Improvement of alzheimer disease diagnosis accuracy using ensemble methods

Mohammed Abdullah Al-Hagery, Ebtehal Ibrahim Al-Fairouz, Norah Ahmed Al-Humaidan


Nowadays, there is a significant increase in the medical data that we should take advantage of that. The application of the machine learning via the data mining processes, such as data classification depends on using a single classification algorithm or those complained as ensemble models. The objective of this work is to improve the classification accuracy of previous results for Alzheimer disease diagnosing. The Decision Tree algorithm with three types of ensemble methods combined, which are Boosting, Bagging and Stacking. The clinical dataset from the Open Access Series of Imaging Studies (OASIS) was used in the experiments. The experimental results of the proposed approach were better than the previous work results. Where the Random Forest (Bagging) achieved the highest accuracy among all algorithms with 90.69%, while the lowest one was Stacking with 79.07%. All these results generated in this paper are higher in accuracy than that done before.


Data Mining; Alzheimer Disease; Ensemble Methods; Classification Accuracy; Random Forest

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats