Evaluation and Applying Feature Extraction Techniques for Face Detection and Recognition
Abstract
Detecting the image and identifying the face has become important in the field of computer vision for recognizing and analyzing, reconstructing into 3D, and labelling the image. Feature extraction is usually the first stage in detection and recognition of the image processing and computer vision. It supports the conversion of the image into a quantitative data. Later, this converted data can be used for labelling, classifying and recognizing a model. In this paper, performance of such feature extraction techniques viz. Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG) and Convolutional Neural Network (CNN) technique is applied to detect and recognize the face. The experiments conducted with a data set addressing the issues like pose variation, facial expression and intensity of light. The efficiency of the algorithms were evaluated based on the computational time and accuracy rate.
Keywords
Face Detection & Recognition, Feature Extraction, Local Binary Pattern, Histogram of Oriented Gradients, Convolutional Neural Network.
Full Text:
PDF
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.