., « Investigation on new metaheuristic algorithms for solving dynamic combined economic environmental dispatch problems », Sustainability, vol. 14, no 9, p. 5554, 2022.

C. Andic, A. Öztürk, et S. Tosun, « Dynamic economic dispatch with valve-point effect using crow search algorithm », Balk. J. Electr. Comput. Eng., vol. 10, no 3, p. 237‑244, 2022.

H. M. Dubey, M. Pandit, et B. K. Panigrahi, « Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch », Renew. Energy, vol. 83, p. 188‑202, 2015.

D. Santra, A. Mukherjee, K. Sarker, et S. Mondal, « Dynamic economic dispatch using hybrid metaheuristics », J. Electr. Syst. Inf. Technol., vol. 7, p. 1‑30, 2020.

Y. A. Gherbi, F. Lakdja, H. Bouzeboudja, et F. Z. Gherbi, « Hybridization of two metaheuristics for solving the combined economic and emission dispatch problem », Neural Comput. Appl., vol. 31, no 12, p. 8547‑8559, 2019.

Y. A. Gherbi, H. Bouzeboudja, F. Lakdja, F. Z. Gherbi, et D. Ould-Abdeslam, « New approach for solving economic load dispatch problem », in 2014 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), IEEE, 2014, p. 1‑5.

B. Houari, L. Mohammed, B. Hamid, A. A. Nour El Islam, B. Farid, et S. Abdallah, « Solution of Economic Load Dispatch Problems Using Novel Improved Harmony Search Algorithm. », Int. J. Electr. Eng. Inform., vol. 13, no 1, 2021.

M. Said, A. M. El-Rifaie, M. A. Tolba, E. H. Houssein, et S. Deb, « An efficient chameleon swarm algorithm for economic load dispatch problem », Mathematics, vol. 9, no 21, p. 2770, 2021.

B. Abdollahzadeh, F. Soleimanian Gharehchopogh, et S. Mirjalili, « Artificial gorilla troops optimizer: a new nature‐inspired metaheuristic algorithm for global optimization problems », Int. J. Intell. Syst., vol. 36, no 10, p. 5887‑5958, 2021.

A. Ramadan, M. Ebeed, S. Kamel, A. M. Agwa, et M. Tostado-Véliz, « The probabilistic optimal integration of renewable distributed generators considering the time-varying load based on an artificial gorilla troops optimizer », Energies, vol. 15, no 4, p. 1302, 2022.

B. Bansal et A. Sahoo, « Chaotic driven gorilla troops optimizer based NMF approach for integrative analysis of multiple source data », Int. J. Inf. Technol., vol. 14, no 7, p. 3437‑3448, 2022.

M. Abd Elaziz, L. Abualigah, M. Issa, et A. A. Abd El-Latif, « Optimal parameters extracting of fuel cell based on Gorilla Troops Optimizer », Fuel, vol. 332, p. 126162, 2023.

N. K. Singh, S. Gope, C. Koley, S. Dawn, et H. H. Alhelou, « Optimal bidding strategy for social welfare maximization in wind farm integrated deregulated power system using artificial gorilla troops optimizer algorithm », IEEE Access, vol. 10, p. 71450‑71461, 2022.

C. Dhifaoui, I. Marouani, et H. H. Abdallah, « MOALO Algorithm applied to Dynamic Economic Environmental Dispatch including renewable energy », IJCSNS, vol. 20, no 6, p. 36‑47, 2020.

M. Basu, « Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch », Electr. Power Compon. Syst., vol. 34, no 9, p. 1015‑1025, 2006.

H. Zhang, D. Yue, X. Xie, S. Hu, et S. Weng, « Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch », Appl. Soft Comput., vol. 34, p. 312‑323, 2015.

A. Torchani, A. Boudjemline, H. Gasmi, Y. Bouazzi, et T. Guesmi, « Dynamic economic/environmental dispatch problem considering prohibited operating zones », Eng. Technol. Appl. Sci. Res., vol. 9, no 5, p. 4586‑4590, 2019.

K. Mason, J. Duggan, et E. Howley, « A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch », Int. J. Electr. Power Energy Syst., vol. 100, p. 201‑221, 2018.

B. M. Alshammari, « Teaching-Learning-Based optimization algorithm for the combined dynamic economic environmental dispatch problem », Eng. Technol. Appl. Sci. Res., vol. 10, no 6, p. 6432‑6437, 2020.

P. K. Roy et S. Bhui, « A multi‐objective hybrid evolutionary algorithm for dynamic economic emission load dispatch », Int. Trans. Electr. Energy Syst., vol. 26, no 1, p. 49‑78, 2016.

N. Pandit, A. Tripathi, S. Tapaswi, et M. Pandit, « An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch », Appl. Soft Comput., vol. 12, no 11, p. 3500‑3513, 2012.

S. Qian, H. Wu, et G. Xu, « An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch », Soft Comput., vol. 24, no 20, p. 15249‑15271, 2020.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats

Error. Page cannot be displayed. Please contact your service provider for more details. (6)