Adaptive Parameter Control Strategy for Ant-Miner Classification Algorithm

Hayder Naser Khraibet Al-Behadili, Rafid Sagban, Ku Ruhana Ku-Mahamud


Pruning is the popular framework for preventing the dilemma of overfitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers.


Rule Induction; Data Mining; Parameter Control; Metaheuristic; Swarm Intelligent; Ant Colony Optimisation

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats