Simulation-Based Evaluation of Dense Convolutional Neural Networks for Skin Cancer Detection

Kavita Behara, Ernest Bhero, John Terhile Agee

Abstract


Skin cancer, particularly melanoma, poses significant challenges to public health, with early detection being critical for effective treatment. Traditional diagnostic methods often fall short, particularly in resource-limited settings. In response, artificial intelligence (AI) techniques, especially deep learning models, have emerged as promising tools for automated skin cancer detection. This study evaluates the performance of Dense Convolutional Neural Networks (DCNNs) in classifying and detecting skin lesions, leveraging simulation-based approaches to assess the effectiveness of various AI models. Utilizing datasets such as HAM10000 and ISIC2017, which contain a wide variety of skin types and lesion stages, the models were trained and tested using key performance metrics such as accuracy, precision, recall, and F1-score. The results shows that DCNNs outperformed traditional machine learning techniques like Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Decision Trees (DT), demonstrating superior accuracy, generalization ability, and efficiency in handling large, imbalanced datasets. The simulation-based approach provided insights into the ability of DCNN models to manage dataset inconsistencies and class imbalances, showcasing their potential as robust tools for skin cancer detection. These findings highlight the ability of AI in advancing dermatological diagnostics, offering more timely and accurate detection, and potentially improving patient outcomes

Keywords


Deep learning; Machine learning; Medical diagnostics; Augmentation; Segmentation

References


F. Afza, M. Sharif, M. Attique Khan, U. Tariq, H.-S. Yong, and J. Cha, “Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine,” 2022, doi: 10.3390/s22030799.

I. A. Alfi, M. M. Rahman, M. Shorfuzzaman, and A. Nazir, “A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models,” Diagnostics, vol. 12, no. 3, pp. 1–18, 2022, doi: 10.3390/diagnostics12030726.

J. De Wet, M. Steyn, H. F. Jordaan, R. Smith, S. Claasens, and W. I. Visser, “An Analysis of Biopsies for Suspected Skin Cancer at a Tertiary Care Dermatology Clinic in the Western Cape Province of South Africa,” J. Skin Cancer, vol. 2020, 2020, doi: 10.1155/2020/9061532.

C. Jen Ngeh, C. Ma, T. Kuan-Wei Ho, Y. Wang, and J. Raiti, “Deep Learning on Edge Device for Early Prescreening of Skin Cancers in Rural Communities,” 2020 IEEE Glob. Humanit. Technol. Conf. GHTC 2020, 2020, doi: 10.1109/GHTC46280.2020.9342911.

C. Y. Wright, D. Jean du Preez, D. A. Millar, and M. Norval, “The epidemiology of skin cancer and public health strategies for its prevention in southern Africa,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, 2020, doi: 10.3390/ijerph17031017.

A. G. Diab, N. Fayez, and M. M. El-Seddek, “Accurate skin cancer diagnosis based on convolutional neural networks,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 3, pp. 1429–1441, 2022, doi: 10.11591/ijeecs.v25.i3.pp1429-1441.

FTI Consulting, “Overview of the health technology sector in South Africa: Opportunities for collaboration,” 2019. [Online]. Available: https://www.rvo.nl/sites/default/files/2021/03/Overview-of-the-health-technology-sector-in-South-Africa-Opportunities-for-collaboration.pdf.

J. M. Kabongo, S. Nel, and R. D. Pitcher, “Analysis of licensed South African diagnostic imaging equipment,” Pan Afr. Med. J., vol. 22, pp. 1–9, 2015, doi: 10.11604/pamj.2015.22.57.7016.

K. Behara, E. Bhero, J. T. Agee, and V. Gonela, “Artificial Intelligence in Medical Diagnostics: A Review from a South African Context,” Sci. African, p. e01360, 2022, doi: 10.1016/j.sciaf.2022.e01360.

A. Owoyemi, J. Owoyemi, A. Osiyemi, and A. Boyd, “Artificial Intelligence for Healthcare in Africa,” Front. Digit. Heal., vol. 2, no. July, 2020, doi: 10.3389/fdgth.2020.00006.

K. York et al., “Primary cutaneous malignancies in the Northern Cape Province of South Africa: A retrospective histopathological review,” South African Med. J., vol. 107, no. 1, pp. 83–88, 2017, doi: 10.7196/SAMJ.2017.v107i1.10924.

A. N. Hoshyar, A. Al-Jumaily, and A. N. Hoshyar, “The beneficial techniques in preprocessing step of skin cancer detection system comparing,” Procedia Comput. Sci., vol. 42, no. C, pp. 25–31, 2014, doi: 10.1016/j.procs.2014.11.029.

M. S. Madarkar and V. R. Koti, “Fotofinder dermoscopy analysis and histopathological correlation in primary localized cutaneous amyloidosis,” Dermatology Pract. Concept., vol. 11, no. 3, pp. 1–7, 2021, doi: 10.5826/dpc.1103a57.

V. Narayanamurthy et al., “Skin cancer detection using non-invasive techniques,” RSC Adv., vol. 8, no. 49, pp. 28095–28130, 2018, doi: 10.1039/c8ra04164d.

D. A. Okuboyejo and O. O. Olugbara, “A Review of Prevalent Methods for Automatic Skin Lesion Diagnosis,” Open Dermatol. J., vol. 12, no. 1, pp. 14–53, 2018, doi: 10.2174/187437220181201014.

K. Thurnhofer-Hemsi, E. Lopez-Rubio, E. Dominguez, and D. A. Elizondo, “Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting,” IEEE Access, vol. 9, pp. 112193–112205, 2021, doi: 10.1109/ACCESS.2021.3103410.

N. Rezaoana, M. S. Hossain, and K. Andersson, “Detection and Classification of Skin Cancer by Using a Parallel CNN Model,” Proc. 2020 IEEE Int. Women Eng. Conf. Electr. Comput. Eng. WIECON-ECE 2020, pp. 380–386, 2020, doi: 10.1109/WIECON-ECE52138.2020.9397987.

R. Raja Subramanian, D. Achuth, P. Shiridi Kumar, K. N. kumar Reddy, S. Amara, and A. S. Chowdary, “Skin cancer classification using Convolutional neural networks,” Proc. Conflu. 2021 11th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 13–19, 2021, doi: 10.1109/Confluence51648.2021.9377155.

A. Ameri, “A deep learning approach to skin cancer detection in dermoscopy images,” J. Biomed. Phys. Eng., vol. 10, no. 6, pp. 801–806, 2020, doi: 10.31661/jbpe.v0i0.2004-1107.

M. F. Jojoa Acosta, L. Y. Caballero Tovar, M. B. Garcia-Zapirain, and W. S. Percybrooks, “Melanoma diagnosis using deep learning techniques on dermatoscopic images,” BMC Med. Imaging, vol. 21, no. 1, pp. 1–11, 2021, doi: 10.1186/s12880-020-00534-8.

P. Shan, Y. Wang, C. Fu, W. Song, and J. Chen, “Automatic skin lesion segmentation based on FC-DPN,” Comput. Biol. Med., vol. 123, no. March, p. 103762, 2020, doi: 10.1016/j.compbiomed.2020.103762.

A. A. Adegun and S. Viriri, “Deep learning-based system for automatic melanoma detection,” IEEE Access, vol. 8, pp. 7160–7172, 2020, doi: 10.1109/ACCESS.2019.2962812.

L. Zhang, G. Yang, and X. Ye, “Automatic skin lesion segmentation by coupling deep fully convolutional networks and shallow network with textons,” J. Med. Imaging, vol. 6, no. 02, p. 1, 2019, doi: 10.1117/1.jmi.6.2.024001.

L. Bi, J. Kim, E. Ahn, A. Kumar, D. Feng, and M. Fulham, “Step-wise integration of deep class-specific learning for dermoscopic image segmentation,” Pattern Recognit., vol. 85, pp. 78–89, 2019, doi: 10.1016/j.patcog.2018.08.001.

M. Nawaz et al., “Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering,” Microsc. Res. Tech., vol. 85, no. 1, pp. 339–351, 2022, doi: 10.1002/jemt.23908.

M. Nawaz et al., “Melanoma localization and classification through faster region-based convolutional neural network and SVM,” Multimed. Tools Appl., vol. 80, no. 19, pp. 28953–28974, 2021, doi: 10.1007/s11042-021-11120-7.

I. Iqbal, M. Younus, K. Walayat, M. U. Kakar, and J. Ma, “Automated multi-class classification of skin lesions through deep convolutional neural network with dermoscopic images,” Comput. Med. Imaging Graph., vol. 88, no. January 2023, 2021, doi: 10.1016/j.compmedimag.2020.101843.

S. Banerjee, S. K. Singh, A. Chakraborty, A. Das, and R. Bag, “Melanoma Diagnosis Using Deep Learning and Fuzzy Logic,” Diagnostics, vol. 10, p. 577, 2020, [Online]. Available: doi:10.3390/diagnostics10080577.

M. A. Khan, T. Akram, Y. D. Zhang, and M. Sharif, “Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework,” Pattern Recognit. Lett., vol. 143, pp. 58–66, 2021, doi: 10.1016/j.patrec.2020.12.015.

R. Kaur, H. Gholamhosseini, R. Sinha, and M. Lindén, “Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images,” Sensors, vol. 22, no. 3, pp. 1–15, 2022, doi: 10.3390/s22031134.

O. O. Abayomi-Alli, R. Damaševičius, S. Misra, R. Maskeliūnas, and A. Abayomi-Alli, “Malignant skin melanoma detection using image augmentation by oversampling in nonlinear lower-dimensional embedding manifold,” Turkish J. Electr. Eng. Comput. Sci., vol. 29, pp. 2600–2614, 2021, doi: 10.3906/elk-2101-133.

J. Jiang, J. Guo, M. Khan, Y. Cui, and W. Lin, “Energy-saving Service Offloading for the Internet of Medical Things Using Deep Reinforcement Learning,” ACM Trans. Sens. Networks, vol. 19, no. 3, Mar. 2023, doi: 10.1145/3560265.

K. Hameed Abdulkareem et al., “Smart Healthcare System for Severity Prediction and Critical Tasks Management of COVID-19 Patients in IoT-Fog Computing Environments,” Comput. Intell. Neurosci., vol. 2022, no. July, 2022, doi: 10.1155/2022/5012962.

B. Cassidy, C. Kendrick, A. Brodzicki, J. Jaworek-Korjakowska, and M. H. Yap, “Analysis of the ISIC image datasets: Usage, benchmarks and recommendations,” Med. Image Anal., vol. 75, p. 102305, 2022, doi: 10.1016/j.media.2021.102305.

P. Tschandl, C. Rosendahl, and H. Kittler, “Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Sci. Data, vol. 5, Aug. 2018, doi: 10.1038/sdata.2018.161.

N. C. F. Codella et al., “Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC),” Proc. - Int. Symp. Biomed. Imaging, vol. 2018-April, pp. 168–172, 2018, doi: 10.1109/ISBI.2018.8363547.

“DermIS.” https://www.dermis.net/dermisroot/en/home/index.htm (accessed Jun. 28, 2024).

I. Giotis, N. Molders, S. Land, M. Biehl, M. F. Jonkman, and N. Petkov, “MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images,” Expert Syst. Appl., vol. 42, no. 19, pp. 6578–6585, Nov. 2015, doi: 10.1016/j.eswa.2015.04.034.

T. Mendonca, P. M. Ferreira, J. S. Marques, A. R. S. Marcal, and J. Rozeira, “PH2 - A dermoscopic image database for research and benchmarking,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2013, pp. 5437–5440, doi: 10.1109/EMBC.2013.6610779.

D. Gutman et al., “Skin Lesion Analysis toward Melanoma Detection: A Challenge at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC),” pp. 3–7, 2016, [Online]. Available: http://arxiv.org/abs/1605.01397.

M. Combalia et al., “BCN20000: Dermoscopic Lesions in the Wild,” 2019, doi: 10.1038/s41597-024-03387-w.

J. Wang et al., “Generalizing to Unseen Domains: A Survey on Domain Generalization,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2022, doi: 10.1109/TKDE.2022.3178128.

Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, “Differential Data Augmentation Techniques for Medical Imaging Classification Tasks,” AMIA ... Annu. Symp. proceedings. AMIA Symp., vol. 2017, pp. 979–984, 2017.

I. Tougui, A. Jilbab, and J. El Mhamdi, “Impact of the Choice of Cross-Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications,” Healthc. Inform. Res., vol. 27, no. 3, pp. 189–199, Jul. 2021, doi: 10.4258/hir.2021.27.3.189.

J. Kaliappan, A. R. Bagepalli, S. Almal, R. Mishra, Y.-C. Hu, and K. Srinivasan, “Impact of Cross-Validation on Machine Learning Models for Early Detection of Intrauterine Fetal Demise,” Diagnostics, vol. 13, no. 10, p. 1692, May 2023, doi: 10.3390/diagnostics13101692.

D. Berrar, “Cross-Validation,” in Encyclopedia of Bioinformatics and Computational Biology, Elsevier, 2019, pp. 542–545.

K. Matsunaga, A. Hamada, A. Minagawa, and H. Koga, “Image Classification of Melanoma, Nevus and Seborrheic Keratosis by Deep Neural Network Ensemble,” pp. 2–5, 2017, [Online]. Available: http://arxiv.org/abs/1703.03108.

I. Gonzalez-Diaz, “DermaKNet: Incorporating the Knowledge of Dermatologists to Convolutional Neural Networks for Skin Lesion Diagnosis,” IEEE J. Biomed. Heal. Informatics, vol. 23, no. 2, pp. 547–559, Mar. 2019, doi: 10.1109/JBHI.2018.2806962.

A. Menegola, J. Tavares, M. Fornaciali, L. T. Li, S. Avila, and E. Valle, “RECOD Titans at ISIC Challenge 2017,” no. March, 2017, [Online]. Available: http://arxiv.org/abs/1703.04819.

A. Menegola, M. Fornaciali, R. Pires, F. V. Bittencourt, S. Avila, and E. Valle, “Knowledge transfer for melanoma screening with deep learning,” Proc. - Int. Symp. Biomed. Imaging, pp. 297–300, 2017, doi: 10.1109/ISBI.2017.7950523.

Y. Jusman, I. M. Firdiantika, D. A. Dharmawan, and K. Purwanto, “Performance of Multi Layer Perceptron and Deep Neural Networks in Skin Cancer Classification,” in 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Mar. 2021, pp. 534–538, doi: 10.1109/LifeTech52111.2021.9391876.

M. Vilares Ferro, Y. Doval Mosquera, F. J. Ribadas Pena, and V. M. Darriba Bilbao, “Early stopping by correlating online indicators in neural networks,” Neural Networks, vol. 159, pp. 109–124, Feb. 2023, doi: 10.1016/j.neunet.2022.11.035.

Y. Bai et al., “Understanding and Improving Early Stopping for Learning with Noisy Labels,” Adv. Neural Inf. Process. Syst., vol. 29, no. NeurIPS, pp. 24392–24403, 2021.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object localization using Convolutional Networks,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 648–656, doi: 10.1109/CVPR.2015.7298664.

T. Zhou, X. Ye, H. Lu, X. Zheng, S. Qiu, and Y. Liu, “Dense Convolutional Network and Its Application in Medical Image Analysis,” Biomed Res. Int., vol. 2022, pp. 1–22, Apr. 2022, doi: 10.1155/2022/2384830.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269, doi: 10.1109/CVPR.2017.243.

M. Dildar et al., “Skin Cancer Detection: A Review Using Deep Learning Techniques,” Int. J. Environ. Res. Public Health, vol. 18, no. 10, p. 5479, May 2021, doi: 10.3390/ijerph18105479.

S. Moldovanu, C.-D. Obreja, K. C. Biswas, and L. Moraru, “Towards Accurate Diagnosis of Skin Lesions Using Feedforward Back Propagation Neural Networks,” Diagnostics, vol. 11, no. 6, p. 936, May 2021, doi: 10.3390/diagnostics11060936.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

S. R D and S. A, “Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM),” Asian Pacific J. Cancer Prev., vol. 20, no. 5, pp. 1555–1561, May 2019, doi: 10.31557/APJCP.2019.20.5.1555.

D. Keerthana, V. Venugopal, M. K. Nath, and M. Mishra, “Hybrid convolutional neural networks with SVM classifier for classification of skin cancer,” Biomed. Eng. Adv., vol. 5, p. 100069, Jun. 2023, doi: 10.1016/j.bea.2022.100069.

P. Banasode, M. Patil, and N. Ammanagi, “A Melanoma Skin Cancer Detection Using Machine Learning Technique: Support Vector Machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1065, no. 1, p. 012039, Feb. 2021, doi: 10.1088/1757-899X/1065/1/012039.

J. B. A. Das, D. Mishra, A. Das, M. N. Mohanty, and A. Sarangi, “Skin cancer detection using machine learning techniques with ABCD features,” in 2022 2nd Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology (ODICON), Nov. 2022, pp. 1–6, doi: 10.1109/ODICON54453.2022.10009956.

M. Q. Hatem, “Skin lesion classification system using a K-nearest neighbor algorithm,” Vis. Comput. Ind. Biomed. Art, vol. 5, no. 1, p. 7, Dec. 2022, doi: 10.1186/s42492-022-00103-6.

K. Vikas Reddy and L. Rama Parvathy, “Accurate Detection and Classification of Melanoma Skin Cancer Using Decision Tree Algorithm over CNN,” 2022.

A. Shah et al., “A comprehensive study on skin cancer detection using artificial neural network (ANN) and convolutional neural network (CNN),” Clin. eHealth, vol. 6, pp. 76–84, Dec. 2023, doi: 10.1016/j.ceh.2023.08.002.

H. K. Kondaveeti and P. Edupuganti, “Skin Cancer Classification using Transfer Learning,” in 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Dec. 2020, pp. 1–4, doi: 10.1109/ICATMRI51801.2020.9398388.

R. Maiti, P. Agarwal, R. R. Kumar, and A. Bhat, “Detection Of Skin Cancer Using Neural Architecture Search with Model Quantization,” in 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), May 2021, pp. 1807–1814, doi: 10.1109/ICICCS51141.2021.9432190.

R. Rokhana, W. Herulambang, and R. Indraswari, “Deep Convolutional Neural Network for Melanoma Image Classification,” in 2020 International Electronics Symposium (IES), Sep. 2020, pp. 481–486, doi: 10.1109/IES50839.2020.9231676.

H. Huang, B. W. Hsu, C. Lee, and V. S. Tseng, “Development of a light‐weight deep learning model for cloud applications and remote diagnosis of skin cancers,” J. Dermatol., vol. 48, no. 3, pp. 310–316, Mar. 2021, doi: 10.1111/1346-8138.15683.

S. S. Chaturvedi, J. V. Tembhurne, and T. Diwan, “A multi-class skin Cancer classification using deep convolutional neural networks,” Multimed. Tools Appl., vol. 79, no. 39–40, pp. 28477–28498, Oct. 2020, doi: 10.1007/s11042-020-09388-2.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats