Autocorrelation Based White Space Detection in Energy Harvesting Cognitive Radio Network

Samson Iyanda Ojo, Zachaeus Kayode Adeyemo, Rebeccah Oluwafunmilayo Omowaiye, Oluwatobi Omolola Oyedokun

Abstract


Accurate detection of White Space (WS) is of paramount importance in a Cognitive Radio Network (CRN) to prevent authorized users from harmful interference. However, channel impairment such as multipath fading and shadowing affects accurate detection of WS resulting in interference. The Existing Feature Detection (EFD) technique used to address the problem is faced with computational complexity and synchronization resulting in long sensing time, bandwidth inefficiency, energy constrain and poor detection rate. Hence, this paper proposes autocorrelation based multiple antenna with energy harvesting for WS detection in a CRN using Radio Frequency (RF) energy harvesting and autocorrelation of the received signal with a modified Equal Gain Combiner (mEGC). Antenna Switching (AS) RF energy harvesting with mEGC are used to harvest energy and information from the received PU signal in a multiple antenna configuration. Autocorrelation is then obtained and compared with the set threshold of zero to determine the presence or absence of WS. The proposed technique is evaluated using Spectral Efficiency (SE), Probability of Detection (PD) and Sensing Time (ST) by comparing with EFD technique. The results obtained revealed that the proposed technique shows better performance than EFD.


Keywords


White Space (WS) Antenna Switching (AS) Secondary User (SU) Primary User (PU) RF energy harvesting

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats