A Diet Recommendation System using TF-IDF and Extra Trees Algorithm
Abstract
Keywords
References
J. N. Bondevik, K. E. Bennin, Onder Babur, and C. Ersch, “A systematic review on food recommender systems,” Expert Systems with Applications, vol. 238, p. 122166, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417423026684
R. Sookrah, J. D. Dhowtal, and S. D. Nagowah, “A dash diet recommendation system for hypertensive patients using machine learning,” in 2019 7th international conference on information and communication technology (ICoICT). IEEE, 2019, pp. 1–6.
C. Iwendi, S. Khan, J. H. Anajemba, A. K. Bashir, and F. Noor, “Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model,” IEEE Access, vol. 8, pp. 28 462– 28 474, 2020.
M. Geetha, C. Saravanakumar, K. Ravikumar, and V. Muthulakshmi, “Human body analysis and diet recommendation system using machine learning techniques.” EAI, 1 2021.
M. A. Lambay and S. P. Mohideen, “A hybrid approach based diet recommendation system using ml and big data analytics,” Journal of Mobile Multimedia, vol. 18, no. 06, p. 1541–1560, Jul. 2022. [Online]. Available: https://journals.riverpublishers.com/index.php/JMM/article/view/12037
N. Vignesh, S. Bhuvaneswari, K. Kotecha, and V. Subramaniyaswamy, “Hybrid diet recommender system using machine learning technique,” in Hybrid Intelligent Systems, A. Abraham, T.-P. Hong, K. Kotecha, K. Ma, P. Manghirmalani Mishra, and N. Gandhi, Eds. Cham: Springer Nature Switzerland, 2023, pp. 106–115.
M. Ahmad, A. U. Khan, and M. Sajid, “A diet recommendation system for persons with special dietary requirements,” Journal of Computing amp; Biomedical Informatics, vol. 5, no. 01, p. 153–164, Jun. 2023. [Online]. Available: https://www.jcbi.org/index.php/Main/article/view/180
J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez, “Recommender systems survey,” ´ KnowledgeBased Systems, vol. 46, pp. 109–132, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0950705113001044
I. Orue-Saiz, M. Kazarez, and A. Mendez-Zorrilla, “Systematic review of nutritional recommendation systems,” Applied Sciences, vol. 11, no. 24, 2021. [Online]. Available: https://www.mdpi.com/2076-3417/11/24/12069
M. Shah, S. Degadwala, and D. Vyas, “Diet recommendation system based on different machine learners: A review,” in 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). IEEE, 2022, pp. 290–295.
F. Isinkaye, Y. Folajimi, and B. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egyptian Informatics Journal, vol. 16, no. 3, pp. 261–273, 2015.[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1110866515000341
M. Chiny, M. Chihab, O. Bencharef, and Y. Chihab, “Netflix recommendation system based on tf-idf and cosine similarity algorithms,” no. Bml, pp. 15–20, 2022.
P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine Learning, vol. 63, no. 1, pp. 3–42, Apr. 2006.
R. Potukuchi and P. Upadhyay, Prediction Model for Precision Agriculture Using Machine Learning, 01 2024, pp. 627–644.
M. Ahmad, A. U. Khan, and M. Sajid, “A diet recommendation system for persons with special dietary requirements,” Journal of Computing & Biomedical Informatics, vol. 5, no. 01, 2023.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.